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Proof of Theorem 1 and Theorem 2

In this section, we prove the following stronger version of Theorem 1 and Theorem 2.

Theorem 1. (GIC) Assume each subset satisfies A.1, A.2 and A.4, and p ≤ nα for some α <
k(τ−η), where η = max{ι/k, 2κ}. If ι < τ , 2κ < τ and λ are chosen so that λ = c0/σ

2(n/m)τ−κ

for some c0 < cc2/2, then there exists some constant C0 such that for n ≥ (2C0p)
(kτ−kη)−1

, any

δ ∈ (0, 1/2) and m = ⌊( δ
C0

)(kτ−kη)−1

n/p(kτ−kη)−1⌋, the selected model Mγ follows,

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1

n1−α(kτ−kη)−1

}

,

and the mean square error of the aggregated estimator follows,

E‖β̄ − β‖22 ≤ σ2V −1
2 s

n
+ exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1

n1−α(kτ−kη)−1

}(

(1 + 2C ′−1
0 sV1)‖β‖22 + C ′−1

0 σ2

)

.

where C ′
0 = mini λmin(X

(i)T
γ X

(i)
γ /ni).

Theorem 2. (Lasso) Assume each subset satisfies A.1, A.2 and A.3, and p ≤ nα for some α <

k(τ − ι). If ι < τ and λ are chosen so that λ = c0(n/m)
ι−τ+1

2 for some c0 < c1V2/c2, then

there exists some constant C0 such that for n ≥ (2C0p)
(kτ−kι)−1

, any δ ∈ (0, 1/2) and m =

⌊( δ
C0

)(kτ−kι)−1 · n/p(kτ−kι)−1⌋, the selected model Mγ follows

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1

n1−α(kτ−kι)−1

}

,

and with the same C ′
0 defined in Theorem 1, we have

E‖β̄ − β‖22 ≤ σ2V −1
2 s

n
+ exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1

n1−α(kτ−kι)−1

}(

(1 + 2C ′−1
0 sV1)‖β‖22 + C ′−1

0 σ2

)

.

Fixing δ = 1/4 gives exactly the Theorem 1 and Theorem 2 in the article. The above two theorems
can be implied from the following three lemmas.

Lemma 1. (Median model for Lasso) Assume each subset satisfies A.1, A.2 and A.3. If ι < τ and

λ is chosen so that λ = c0(n/m)
ι−τ+1

2 for some c0 < c1V2/c2, then there exists some constant C0

such that for n ≥ (2C0p)
1

k(τ−ι) and any δ ∈ (0, 1/2), the selected median model Mγ satisfies

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1

p−(kτ−kι)−1

n

}

,
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where δ determines the number of subsets m

m = ⌊( δ

C0
)k

−1/(τ−ι)n/p(kτ−kι)−1⌋

and constant C0 is defined in the proof.

In particular, if p ≤ nα for some α < k(τ − ι) then

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1 · n1−α(kτ−kι)−1

}

.

Lemma 2. (Median model for GIC) Assume each subset satisfies A.1, A.2 and A.4. Let η =
max{ι/k, 2κ}. If ι < τ , 2κ < τ and λ is chosen so that λ = c0/σ

2(n/m)τ−κ for some c0 < cc2/2,

then there exists some constant C0 such that for any δ ∈ (0, 1/2) and n ≥ (2C0p)
(kτ−kη)−1

, the
selected median model Mγ satisfies

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1 · p(kτ−kη)−1

n

}

,

where δ determines the number of subsets m

m = ⌊( δ

C0
)(kτ−kι)−1

n/p(kτ−kι)−1⌋.

In particular, when p ≤ nα for some α < k(τ − η) we have

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1

n1−α(kτ−kη)−1

}

.

Recall that the design matrix for the true model MS is assumed to be positive-definite (Assumption
A.1) for all subsets. It is therefore reasonable to ensure the selected model Mγ possess the same
property, and thus we have,

Lemma 3. (MSE for averaging) Assume β̂i is the OLS estimator obtained from each subset based
on the selected model γ, then the averaged estimator β̄ has the mean square error,

E

[

‖β̄ − β‖22 |Mγ = MS

]

≤ σ2V −1
2 s

n
.

and

E

[

‖β̄ − β‖22 |Mγ 6= MS

]

≤ (1 + 2C ′−1
0 sV1)‖β‖22 + C ′−1

0 σ2.

where C ′
0 = mini λmin(X

(i)T
γ X

(i)
γ /ni).

Proof of Lemma 1

Proof. Following the proof of Theorem 3 in [1], we have the following result: for the ith subset, the
selected model Mγ(i) follows that,

P (Mγ(i) = MS) ≥ 1− C1(
2

c1
)2kn−kτ+ι

i − C2
4kpnk

i

λ2k
, (1)

where C1, C2 are constants:

C1 =
c1(2k − 1)!!E(ǫ2k)

V2
, C2 = (2k − 1)!!V1E(ǫ2k)

and ni = n/m. If λ is chosen to be c0(n/m)
τ−ι+1

2 , then the above result can be updated as

P (Mγ(i) = MS) ≥ 1− C1(
2

c1
)2kn−kτ+ι

i − C2(2/c0)
2kpn−kτ+kι

i (2)

≥ 1− C0pn
−kτ+kι
i , (3)
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where C0 equals to

C0 = C1(
2

c1
)2k + C2(2/c0)

2k.

For any fixed m if the sample size n satisfies

n ≥ m(2C0p)
1

k(τ−ι) ,

then we have P (Mγ(i) = MS) > 1/2 on each subset. Recall the definition for the median model,

γ = min
γ∈{0,1}p

m
∑

i=1

‖γ − γ(i)‖1.

Notice that as long as half subsets select the correct model, i.e., card({i : Mγ(i) = MS}) ≥ m/2,

we will have Mγ = MS . Therefore, letting Scor =
∑m

i=1 I{Mγ(i)=MS}, where IA is the indictor

function for A, we have

P (Mγ = MS) = P (Scor ≥ ⌈m/2⌉). (4)

Since all subsets are independent and the correct selection probability for each subset is greater than
1/2, we can apply the Chernoff inequality ( [2] or Proposition A.6.1 of [3]) to obtain that,

P (Mγ = MS) ≥ 1− exp

{

− (1/2− C0p(n/m)−kτ+kι)2

2(1− C0p(n/m)−kτ+kι)
·m

}

. (5)

Equivalently, for any n ≥ (2C0p)
1

k(τ−ι) , if we choose m = ⌊( δ
C0

)k
−1/(τ−ι) · n/pk−1/(τ−ι)⌋ for any

δ ∈ (0, 1/2), we have

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1

p−(kτ−kι)−1

n

}

.

In particular, when p ≤ nα for any α < k(τ − ι) we have

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kι)−1

n1−α(kτ−kι)−1

}

. (6)

Proof of Lemma 2

Proof. The proof is essentially the same as Lemma 1. Following the proof of Theorem 2 in [4] , we
will have the initial result on each subset,

P (Mγ(i) = MS) ≥ 1− C1(
2

c2
)2kn−kτ+ι

i − C2(
2

σ
)2k

p

(ρλ)k
, (7)

where ni = n/m and

C1 =
c1(2k − 1)!!E(ǫ2k)

V2
, C2 = (2k − 1)!!V1E(ǫ2k).

Now because λ = c0
σ2 (

n
m )τ−κ we update the above equation to

P (Mγ(i) = MS) ≥ 1− C1(
2

c2
)2kn−kτ+ι

i − C2(
4

c0c3
)kpn

−k(τ−2κ)
i (8)

≥ 1− C0pn
−k(τ−η)
i , (9)

where η = max{ι/k, 2κ} and

C0 = C1(
2

c2
)2k + C2(

4

c0c3
)k.

With exactly the same argument as in Lemma 1, once the sample size exceeds (2C0p)
1

k(τ−η) , then

for any δ ∈ (0, 1/2) and m = ⌊( δ
C0

)k
−1/(τ−η) · n/pk−1/(τ−η)⌋, we have

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1

p−(kτ−kη)−1

n

}

. (10)

In particular, when p ≤ nα for some α < k(τ − η) we have

P (Mγ = MS) ≥ 1− exp

{

− (1/2− δ)2

2(1− δ)
(
δ

C0
)(kτ−kη)−1

n1−α(kτ−kη)−1

}

. (11)
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Proof of Lemma 3

Proof. To simplify the notation, let X denote the selected feature matrix Xγ. Now if the selected
model is correct, the error of OLS estimator can be described in the following form,

β̂ − β = (XTX)−1XT ǫ. (12)

Hence the error of averaged estimator is,

β̄ − β =

m
∑

i=1

(X(i)TX(i))TX(i)T ǫ(i)/m. (13)

Because Eǫ2 = σ2 we have

E‖β̄ − β‖22 =
σ2

m2

m
∑

i=1

tr
[

(X(i)TX(i))−1
]

. (14)

As the smallest eigenvalue for each subset feature matrix is lower bounded by V2, i.e.,

λmin(X
(i)TX(i)/ni) ≥ V2,

we have

E‖β̄ − β‖22 =
σ2

m2ni

m
∑

i=1

tr
[

(X(i)TX(i)/ni)
−1

]

≤ σ2

m2ni

m
∑

i=1

sV −1
2

=
σ2V −1

2 s

n
. (15)

However, if the model is incorrect, we can bound the incorrect estimators in the following way. For
each subset,

‖β̂ − β‖22 = ‖β̂γ − βγ‖22 + ‖β̂S/γ − βS/γ‖22 ≤ ‖β̂γ − βγ‖22 + ‖βS/γ‖22. (16)

Now to quanitify the first term, we first notice that

(Xβ̂γ −Xβγ)/
√
ni = (X(XTX)−1XTY −Xβγ)/

√
ni, (17)

and therefore

C ′
0‖β̂γ − βγ‖22 ≤ ‖(Xβ̂γ −Xβγ)/

√
ni‖22 ≤ n−1

i (‖Y ‖22 − 2βT
γ X

TY + ‖Xβγ‖22) (18)

Taking expectation on both sides we have,

E‖β̂γ − βγ‖22 ≤ C ′−1
0 (E‖Y ‖22/ni + ‖XS/γβS/γ‖22)/ni

≤ C ′−1
0 (‖XSβS‖22/ni + σ2 + ‖XS/γβS/γ‖22/ni)

≤ C ′−1
0 (2‖β‖22λmax(X

T
S XS/ni) + σ2)

≤ C ′−1
0 (2sV1‖β‖22 + σ2) (19)

Therefore, we have

E‖β̂ − β‖22 ≤ (1 + 2C ′−1
0 sV1)‖β‖22 + C ′−1

0 σ2. (20)

The above bound holds for all subset estimtors β(i), it should also hold for their average β̄, i.e.,

E‖β̄ − β‖22 ≤ (1 + 2C ′−1
0 sV1)‖β‖22 + C ′−1

0 σ2. (21)
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Assumption justification

It is important to carefully assess whether the conditions assumed to obtain theoretical guarantees
can be satisfied in applications. There is typically no comprehensive answer to this question, as the
answer usually varies across application areas. Nonetheless, we provide some discussion below to
provide some insights, while being limited by the complexity of the question.

In following paragraphs, we attempt to justify A.1, A.3 and A.4 with examples and theorems. The
main reason to leave A.2 alone is because A.2 is an assumption on basic model structure that is
routine in the high-dimensional literature. See Zhao and Yu (2006) and Kim. et al. (2012).

The discussion is divided into two parts. In the first part, we consider the case where features or
predictors are independent. In the second part, we will address the correlated case. Because we can
always standardize feature matrix X prior to any analysis, it will be convenient to assume xij having
mean 0 and variance 1. For independent features, we have the following result.

Theorem 3. If the entries of the n× p feature matrix X are i.id random variables with finite 4wth

moments for some integer w > 0, then A.1, A.3 and A.4 will hold for all m subsets with probability,

P (A.1, A.3 and A.4 hold for all subsets) ≥ 1−O

{

m2w(2s− 1)2wp2

n2w−1

}

,

where s is the number of non-zero coefficients.

Alternatively, for a given δ0 > 0, if the sample size n satisfies that

n ≥ m(2s− 1)

{

9w(2w − 1)!!M1(2s− 1)mp2δ−1
0

}
1

2w−1

,

where M1 is some constant, then with probability at least 1−δ0, all subsets satisfy A.1, A.3 and A.4.

The proof will be provided in next section. Theorem 3 requires m = o(n), which seems to conflict
with Theorem 1 and 2 in the article where m is assumed to be O(n) if p is fixed to be constant. This
is, however, caused by the choice of δ (see the stronger version of Theorem 1 provided in the first
section). δ is fixed at 1/4 in the article for simpicity, leading to the conclusion of m = O(n). With a
different choice of δ satisfying δ = o(n), Theorem 3 along with Theorem 1 and 2 (stronger version)
can be satisfied simultaneously. The same argument can be applied to Theorem 4 introduced in the
next part as well.

Next, we consider the case when features are correlated. For data sets with correlated features, pre-
processing such as preconditioning might be required to satisfy some of the conditions. Due to the
complexity of the problem, we restrict our attention to data sets following elliptical distributions and
under high dimensional setting (p > n). Real world data commonly follow elliptical distributions
approximately, with density proportional to g(xTΣ−1x) for some non-negative function g(·). The
Multivariate Gaussian is a special case with g(z) = exp(−z/2). Following the spirit of Jia and

Rohe (2012), we make use of (XXT /p)−1/2 (XXT is invertible when p > n) as preconditioning
matrix and then use results from Wang and Leng (2014) to show A.1, A.3 and A.4 hold with high
probability. Thus, we have the following result.

Theorem 4. Assume p > n and define X̃ = (XXT /p)−1/2X and Ỹ = (XXT /p)−1/2Y . If each
row of feature matrix X are i.i.d samples drawn from an elliptical distribution with covariance Σ
and the condition number of Σ satisfies that cond(Σ) < M2 for some M2 > 0, then for any M > 0
there exist some M3,M4 > 0 such that, A.1, A.3 and A.4 hold for all subsets with probability,

P (A.1, A.3 and A.4 hold for all subsets) ≥ 1−O

{

mp2 exp

( −Mn

2m log n

)}

,

if n ≥ exp
(

4M3M4(2s− 1)2
)

.

Alternatively, for any δ0 > 0, if the sample size satisfies that

n ≥ max

{

O

(

2m(logm+ 2 log p− log δ0)/M

)

, exp

(

4M3M4(2s− 1)2
)}

,

then with probability at least 1− δ0, A.1, A.3 and A.4 hold for all subsets.

The proof is also provided in next section.
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Proof of Theorem 3

Proof. Let C = 1
nX

TX . We divide the proof into four parts. In Part I and II, we examine the
magnitude of Cik and Cii and give the probability that A.3 and the first part of A.1 hold for a single
data set. In Part III, we give the probability that A.4 and the second part of A.1 hold on a single data
set. We generalize the result to multiple data sets in Part IV.

Part I. For Cii we have

ECii = E‖xi‖22/n =
1

n

n
∑

j=1

Ex2
ij = 1,

and

E|Cii − 1|2w =
1

n2w
E|

n
∑

j=1

(x2
ij − 1)|2w ≤ (2w − 1)!!E|x2

12 − 1|2w
n2w−1

,

where the last inequality follows the proof of Theorem 3 in [1]. Because E|x12|4w < ∞, it is clear

that E|x2
12 − 1|2w =

∑2w
j=0(−1)jCj

2wE|x12|4w−2j is also a finite value, which will be denoted by

M0. Now by the Chebyshev’s inequality we have for any t > 0,

P (|Cii − 1| > t) <
(2w − 1)!!M0

n2w−1t2w
.

Therefore, by taking the union bound over i = 1, 2, · · · , p we have,

P ( max
i∈{1,2,··· ,p}

|Cii − 1| > t) <
(2w − 1)!!M0p

n2w−1t2w
. (22)

Recall the definition of Cii, (22) immediately implies that the first part of A.1 will hold with proba-
bility at least 1−O

(

p
n2w−1

)

for a single data set.

Part II. Following the same argument, we can establish the same inequality for Cik where the only
difference is the mean,

ECik = ExT
i xk/n =

1

n

n
∑

j=1

Exijxjk = 0.

From Chebyshev’s inequality we have for any t > 0,

P (|Cik| > t) <
(2w − 1)!!M1

n2w−1t2w
,

where M1 = max{E|x12x23|2w,M0} is a constant. Taking union bound over all off-diagonal terms
we have,

P (max
i6=k

|Cik| > t) <
(2w − 1)!!M1p

2

n2w−1t2w
. (23)

With (22) and (23), we can quantify the sample correlation between xi and xk, which is
Cik/

√
CiiCkk. Taking t = (6s− 3)−1 for both inequalities, we have

P (max
i6=k

|cor(xi, xk)| >
1

4s− 2
) < 2(2w − 1)!!9wM1

(2s− 1)2wp2

n2w−1
.

With Corollary 2 in [1], the above result essentially states that A.3 will hold with probability at least

1−O
( (2s−1)2wp2

n2w−1

)

for a single machine.

Part III. For the second part of A.1 and A.4, we might need to quantify the minimum value of
vTCv for any vector ‖v‖2 = 1 with support |supp{v}| ≤ s. Here supp{a} stands for all non-zero
coordinates of vector a. Let S be index set for non-zero coefficients. Noticing that,

λmin(
1

n
XT

S XS) = min
‖v‖=1,supp{v}=S

vTCv ≥ min
‖v‖=1,|supp{v}|≤s

vTCv,

6



and

inf
|π|≤s

λmin(
1

n
XT

π Xπ) = inf
|π|≤s

min
‖v‖=1,supp{v}=π

vTCv = min
‖v‖=1,|supp{v}|≤s

vTCv.

Thus, evaluating min‖v‖=1,|supp{v}|≤s v
TCv solely is adequate. In fact, for any vector v with

|supp{v}| ≤ s we have,

vTCv =
∑

i∈supp{v}

Ciiv
2
i +

∑

i6=k∈supp{v}

Cikvivk

≥ min
i∈{1,2,··· ,p}

Cii −
{

(s2 − s) max
i6=k∈{1,2,··· ,p}

C
(S)2
ik

}1/2
. (24)

The second step is an application of Cauchy-Schwarz inequality and the fact that if ‖v‖2 = 1 then
∑

i6=k v
2
i v

2
k < 1. Combining (24) with (22) and (23), and taking t = (2s+ 2)−1 we have

min
‖v‖=1,|supp{v}|≤s

vTCv ≥ 1− 1

2s+ 2
− s

2s+ 2
=

1

2
,

with probability at least

1− 22w+1(2w − 1)!!M1(s+ 1)2wp2

n2w−1
.

Part IV. Consequently, A.1, A.3 and A.4 will hold for data set on a single machine with probability,

P (A.1, A.3 and A.4) ≥ 1−O

{

(2s− 1)2wp2

n2w−1

}

.

Now if we have m subsets, each with sample size n/m, then the probability that all subsets satisfy
A.1, A.3 and A.4 follows,

P (A.1, A.3 and A.4 hold for all) ≥ 1−O

{

m2w(2s− 1)2wp2

n2w−1

}

.

Alternatively, for a given δ0 > 0 and the number of subsets m, if the sample size n satisfies that

n ≥ m(2s− 1)

{

9w(2w − 1)!!M1(2s− 1)mp2δ−1
0

}
1

2w−1

,

then with probability at least 1− δ0, all subsets satisfy A.1, A.3 and A.4.

Proof of Theorem 4

Proof. The proof procedure is essentially the same as Theorem 3. We begin by looking at data set

on a single machine. Let C = X̃T X̃/n = p/n · XT (XXT )−1X . From Lemma 4 and Lemma 5
of [5] we have, for any M > 0 there exists some constant M3,M4 > 0 such that,

P

(

max
i∈{1,2,··· ,p}

Cii > M3 or min
i∈{1,2,··· ,p}

Cii < M−1
3

)

< 4p · e−Mn, (25)

and

P

(

max
i6=k∈{1,2,··· ,p}

Cik >
M4√
log n

)

≤ O

{

p2 · exp
( −Mn

2 log n

)}

. (26)

Inequality (25) implies the first part of A.1. For A.3, we can use (25) and (26) to bound the sample
correlation cor(xi, xk) = Cik/

√
CiiCkk as follows,

P

(

max
i6=k∈{1,2,··· ,p}

|cor(xi, xk)| >
M3M4√
log n

)

≤ O

{

p2 · exp
( −Mn

2 log n

)}

.

Therefore, to satisfy A.3 only requires

n ≥ exp

(

4M3M4(2s− 1)2
)

. (27)
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As s is assumed to be small, (27) will not be a big threat to the sample size. For A.4 and the second
part of A.1, we continue to apply the same strategy in the proof of Theorem 3 (Part III). Using (24)
we have,

min
‖v‖=1,|supp{v}|≤s

vTCv ≥ M−1
3 − M4s√

log n

with probability 1−O
{

p2 · exp(−Mn/2 log n)
}

. To satisfy A.4 and the second part of A.1, we just

need n to be greater than exp(M3M4s
2), which is already true if (27) holds.

Consequently, for a single machine if (27) is satisfied, A.1, A.3 and A.4 hold with probability,

P (A.1, A.3 and A.4) ≥ 1−O

{

p2 · exp
( −Mn

2 log n

)}

.

Now for m subsets, each with sample size n/m, the probability that A.1, A.3 and A.4 hold for all
subsets follows,

P (A.1, A.3 and A.4 hold for all) ≥ 1−O

{

mp2 · exp
( −Mn

2m log n

)}

.

Alternatively, for any δ0 > 0, if

n ≥ max

{

O

(

2m(logm+ 2 log p− log δ0)/M

)

, exp

(

4M3M4(2s− 1)2
)}

,

then A.1, A.3 and A.4 hold for all subsets with probability at least 1− δ0.

Results for p = 10, 000

we simulate 50 data set for each case, and let the sample size range from 20,000 to 50,000 with
subset size fixed to 2,000. Bolasso is not implemented as the computation cost is too expensive. The
results are plotted in Fig 1 - 6.
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Figure 1: Results for case 1 with ρ = 0.

20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

Mean square error

Sample size n

va
lu

e

median
fullset
average
message

20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability to select the true model

Sample size n

pr
ob median

fullset
average
message

20000 30000 40000 50000

0
20

40
60

80
10

0

Computational time

Sample size n

se
co

nd
s

median
fullset
average
message

Figure 2: Results for case 1 with ρ = 0.5.
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Figure 3: Results for case 2 with ρ = 0.

20000 30000 40000 50000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Mean square error

Sample size n

va
lu

e

median
fullset
average
message

20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability to select the true model

Sample size n

pr
ob median

fullset
average
message

20000 30000 40000 50000

0
20

40
60

80
10

0

Computational time

Sample size n

se
co

nd
s median

fullset
average
message

Figure 4: Results for case 2 with ρ = 0.5.
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Figure 5: Results for case 3 with ρ = 0.
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Figure 6: Results for case 3 with ρ = 0.5.
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