Minimax-optimal Inference from Partial Rankings:
Supplementary Material

We introduce some additional notations used in the proof. The first-order partial derivative of £(6)
is given by
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and the Hessian matrix H(6) € 8™ with H;;/(0) = 0 L(0 ) is given by
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It follows from the definition that —H (#) is positive semi-definite for any § € R™. Define L; € S™
as
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and then the Laplacian of the pairwise comparison graph G satisfies L = Z;nzl L

1 Proof of Theorem /(1]

We first introduce a key auxiliary result used in the proof. Let F' be a fixed CDF (to be used in the
Thurstone model), let b > 0 and suppose 6 is a parameter to be estimated with 6 € [—b, b] from
observation U = (Uy,...,Uyy), where the U;’s are independent with the common CDF given by
F(c — 0). The following proposition gives a lower bound on the average MSE for a fixed prior
distribution based on Van Trees inequality [1]].

Proposition 1. Let pg be a probability density on [—1,1] such that po(1) = po(—1) = 0 and define
the prior density of © as p(0) = bpo( ). Then for any estimator T(U) of ©,
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where L is the probability density function of F with I(u) = [ (s /1((1))) dx and 1(py) =
Po ‘9)
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Proof. 1t follows from the Van Trees inequality that
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where the Fisher information I(0) = dI(u) and
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Proof of Theorem([l] Let Obea glven estimator. The minimax MSE for @ is greater than or equal to
the average MSE for a given prior distribution on 6*. Let po(0) = cos?(70/2), then I(py) = =
Define p(6) = po( ). If n is even we use the following prior distribution. The prior distribution of
07 for i odd is p(0) and for ¢ even, 0] = —0;_,. If n is odd use the same distribution for 67 through
0 _, and set 8, = 0. Note that 8* € @b with probability one. For simplicity, we assume 7 is odd in
the rest of this proof; the modification for n even is trivial. We use the genie argument, so that the
observer can see the hidden utilities in the Thurstone model. The estimation of 6* decouples into
| 5] disjoint problems, so we can focus on the estimation of #; from the vector of random variables

= (Uy,...,Uy,) associated with item 1 and the vector of random variables V' = (V1,...,Vy,)
associated with item 2. The distribution functions of the U;’s are all F'(c — 67) and the distribution
functions of the V;’s are all F'(¢c + 67), and the U’s and Vs are all mutually independent given
0*. Recall that p is the probability density function of F, i.e., . = F’. The Fisher information for
each of the d; + ds observations is I(u), so that Proposition [I| carries over to this situation with
d = dy + ds. Therefore, for any estimator T'(U, V') of ©F (the random version of 67),
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By this reasoning, for any odd value of ¢ with 1 < ¢ < n we have
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Summing over all odd values of 7 in the range 1 <
>

¢ < n yields the theorem. Furthermore, since
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2  Proof of Theorem

The Fisher information matrix is defined as I(0) = —Ey[H ()] and given by
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Since —H () is positive semi-definite, it follows that I(6) is positive semi-definite. Moreover,
A1(1()) is zero and the correspondlng elgenvector is the normalized all-one vector. Fix any unbi-

ased estimator 0 of 0 € O,. Since 0 e U, 6 — 6 is orthogonal to 1. The Cramér-Rao lower bound
then implies that E[[|§ — 6[|2] > dico X SWOICH] 1(9)) Taking the supremum over both sides gives
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If 6 equals the all-zero vector, then
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3 Proof of Lemmal[ll

The idea of the proof is to view V.£(6*) as the final value of a discrete time vector-valued martingale
with values in R™. Consider a user that ranks items 1, ..., k. The PL model for the ranking can be
generated in a series of k — 1 rounds. In the first round, the top rated item for the user is found.
Suppose it is item I. This contributes the term e; — (p1,p2, - - -, Pk, 0,0,...,0) to VL(6*), where
p; = P{I = i}. This contribution is a mean zero random vector in R™ and its norm is less than
one. For notational convenience, suppose I = k. In the second round, item & is removed from the
competition, and an item J is to be selected at random from among {1, ...,k — 1}. If g; denotes
P{J = j}for1l < j <k — 1, then the contribution of the second round for the user to V.L(0*) is
the random vector ey — (¢1,42, - --,qk-1,0,0,...,0), which has conditional mean zero (given I)
and norm less than or equal to one. Considering all m users and k; — 1 rounds for user j, we see
that V.L(0*) is the value of a discrete-time martingale at time m(k — 1) such that the martingale
has initial value zero and increments with norm bounded by one. By the vector version of the
Azuma-Hoeffding inequality found in [2, Theorem 1.8] we have

P{|VL©O")|| > 6} < 2e2e T,

which implies the result.

4 Proof of Lemma|[2

We first introduce a key auxiliary result used in the proof.

Claim 1. Given 0 € R", let A = diag(p) — pp™, where p is the column probability vector with
pi = €% /(e + -+ e) for each i. If |0;| < b, for 1 < i <1, then A2(A) > —. Equivalently,
e®®A > B where B = Ldiag(1) — 5117.

Proof. Fix 6 satisfying the conditions of the lemma. It is easy to see that for each i, p; > re%
The matrix A is positive semidefinite, and its smallest eigenvalue is zero, with the corresponding
eigenvector 1. So \2(A) = min, o’ A« subject to the constraints a1 = 0 and ||a||? = 1. For

satisfying the constraints,
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The proof of the first part of the lemma is complete. We remark that the bound of the lemma is

nearly tight for the case 61 = ... = 0,1 = b and 0, = —b, for which \y(A4) = %

The final equivalence mentioned in the lemma follows from the facts A\ (€2°A) = \{(B) = 0 with
common corresponding eigenvector 1, and \; (e’ A) > 1 = \;(B) for2 <i <r.

Proof of Lemmal2] Case k; = 2,V;j € [m]: The Hessian matrix simplifies as

HO) = - > Y e exp(6;) exp(0y)
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Observe that H(6) is deterministic given S7*. Since |6;| < b, Vi € [n],
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It follows that —H (6) > %SWL and the theorem follows.
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Case k; > 2 for some j € [m]: The Hessian matrix H () depends on " and therefore is random
given ST*. For a given user j, and ¢ with 1 < £ < k; — 1, let S04 denote the set of items
contending for the /! position in the ranking of user j after higher ranking items have been selected:

SUH = {i: o1 (i) > £},1et 109 denote the indicator vector for the set S+¥) and let pU-*) denote
the correspond{ng probability column vector for the selection:
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Summing over j and ¢ in (3) and noting that k; — ¢ + 1 < k; for all j, ¢ yields
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Define ;i = 2 55 (11 (ot o 2y — Poloy (0), 07 1) 2 @). Then

J

|| <!

_ _ 1 m m
L—TFEy[L] = 52 Z aiir(e; —eq)(e;i —eir) ::ZYj.
j=1 \i,i’€S; Jj=1
1 (k;—1) (k;—1) k;
Observe that |a;;/| < %; and therefore —=5—I; < Y; < *=4—L;. Furthermore, IIL;|| = noT

and thus [|Y;]| < 1. Moreover, Y} = Zi,i',i”esj azirazin(e; — eqy)(e; — ein) 1. It follows that for
any vector x € R”,
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where the last inequality follows from the Cauchy-Swartz inequality. Therefore, Yj2 < 2L;. It fol-
lows that 77" | Eg[Y?] < 2L and thus || 37" | Eg[Y7?]|| < 2),,. By the matrix Bernstein inequality
[3], with probability at least 1 — n !,
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|IL — Eg[L]|| < 2+/Aylogn + 3 log n.

By the assumption that \, > C'logn for some sufficiently large constant C, ||L — Eg[L]|| <
4+/ )\, log n. It follows from @) and (5) that
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5 Proof of Corollary I]

Recall that L = Z:n:1 L;. Observe that E[L;] = i (I —111T). Define Z; = L; — E[L;].
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Then 7, ..., Z,, are independent symmetric random matrices with zero mean. Note that
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1—n-1,
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where the last two inequalities follow from the assumption that mk > C'log n for some sufficiently
mk

large constant C. Since E[L] = (I — 2117), the smallest eigenvalue of E[L] is zero and all
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the other eigenvalues equal :‘fkl It follows that
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and thus \y > 2(21751) and \,, < 2(3’:11“1). By the assumption that mk > Ce?® logn for some suffi-

ciently large constant C, Ay — 16e2°\/X,, Togn > T—f. Then the corollary follow from Theorem

6 Proof of Corollary 2]

Without loss of generality, assume k; is even for all j € [m]. After the random IB, there are mk/2
independent pairwise comparisons and let L denote the Laplacian of the comparison graph after the
breaking. Recall that L = -7 | L;. With random IB, we have E[L;] = P (I —1117) . Define
Zj = L; — E[L;]. Then Zi, ..., Z,, are independent symmetric random matrices with zero mean.
Moreover,

k.
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Therefore, || 377" E[Z 2 < 2mk  Following the same argument for proving Corollary (1| we can
show that Ao(Lig) > 2(’;‘751) and the corollary follows by Theoremwith k=2.
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