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1 Accelerated Gibbs Sampler

In [1], the authors presented a linear-time accelerated Gibbs sampler for conjugate IBP models that
effectively marginalized over the latent factors. The per-iteration complexity of this algorithm is
O(N(K2 + KD)), which is comparable to the uncollapsed linear-Gaussian IBP sampler that has
per-iteration complexity O(NDK2) but does not marginalize over the weighting factors, and as a
result, presents slower convergence rate.

This algorithm exploits the Bayes rule to avoid the cubic complexity with N due to the computation
of the marginal likelihood in the Collapsed Gibbs sampler. In particular, it applies the Bayes rule to
obtain the probability of each element in the latent feature matrix Z being active as
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where Sd is the number of columns in matrices Yd and Bd (being Sd the number of categories Rd

for those dimension d that contains categorical attributes, and Sd = 1 otherwise), Z¬n corresponds
to matrix Z after removing the the n-th row, the vector yd

¬nr is the r−th column of matrix Yd

without the element yd
nr, and p(bd

r |xd
¬n,Z¬n) is the posterior of bd
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where P¬n = Z>¬nZ¬n+1/σ2
BIK and λd

¬ny = Z>¬nyd
¬nr are the natural parameters of the Gaussian

distribution.

Note that, opposite to the notation in [1], we here resort to the natural parameters for the Gaussian
distribution over the posterior of bd

r instead of the mean and the covariance matrix. This formulation
allows us to compute the full posterior over the weighting factors as
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where P = P¬n + z>n zn and λd
r = λd

¬nr + z>n yd
nr are the natural parameters of the Gaussian

distribution.

The Accelerated Gibbs sampling algorithm iteratively samples the value of each element znk ac-
cording to
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After having sampled all elements znk for the K+ non-zero columns in Z for each data point n, the
algorithm samples from a distribution (where the prior is a Poisson distribution with mean α/N ) a
number of new features necessary to explain that data point.
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2 Posterior distribution over Yd

As previously described, in the 5-th step of Algorithm ??, we need to sample from the auxiliary
Gaussian variables yd

nr from the posterior distribution p(yd
nr|xd

n, zn,bd). The posterior distribution
yd

nr for all the considered types of data are given given by:
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3. For categorical observations:
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In words, if xd
n = T = r we sample yd

nr from a Gaussian truncated by the left by
maxj 6=r(yd

nj) and, otherwise, we sample from a Gaussian truncated by the right by yd
nr

with r = xd
n. Note that sampling from the variables yd

nr corresponds to solve a multi-
nomial probit regression problem. To achieve identifiability we assume, without loss of
generality, that the regression function fRd

(zn) is identically zero, and therefore, we fix
bd
kRd

= 0 for all k.
4. For ordinal observations:

p(yd
n1|xd

n = r, zn,Bd) ∼ N (yd
n1|znbd

1, σ
2
y)I(θd

r−1 < yd
n1 ≤ θd

r ). (8)

Note that in this case, we also need to sample the values for the thresholds θd
r with r =

1, . . . , Rd − 1 as

p(θd
r |yd

n1) ∼N (θd
r |0, σ2

θ)I(θd
r > max(θd

r−1,max
n

(yd
n1|xd

n = r))

× I(θd
r < min(θd

r ,min
n

(yd
n1|xd

n = r + 1)).
(9)

In this case, sampling from the variables yd
n1 corresponds to solve an ordered probit regres-

sion problem, where the thresholds {θr}Rd
r=1 are unknown. Hence, to achieve identifiability

we need to set the one of the thresholds, θ1 in our case, to a fixed value.
5. For count observations:
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where f−1 : <+ → < is the inverse function of f , i.e., f−1(f(y)) = y. Therefore, yd
n1

from a Gaussian truncated by the left by f−1(xd
n) and by the right by f−1(xd

n + 1).
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