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1 Proofs of the first half of Lemma (I and Lemma
Before we prove lemmas, we again give the definition of estimate sequence and its basic properties.
1(2) = flar)+ Slla— |,
I
Crer1(2) = (1 = Vi) Pr() + Vin(gn, (y) + (vr, 2 —yn) + Sz — Yil|?
+h(zpyr) + (Er v — Tq1)), k> 1
We set

®; = min Py (z), 2z, = argmind(x).
z€ERY zERA

Since V2@ (x) = ul,, it follows that for Vo € R¢
() = Ll — 2l + 0. ()

Now we give the proof of first half of Lemmal[Il

Proof of the first half of Lemmal[ll We see that () of Lemma[Ilis true for k = 1, and we assume it
is true for k. From the definition of estimate sequence, we have

E [@541(2)] = (1 = /AM)E [@4(2)] + Vi E [gr, () + (on. 2 — )
+g||x = yil® + h(@pr1) + (€ — Tpp1)]
< (U= Vim)f() + (1= Vi) (@~ ))()
FVITE [g(un) + (Vo). @ = i) + Slle = el + hwasn) + (. = aipa)]
< (U= Vi) f (@) + (1= V) (@ = f)(@) + Vim(g(@) + h(z))
= J@) + (1= Vi)t (@1~ f)(a),

where for the first inequality we used induction hypothesis, Ez, [g7, (yx)] = E[g(yx)] and E;, [vx] =
E[Vg(yx)], for the last inequality we used the convexity of g and h. Hence, the first half of Lemma
() follows. O

Next, we give the proof of Lemma 2]



Proof of Lemma[2l From the definition of estimate sequence and (1)), we have that for & > 1
/.L * /J“ *
Llle = 2l + @y = (1= vim) (Sllz = 2l + @) + Vi (g5, () + (ves2 = )
JF%HI —yill® + M@pg1) + (G — Ik+1)).

By differentiating at y, this equality, we obtain

WYk — zk+1) = (1= /) p(ye — z1) + /(v + &)

Hence, we have
n
Zer1 = (1= /um)zi + /umyr — \/;(Uk + &),

and that is exactly (IT) of Lemma[2l Next, we prove (I2) of Lemma [2] by induction. It is true for
k = 1. We assume it is true for k, then it follows from (I1)) of Lemmal[2l that,

n
Zit1 = Yhr1 = (L= /um)zk + /unyr — 4 / ;(Uk + &) — Yrt1

1 1 —/pn
= ——(yr — vk + &) — ———=—Tk — Yrt1
N N,
1 1 —
= —Tk+1 — — (— Tk — Yk+1-
N N "

From the update rule of ¥, we have

=i 1+\/w7< <1 1—\//m> >
k Yk+1 Tkt1

= + - Y
N N 1+ o

Hence, we get
1
Rk+1 — Yk+1 = ﬁ(?ﬂwl — Thy1)-

2  Proof of Lemma[3
We prove Lemma[3

Proof of Lemma[3] Averaging

(Vg(yr) + &k vi + &) = Va(yr) + &kl1* + (Vg(yr) + &k, ve — Vg(yr))
and
(Va(yr) + &k, vi + &) = |lvi + &I + (v + &k, Valye) — vi),
we get (13) of Lemma[3

1
(Va(yr) + &k, vk + &) = 3 (IVg(y) + &II” + llve + &> = IVa(yr) — vel?) -
(I4) of Lemma[3is shown as follows:
ok + &kll? = llow + & + Vo(ur) + & — (Valur) + &)1
= [ Valyr) + &ll* + 2(Vg(yx) + &, vr — Vg(yr)) + llox — Vg(ur)lI®
< 2([[Vg(yr) + &ll* + vk — Va(ur) ).
In the last inequality, we use
lall® + o]
2 b
Inequality (I3) of Lemma[3lcan be proved in a similar way. O

|(a,b)| < for Va,vb € RY.



3  Proof of Lemmalq

LemmaM]is the key lemma which give a bound on the variance. Now we give the proof.

Proof of Lemmal] We set vjl- = Vy,;(yr) — Vg;(&) + 0. Since

vk:%ZU;,

JEIk

conditional variance of vy, is as follows (see [[1, p.183])

1n—-19
Erllve = Va(y)l* = 7 —E;llvj = Vg(ue)lI*,
bn—-1
where expectation in right hand side is taken with respect to j € {1,...,n}. Therefore, it suffices
to prove that
Ejllvj — Volye)|* < 2L2lys — wil® + 8L(f () — f(2.) + f(2) — f(2.))- 2)

Fori € {1,...,n}, we set
¢i(z) = gi(x) — (9i(z+) + (Vgi(zs), © — z.)).
We have that ¢;(x,) = min, ¢;(x) since V¢;(z,) = 0 and convexity of ¢;. Since V¢; is Lipschitz
continuous with L, it follows that (see [2, Theorem 2.1.5])
1
S IVG@I? < 61(x) — 6ila-) = (o),

Thus,
IVgi(2) = Vgi(z)* < 2L(gi(x) = gi(s) — (Vgi(wa), @ — 2.).
Averaging from ¢ = 1 to n, we have

%Z IVgi(x) = Vgi(w.)II* < 2L(g(2) — g(as) — (Vg(a),x — x.)).
i=1

By the optimality of x,, —Vg(x.) is a subgradient of h at x., so that
(—Vg(e.),o — 2.) < hz) — h(z.).

Hence we get
3 I90i(@) — Vil < 2L(g(e) — gla.) + hio) — he.) = 2L(f(@) — f(@)): O

We now bound left hand side of (@) as follows:
Ejllv; — Va(yw)lI?
=E;|[Vg;(yx) — Vg;(&) — (Vg(yr) — Vo(2))|®
< E;|[Vg;(yx) — Vg;(2)]?
< 2E;(|Vg;(yr) — Vs (xn)lI* + 4E; | Vg;(wr) — Vo (@)|* + 4E;(Vg; (z.) — Vo ()]
< 2L |lyx, — x| + 8L(f (k) — fl@e) + f(Z) — f(z2)),

where for the first inequality we used E||¢ —E¢||? < E||¢||? for any random vector ¢, for the second
inequality, we used ||a + b||* < 2||al|? + 2||b]|?, and for the last inequality, we used L-Lipschitz
continuity and (3). This finishes the proof of lemma. O
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