
Stochastic Proximal Gradient Descent with

Acceleration Techniques

Atsushi Nitanda
NTT DATA Mathematical Systems Inc.

1F Shinanomachi Rengakan, 35,
Shinanomachi, Shinjuku-ku, Tokyo,

160-0016, Japan
nitanda@msi.co.jp

Abstract

Proximal gradient descent (PGD) and stochastic proximal gradient descent
(SPGD) are popular methods for solving regularized risk minimization problems
in machine learning and statistics. In this paper, we propose and analyze an ac-
celerated variant of these methods in the mini-batch setting. This method incor-
porates two acceleration techniques: one is Nesterov’s acceleration method, and
the other is a variance reduction for the stochastic gradient. Accelerated proxi-
mal gradient descent (APG) and proximal stochastic variance reduction gradient
(Prox-SVRG) are in a trade-off relationship. We show that our method, with the
appropriate mini-batch size, achieves lower overall complexity than both APG and
Prox-SVRG.

1 Introduction

This paper consider the following optimization problem:

minimize
x∈Rd

f(x)
def
= g(x) + h(x), (1)

where g is the average of the smooth convex functions g1, . . . , gn from R
d to R, i.e., g(x) =

1
n

∑n

i=1 gi(x) and h : Rd → R is a relatively simple convex function that can be non-differentiable.
In machine learning, we often encounter optimization problems of this form. For example, given
a sequence of training examples (a1, b1), . . . , (an, bn), where ai ∈ R

d and bi ∈ R, if we set

gi(x) = 1
2 (a

T
i x − bi)

2, then we obtain ridge regression by setting h(x) = λ
2 ‖x‖2 or we obtain

Lasso by setting h(x) = λ|x|. If we set gi(x) = log(1 + exp(−bix
Tai)), then we obtain regular-

ized logistic regression.

To solve the optimization problem (1), one popular method is proximal gradient descent (PGD),
which can be described by the following update rule for k = 1, 2, . . .:

xk+1 = proxηkh
(xk − ηk∇g(xk)) ,

where prox is the proximity operator,

proxηh(y) = argmin
x∈Rd

{

1

2
‖x− y‖2 + ηh(x)

}

.

A stochastic variant of PGD is stochastic proximal gradient descent (SPGD), where at each iteration
k = 1, 2, . . ., we pick ik randomly from {1, 2, . . . , n}, and take the following update:

xk+1 = proxηkh
(xk − ηk∇gik(xk)) .

1

The advantage of SPGD over PGD is that at each iteration, SPGD only requires the computation
of a single gradient ∇gik(xk). In contrast, each iteration of PGD evaluates the n gradients. Thus
the computational cost of SPGD per iteration is 1/n that of the PGD. However, due to the variance
introduced by random sampling, SPGD obtains a slower convergence rate than PGD. In this paper
we consider problem (1) under the following assumptions.

Assumption 1. Each convex function gi(x) is L-Lipschitz smooth, i.e., there exist L > 0 such that
for all x, y ∈ R

d,
‖∇gi(x)−∇gi(y)‖ ≤ L‖x− y‖. (2)

From (2), one can derive the following inequality,

gi(x) ≤ gi(y) + (∇gi(y), x− y) +
L

2
‖x− y‖2. (3)

Assumption 2. g(x) is µ-strongly convex; i.e., there exists µ > 0 such that for all x, y ∈ R
d,

g(x) ≥ g(y) + (∇g(y), x− y) +
µ

2
‖x− y‖2. (4)

Note that it is obvious that L ≥ µ.

Assumption 3. The regularization function h(x) is a lower semi-continuous proper convex function;
however, it can be non-differentiable or non-continuous.

Under the Assumptions 1, 2, and h(x) ≡ 0, PGD (which is equivalent to gradient descent in this
case) with a constant learning rate ηk = 1

L
achieves a linear convergence rate. On the other hand, for

stochastic (proximal) gradient descent, because of the variance introduced by random sampling, we
need to choose diminishing learning rate ηk = O(1/k), and thus the stochastic (proximal) gradient
descent converges at a sub-linear rate.

To improve the stochastic (proximal) gradient descent, we need a variance reduction technique,
which allows us to take a larger learning rate. Recently, several papers proposed such variance re-
duction methods for the various special cases of (1). In the case where gi(x) is Lipschitz smooth
and h(x) is strongly convex, Shalev-Shwartz and Zhang [1, 2] proposed a proximal stochastic dual
coordinate ascent (Prox-SDCA); the same authors developed accelerated variants of SDCA [3, 4].
Le Roux et al. [5] proposed a stochastic average gradient (SAG) for the case where gi(x) is Lips-
chitz smooth, g(x) is strongly convex, and h(x) ≡ 0. These methods achieve a linear convergence
rate. However, SDCA and SAG need to store all gradients (or dual variables), so that O(nd) stor-
age is required in general problems. Although this can be reduced to O(n) for linear prediction
problems, these methods may be unsuitable for more complex and large-scale problems. More re-
cently, Johnson and Zhang [6] proposed stochastic variance reduction gradients (SVRG) for the case
where gi(x) is L-Lipschitz smooth, g(x) is µ-strongly convex, and h(x) ≡ 0. SVRG achieves the
following overall complexity (total number of component gradient evaluations to find an ǫ-accurate
solution),

O

(

(n+ κ) log

(

1

ǫ

))

, (5)

where κ is the condition number L/µ. Furthermore, this method need not store all gradients. Xiao
and Zhang [7] proposed a proximal variant of SVRG, called Prox-SVRG which also achieves the
same complexity.

Another effective method for solving (1) is accelerated proximal gradient descent (APG), proposed
by Nesterov [8, 9]. APG [8] is an accelerated variant of deterministic gradient descent and achieves
the following overall complexity to find an ǫ-accurate solution,

O

(

n
√
κ log

(

1

ǫ

))

. (6)

Complexities (5) and (6) are in a trade-off relationship. For example, if κ = n, then the complexity
(5) is less than (6). On the other hand, the complexity of APG has a better dependence on the
condition number κ.

In this paper, we propose and analyze a new method called the Accelerated Mini-Batch Prox-SVRG
(Acc-Prox-SVRG) for solving (1). Acc-Prox-SVRG incorporates two acceleration techniques in
the mini-batch setting: (1) Nesterov’s acceleration method of APG and (2) an variance reduction
technique of SVRG. We show that the overall complexity of this method, with an appropriate mini-
batch size, is more efficient than both Prox-SVRG and APG; even when mini-batch size is not
appropriate, our method is still comparable to APG or Prox-SVRG.

2

2 Accelerated Mini-Batch Prox-SVRG

As mentioned above, to ensure convergence of SPGD, the learning rate ηk has to decay to zero
for reducing the variance effect of the stochastic gradient. This slows down the convergence. As
a remedy to this issue, we use the variance reduction technique of SVRG [6] (see also [7]), which
allows us to take a larger learning rate. Acc-Prox-SVRG is a multi-stage scheme. During each stage,
this method performs m APG-like iterations and employs the following direction with mini-batch
instead of gradient,

vk = ∇gIk(yk)−∇gIk(x̃) +∇g(x̃), (7)

where Ik = {i1, . . . , ib} is a randomly chosen size b subset of {1, 2, . . . , n} and gIk = 1
b

∑b

j=1 gij .

At the beginning of each stage, the initial point x1 is set to be x̃, and at the end of stage, x̃ is updated.
Conditioned on yk, we can take expectation with respect to Ik and obtain EIk [vk] = ∇g(yk), so
that vk is an unbiased estimator. As described in the next section, the conditional variance EIk‖vk−
∇g(yk)‖2 can be much smaller than Ei‖∇gi(yk)−∇g(yk)‖2 near the optimal solution. The pseudo-
code of our Acc-Prox-SVRG is given in Figure 1.

Parameters update frequency m, learning rate η, mini-batch size b
and non-negative sequence β1, . . . , βm

Initialize x̃1

Iterate: for s = 1, 2, . . .
x̃ = x̃s

ṽ = 1
n

∑n

i=1 ∇gi(x̃)
x1 = y1 = x̃
Iterate: for k = 1, 2, . . . ,m

Randomly pick subset Ik ⊂ {1, 2, . . . , n} of size b
vk = ∇gIk(yk)−∇gIk(x̃) + ṽ
xk+1 = proxηh (yk − ηvk)
yk+1 = xk+1 + βk(xk+1 − xk)

set x̃s+1 = xm+1

end
end

Figure 1: Acc-Prox-SVRG

In our analysis, we focus on a basic variant of the algorithm (Figure 1) with βk =
1−√

µη

1+
√
µη

.

3 Analysis

In this section, we present our analysis of the convergence rates of Acc-Prox-SVRG described in
Figure 1 under Assumptions 1, 2 and 3, and provide some notations and definitions. Note that we
may omit the outer index s for notational simplicity. By the definition of a proximity operator, there
exists a subgradient ξk ∈ ∂h(xk+1) such that

xk+1 = yk − η (vk + ξk) .

We define the estimate sequence Φk(x) (k = 1, 2, . . . ,m+ 1) by

Φ1(x) = f(x1) +
µ

2
‖x− x1‖2 and

Φk+1(x) = (1−√
µη)Φk(x) +

√
µη(gIk(yk) + (vk, x− yk) +

µ

2
‖x− yk‖2

+h(xk+1) + (ξk, x− xk+1)), for k ≥ 1.

We set

Φ∗
k = min

x∈Rd
Φk(x) and zk = argmin

x∈Rd

Φk(x).

3

Since ∇2Φk(x) = µIn, it follows that for ∀x ∈ R
d,

Φk(x) =
µ

2
‖x− zk‖2 +Φ∗

k. (8)

The following lemma is the key to the analysis of our method.

Lemma 1. Consider Acc-Prox-SVRG in Figure 1 under Assumptions 1, 2, and 3. If η ≤ 1
2L , then

for k ≥ 1 we have

E [Φk(x)] ≤ f(x) + (1−√
µη)

k−1
(Φ1 − f)(x) and (9)

E [f(xk)] ≤ E

[

Φ∗
k +

k−1
∑

l=1

(1−√
µη)k−1−l

{

−µ

2

1− µη√
µη

‖xl − yl‖2 + η‖∇g(yl)− vl‖2
}

]

, (10)

where the expectation is taken with respect to the history of random variables I1, . . . , Ik−1.

Note that if the conditional variance of vl is equal to zero, we immediately obtain a linear conver-
gence rate from (9) and (10). Before we can prove Lemma 1, additional lemmas are required, whose
proofs may be found in the Supplementary Material.

Lemma 2. If η < 1
µ

, then for k ≥ 1 we have

zk+1 = (1−√
µη)zk +

√
µηyk −

√

η

µ
(vk + ξk) and (11)

zk − yk =
1√
µη

(yk − xk). (12)

Lemma 3. For k ≥ 1, we have

(∇g(yk) + ξk, vk + ξk) =
1

2

(

‖∇g(yk) + ξk‖2 + ‖vk + ξk‖2 − ‖∇g(yk)− vk‖2
)

, (13)

‖vk + ξk‖2 ≤ 2
(

‖∇g(yk) + ξk‖2 + ‖∇g(yk)− vk‖2
)

, and (14)

‖∇g(yk) + ξk‖2 ≤ 2
(

‖vk + ξk‖2 + ‖∇g(yk)− vk‖2
)

. (15)

Proof of Lemma 1. Using induction, it is easy to show (9). The proof is in Supplementary Material.
Now we prove (10) by induction. From the definition of Φ1, Φ∗

1 = f(x1). we assume (10) is true
for k. Using Eq. (11), we have

‖yk − zk+1‖2 =

∥

∥

∥

∥

(1−√
µη)(yk − zk) +

√

η

µ
(vk + ξk)

∥

∥

∥

∥

2

= (1−√
µη)2‖yk − zk‖2 + 2

√

η

µ
(1−√

µη)(yk − zk, vk + ξk) +
η

µ
‖vk + ξk‖2.

From above equation and (8) with x = yk, we get

Φk+1(yk) = Φ∗
k+1 +

µ

2

{

(1−√
µη)2‖yk − zk‖2 + 2

√

η

µ
(1−√

µη)(yk − zk, vk + ξk)

+
η

µ
‖vk + ξk‖2

}

.

On the other hand, from the definition of the estimate sequence and (8),

Φk+1(yk) = (1−√
µη)

(

Φ∗
k +

µ

2
‖yk − zk‖2

)

+
√
µη(gIk(yk) + h(xk+1) + (ξk, yk − xk+1)).

Therefore, from these two equations, we have

Φ∗
k+1 = (1−√

µη)Φ∗
k +

µ

2
(1−√

µη)
√
µη‖yk − zk‖2 +

√
µη(gIk(yk) + h(xk+1)

+(ξk, yk − xk+1))− (1−√
µη)

√
µη(yk − zk, vk + ξk)−

η

2
‖vk + ξk‖2. (16)

4

Since g is Lipschitz smooth, we bound f(xk+1) as follows:

f(xk+1) ≤ g(yk) + (∇g(yk), xk+1 − yk) +
L
2 ‖xk+1 − yk‖2 + h(xk+1). (17)

Using (16), (17), (12), and xk+1 − yk = −η(vk + ξk) we have

EIk

[

f(xk+1)− Φ∗
k+1

]

(18)

≤
(16),(17)

EIk

[

(1−√
µη)(−Φ∗

k + g(yk) + h(xk+1)) + (∇g(yk), xk+1 − yk)

+
√
µη(ξk, xk+1 − yk) +

L

2
‖xk+1 − yk‖2 −

µ

2
(1−√

µη)
√
µη‖yk − zk‖2

+(1−√
µη)

√
µη(yk − zk, vk + ξk) +

η

2
‖vk + ξk‖2

]

=
(12)

EIk

[

(1−√
µη)(−Φ∗

k + g(yk) + h(xk+1) + (xk − yk, vk + ξk))− η(∇g(yk), vk + ξk)

−η
√
µη(ξk, vk + ξk)−

µ

2

1−√
µη

√
µη

‖yk − xk‖2 +
η

2
(Lη + 1)‖vk + ξk‖2

]

, (19)

where for the first inequality we used EIk [gIk(yk)] = g(yk). Here, we give the following

EIk [g(yk) + h(xk+1) + (xk − yk, vk + ξk)]

= EIk [g(yk) + (vk, xk − yk) + h(xk+1) + (ξk, xk − xk+1) + (ξk, xk+1 − yk)]

≤ EIk

[

g(xk)−
µ

2
‖xk − yk‖2 + h(xk)− η(ξk, vk + ξk)

]

, (20)

where for the first inequality we used EIk [vk] = ∇g(yk) and convexity of g and h. Thus we have

EIk

[

f(xk+1)− Φ∗
k+1

]

≤
(19),(20)

EIk

[

(1−√
µη)(f(xk)− Φ∗

k)−
µ

2

1− µη√
µη

‖xk − yk‖2

−η(∇g(yk) + ξk, vk + ξk) +
η

2
(1 + Lη)‖vk + ξk‖2

]

≤
(13)

EIk

[

(1−√
µη)(f(xk)− Φ∗

k)−
µ

2

1− µη√
µη

‖xk − yk‖2

−η

2
‖∇g(yk) + ξk‖2 +

Lη2

2
‖vk + ξk‖2 +

η

2
‖vk −∇g(yk)‖2

]

≤
(14),η≤ 1

2L

EIk

[

(1−√
µη)(f(xk)− Φ∗

k)−
µ

2

1− µη√
µη

‖xk − yk‖2 + η‖vk −∇g(yk)‖2
]

.

By taking expectation with respect to the history of random variables I1, . . . , Ik−1, the induction
hypothesis finishes the proof of (10).

Our bound on the variance of vk is given in the following lemma, whose proof is in the Supplemen-
tary Material.

Lemma 4. Suppose Assumption 1 holds, and let x∗ = argmin
x∈Rd

f(x). Conditioned on yk, we have

that

EIk‖vk −∇g(yk)‖2 ≤ 1

b

n− b

n− 1

(

2L2‖yk − xk‖2 + 8L(f(xk)− f(x∗) + f(x̃)− f(x∗))
)

. (21)

From (10), (21), and (9) with x = x∗, it follows that

E [f(xk)− f(x∗)] ≤ (1−√
µη)k−1(Φ1 − f)(x∗) + E

[

∑k−1
l=1 (1−

√
µη)k−1−l

·
{(

−µ
2
1−µη√

µη
+ n−b

n−1
2L2η

b

)

‖xl − yl‖2 + n−b
n−1

8Lη
b
(f(xl)− f(x∗) + f(x̃)− f(x∗))

}]

.

5

If η ≤ min

{

(pb)2

64

(

n−1
n−b

)2
µ
L2 ,

1
2L

}

, then the coefficients of ‖xl − yl‖2 are non-positive for p ≤ 2.

Indeed, using

η ≤ (pb)2

64

(

n− 1

n− b

)2
µ

L2
⇒ n− b

n− 1

Lη

b
≤ p

8

√
µη, for p > 0, (22)

we get

−µ
2
1−µη√

µη
+ n−b

n−1
2L2η

b
≤ −µ

2
1−µη√

µη
+ L

2

√
µη

= 1
2
√
µη

(

−µ+ µ2η + µLη
)

≤
µ≤L

1
2
√
µη

(−µ+ 2µLη) ≤
η≤ 1

2L

0.

Thus, using (22) again with p ≤ 1, we have

E [f(xk)− f(x∗)] ≤ (1−√
µη)k−1(Φ1 − f)(x∗)

+E

[

k−1
∑

l=1

(1−√
µη)k−1−lp

√
µη(f(xl)− f(x∗) + f(x̃)− f(x∗))

]

≤ (1−√
µη)k−1(Φ1 − f)(x∗) + p(f(x̃)− f(x∗))

+E

[

k−1
∑

l=1

(1−√
µη)k−1−lp

√
µη(f(xl)− f(x∗))

]

, (23)

where for the last inequality we used
∑k−1

l=1 (1−
√
µη)k−1−l ≤ ∑∞

t=0(1−
√
µη)t = 1√

µη
.

Theorem 1. Suppose Assumption 1, 2, and 3. Let η ≤ min

{

(pb)2

64

(

n−1
n−b

)2
µ
L2 ,

1
2L

}

and 0 < p <

1. Then we have

E [f(x̃s+1)− f(x∗)] ≤
(

(1− (1− p)
√
µη)m +

p

1− p

)

(2 + p)(f(x̃s)− f(x∗)). (24)

Moreover, if m ≥ 1
(1−p)

√
µη

log 1−p
p

, then it follows that

E [f(x̃s+1)− f(x∗)] ≤
2p(2 + p)

1− p
(f(x̃s)− f(x∗)). (25)

From Theorem 1, we can see that for small 0 < p, the overall complexity of Acc-Prox-SVRG (total
number of component gradient evaluations to find an ǫ-accurate solution) is

O

((

n+
b√
µη

)

log
1

ǫ

)

.

Thus, we have the following corollary:

Corollary 1. Suppose Assumption 1, 2, and 3. Let p be sufficiently small, as stated above, and

η = min

{

(pb)2

64

(

n−1
n−b

)2
µ
L2 ,

1
2L

}

. If mini-batch size b is smaller than
⌈

8
√
κn√

2p(n−1)+8
√
κ

⌉

, then the

learning rate η is equal to
(pb)2

64

(

n−1
n−b

)2
µ
L2 and the overall complexity is

O

((

n+
n− b

n− 1
κ

)

log
1

ǫ

)

. (26)

Otherwise, η = 1
2L and the complexity becomes

O

(

(

n+ b
√
κ
)

log
1

ǫ

)

. (27)

6

Table 1: Comparison of overall complexity. b0 = 8
√
κn√

2p(n−1)+8
√
κ

.

ProxSVRG AccProxSVRG b < ⌈b0⌉ APG [8] AccProxSVRG b ≥ ⌈b0⌉

O
(

(n+ κ) log 1
ǫ

)

O
((

n+ n−b
n−1κ

)

log 1
ǫ

)

O
(

(n
√
κ) log 1

ǫ

)

O
(

(n+ b
√
κ) log 1

ǫ

)

Table 1 lists the overall complexities of the algorithms that achieve linear convergence. As seen
from Table 1, the complexity of Acc-Prox-SVRG monotonically decreases with respect to b < ⌈b0⌉,

where b0 = 8
√
κn√

2p(n−1)+8
√
κ

and monotonically increases when b ≥ ⌈b0⌉. Moreover, if b = 1, then

Acc-Prox-SVRG has the same complexity as that of Prox-SVRG, while if b = n then the complexity
of this method is equal to that of APG. Therefore, with an appropriate mini-batch size, Acc-Prox-
SVRG may outperform both Prox-SVRG and APG; even if the mini-batch is not appropriate, then
Acc-Prox-SVRG is still comparable to Prox-SVRG or APG. The following overall complexity is
the best possible rate of Acc-Prox-SVRG,

O

((

n+
nκ

n+
√
κ

)

log

(

1

ǫ

))

.

Now we give the proof of Theorem 1.

Proof of Theorem 1. We denote E[f(xk)− f(x∗)] by Vk, and we use Wk to denote the last expres-
sion in (23). Thus, for k ≥ 1, Vk ≤ Wk. For k ≥ 2, we have

Wk = (1−√
µη)

{

(1−√
µη)k−2(Φ1 − f)(x∗) + pV1 +

k−2
∑

l=1

(1−√
µη)k−2−lp

√
µη Vl

}

+p
√
µη Vk−1 + p

√
µη V1 ≤ (1−√

µη(1− p))Wk−1 + p
√
µη W1.

Since 0 <
√
µη(1− p) < 1, the above inequality leads to

Wk =

(

(1− (1− p)
√
µη)

k−1
+

p

1− p

)

W1. (28)

From the strong convexity of g (and f), we can see

W1 = (1 + p)(f(x̃)− f(x∗)) +
µ

2
‖x̃− x∗‖2 ≤ (2 + p)(f(x̃)− f(x∗)).

Thus, for k ≥ 2, we have

Vk ≤ Wk ≤
(

(1− (1− p)
√
µη)

k−1
+

p

1− p

)

(2 + p)(f(x̃)− f(x∗)),

and that is exactly (24). Using log(1− α) ≤ −α and m ≥ 1
(1−p)

√
µη

log 1−p
p

, we have

log(1− (1− p)
√
µη)m ≤ −m(1− p)

√
µη ≤ − log

1− p

p
,

so that

(1− (1− p)
√
µη)m ≤ p

1− p
.

This finishes the proof of Theorem 1.

4 Numerical Experiments

In this section, we compare Acc-Prox-SVRG with Prox-SVRG and APG on L1-regularized multi-
class logistic regression with the regularization parameter λ. Table 2 provides details of the datasets

7

mnist covtype.scale rcv1.binary

Figure 2: Comparison of Acc-Prox-SVRG with Prox-SVRG and APG. Top: Objective gap of L1

regularized multi-class logistic regression. Bottom: Test error rates.

and regularization parameters utilized in our experiments. These datasets can be found at the LIB-
SVM website1. The best choice of mini-batch size is b = ⌈b0⌉, which allows us to take a large

learning rate, η = 1
2L . Therefore, we have m ≥ O(

√
κ) and βk =

√
2κ−1√
2κ+1

. When the num-

ber of components n is very large compared with
√
κ, we see that b0 = O(

√
κ); for this, we set

m = δb (δ ∈ {0.1, 1.0, 10}) and βk = b−2
b+2 varying b in the set {100, 500, 1000}. We ran Acc-

Prox-SVRG using values of η from the range {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}, and we chose
the best η in each mini-batch setting.

Figure 2 compares Acc-Prox-SVRG with Prox-SVRG and APG. The horizontal axis is the number
of single-component gradient evaluations. For Acc-Prox-SVRG, each iteration computes the 2b
gradients, and at the beginning of each stage, the n component gradients are evaluated. For Prox-
SVRG, each iteration computes the two gradients, and at the beginning of each stage, the n gradients
are evaluated. For APG, each iteration evaluates n gradients.

Table 2: Details of data sets and regularization parameters.

Dataset classes Training size Testing size Features λ
mnist 10 60,000 10,000 780 10−5

covtype.scale 7 522,910 58,102 54 10−6

rcv1.binary 2 20,242 677,399 47,236 10−5

As can be seen from Figure 2, Acc-Prox-SVRG with good values of b performs better than or is
comparable to Prox-SVRG and is much better than results for APG. On the other hand, for relatively
large b, Acc-Prox-SVRG may perform worse because of an overestimation of b0, and hence the
worse estimates of m and βk.

5 Conclusion

We have introduced a method incorporating Nesterov’s acceleration method and a variance reduc-
tion technique of SVRG in the mini-batch setting. We prove that the overall complexity of our
method, with an appropriate mini-batch size, is more efficient than both Prox-SVRG and APG; even
when mini-batch size is not appropriate, our method is still comparable to APG or Prox-SVRG. In
addition, the gradient evaluations for each mini-batch can be parallelized [3, 10, 11] when using our
method; hence, it performs much faster in a distributed framework.

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

8

References

[1] S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717,
2012.

[2] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research 14, pages 567-599, 2013.

[3] S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual coordinate ascent. Ad-
vances in Neural Information Processing System 26, pages 378-385, 2013.

[4] S. Shalev-Shwartz and T. Zhang. Accelerated Proximal Stochastic Dual Coordinate Ascent for
Regularized Loss Minimization. Proceedings of the 31th International Conference on Machine
Learning, pages 64-72, 2014.

[5] N. Le Roux, M. Schmidt, and F. Bach. A Stochastic Gradient Method with an Exponential
Convergence Rate for Finite Training Sets. Advances in Neural Information Processing System
25, pages 2672-2680, 2012.

[6] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing System 26, pages 315-323, 2013.

[7] L. Xiao and T. Zhang. A Proximal Stochastic Gradient Method with Progressive Variance Re-
duction. arXiv:1403.4699, 2014.

[8] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[9] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion
Papers, 2007.

[10] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research 13, pages 165-202, 2012.

[11] A. Agarwal and J. Duchi. Distributed delayed stochastic optimization. Advances in Neural
Information Processing System 24, pages 873-881, 2011.

9

