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A Posterior inference and prediction using the HNSP

Recall that we use a hierarchical Bayesian approach to specify a smooth label distribution
p
T

(y|x,D1:N ) for each tree T . The label prediction at a test point x will depend on where x

falls relative to the existing data in the tree T . In this section, we assume that x lies within one of the
leaf nodes in T , i.e., x 2 Bx

leaf(x), where leaf(x) 2 leaves(T). If x does not lie within any of the leaf
nodes in T , i.e., x /2 [

j2leaves(T)B
x

j

, one could extend the tree by sampling T 0 from MTx(�, T,x),
such that x lies within a leaf node in T 0 and apply the procedure described below using the extended
tree T 0. Appendix B describes this case in more detail.

Given training data D1:N , a Mondrian tree T and the hierarchical prior over G, the predictive label
distribution p

T

(y|x,D1:N ) is obtained by integrating over G, i.e.

p
T

(y|x,D1:N ) = EG⇠pT (G|D1:N )[Gleaf(x),y] = G
leaf(x),y.

Hence, the prediction is given by G
leaf(x), the posterior mean at leaf(x). The posterior mean G

leaf(x)
can be computed using existing techniques, which we review in the rest of this section.

Posterior inference in the HNSP is a special case of posterior inference in hierarchical PYP (HPYP).
Teh [22] considers the HPYP with multinomial likelihood (in the context of language modeling)—the
model considered here (HNSP with multinomial likelihood) is a special case of [22]. Hence, we just
sketch the high level picture and refer the reader to [22] for further details. We first describe posterior
inference given N data points D1:N (batch setting), and later explain how to adapt inference to the
online setting. Finally, we describe the computation of the predictive posterior distribution.

Batch setting

Posterior inference is done using the Chinese restaurant process representation, wherein every node
of the decision tree is a restaurant; the training data points are the customers seated in the tables
associated with the leaf node restaurants; these tables are in turn customers at the tables in their
corresponding parent level restaurant; the dish served at each table is the class label. Exact inference is
intractable and hence we resort to approximations. In particular, we use the approximation known as
the interpolated Kneser-Ney (IKN) smoothing, a popular smoothing technique for language modeling
[13]. The IKN smoothing can be interpreted as an approximate inference scheme for the HPYP,
where the number of tables serving a particular dish in a restaurant is at most one [22]. More precisely,
if c

j,k

denotes the number of customers at restaurant j eating dish k and tab

j,k

denotes the number
of tables at restaurant j serving dish k, the IKN approximation sets tab

j,k

= min(c
j,k

, 1). The
counts c

j,k

and tab

j,k

can be computed in a single bottom-up pass as follows: for every leaf node
j 2 leaves(T), c

j,k

is simply the number of training data points with label k at node j; for every
internal node j 2 T \ leaves(T), we set c

j,k

= tab

left(j),k + tab

right(j),k. For a leaf node j, this
procedure is summarized in Algorithm 5. (Note that this pseudocode just serves as a reference; in
practice, these counts are updated in an online fashion, as described in Algorithm 6.)

Algorithm 5 InitializePosteriorCounts(j)

1: For all k, set c
jk

= #{n 2 N(j) : y
n

= k}
2: Initialize j0 = j
3: while True do
4: if j0 /2 leaves(T) then
5: For all k, set c

j

0
k

= tab

left(j0),k + tab

right(j0),k

6: For all k, set tab
j

0
k

= min(c
j

0
k

, 1) . IKN approximation

7: if j0 = ✏ then
8: return
9: else
10: j0  parent(j0)
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Posterior inference: online setting

It is straightforward to extend inference to the online setting. Adding a new data point D = (x, y)
affects only the counts along the path from the root to the leaf node of that data point. We update the
counts in a bottom-up fashion, starting at the leaf node containing the data point, leaf(x). Due to the
nature of the IKN approximation, we can stop at the internal node j where c

j,y

= 1 and need not
traverse up till the root. This procedure is summarized in Algorithm 6.

Algorithm 6 UpdatePosteriorCounts(j, y)

1: c
jy

 c
jy

+ 1

2: Initialize j0 = j
3: while True do
4: if tab

j

0
y

= 1 then . none of the counts above need to be updated

5: return
6: else
7: if j0 /2 leaves(T) then
8: c

j

0
y

= tab

left(j0),y + tab

right(j0),y

9: tab

j

0
y

= min(c
j

0
y

, 1) . IKN approximation

10: if j0 = ✏ then
11: return
12: else
13: j0  parent(j0)

Predictive posterior computation Given the counts c
j,k

and table assignments tab
j,k

, the predic-
tive probability (i.e., posterior mean) at node j can be computed recursively as follows:

G
jk

=

8
<

:

c
j,k

� d
j

tab

j,k

c
j,·

+

d
j

tab

j,·
c
j,·

G
parent(j),k c

j,· > 0,

G
parent(j),k c

j,· = 0,
(4)

where c
j,· =

P
k

c
j,k

, tab
j,· =

P
k

tab

j,k

, and d
j

:= exp

���(⌧
j

� ⌧
parent(j))

�
is the discount for

node j, defined in Section 4. Informally, the discount interpolates between the counts c and the prior.
If the discount d

j

⇡ 1, then G
j

is more like its parent G
parent(j). If d

j

⇡ 0, then G
j

weights the
counts more. These predictive probabilities can be computed in a single top-down pass as shown in
Algorithm 7.

Algorithm 7 ComputePosteriorPredictiveDistribution

�
T,G�

1: . Description of top-down pass to compute posterior predictive distribution given by (4)

2: . G
jk

denotes the posterior probability of y = k at node j
3: Initialize the ordered set J = {✏}
4: while J not empty do
5: Pop the first element of J
6: if j = ✏ then
7: G

parent(✏) = H

8: Set d = exp

���(⌧
j

� ⌧
parent(j))

�

9: For all k, set G
jk

= c�1
j,·

⇣
c
j,k

� d tab

j,k

+ d tab

j,· G
parent(j),k

⌘

10: if j /2 leaves(T) then
11: Append left(j) and right(j) to the end of the ordered set J

B Prediction using Mondrian tree

Let x denote a test data point. We are interested in the predictive probability of y at x, denoted by
p
T

(y|x,D1:N ). As in typical decision trees, the process involves a top-down tree traversal, starting
from the root. If x is already ‘contained’ in the tree T , i.e., if x 2 Bx

j

for some leaf j 2 leaves(T),
then the prediction is taken to be G

leaf(x), which is computed as described in Appendix A. Otherwise,
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we somehow need to incorporate x. One choice is to extend T by sampling T 0 from MTx(�, T,x)
as described in Algorithm 3, and set the prediction to G

j

, where j 2 leaves(T

0
) is the leaf node

containing x. A particular extension T 0 might lead to an overly confident prediction; hence, we
average over every possible extension T 0. This expectation can be carried out analytically, using
properties of the Mondrian process, as we show below.
Let ancestors(j) denote the set of all ancestors of node j. Let path(j) = {j} [ ancestors(j), that is,
the set of all nodes along the ancestral path from j to the root. Recall that leaf(x) is the unique leaf
node in T such that x 2 B

leaf(x). If the test point x 2 Bx

leaf(x) (i.e., x lies within the ‘gray rectangle’
at the leaf node), it can never branch off; else, it can branch off at one or more points along the path
from the root to leaf(x). More precisely, if x lies outside Bx

j

at node j, the probability that x will
branch off into its own node at node j, denoted by6 ps

j

(x), is equal to the probability that a split exists
in B

j

outside Bx

j

, which is

ps
j

(x) = 1� exp

���
j

⌘
j

(x)

�
, where ⌘

j

(x) =

X

d

�
max(x

d

� ux

jd

, 0) +max(`x
jd

� x
d

, 0)
�
,

and �

j

= ⌧
j

� ⌧
parent(j). Note that ps

j

(x) = 0 if x lies within Bx

j

(i.e., if `x
jd

 x
d

 ux

jd

for all d).
The probability of x not branching off before reaching node j is given by

Q
j

02ancestors(j)(1�ps
j

0(x)).

If x 2 Bx

leaf(x), the prediction is given by G
leaf(x). If there is a split in B

j

outside Bx

j

, let |̃ denote
the new parent of j and child(|̃) denote the child node containing just the test data point,; in this case,
the prediction is G

child(|̃). Averaging over the location where the test point branches off, we obtain

p
T

(y|x,D1:N ) =

X

j2path(leaf(x))

⇣ Y

j

02ancestors(j)

(1� ps
j

0(x))

⌘
F
j

(x), (5)

where

F
j

(x) = ps
j

(x)E�|̃

h
G

child(|̃)

i
+ 1[j = leaf(x)](1� ps

j

(x))G
leaf(x). (6)

The second term in F
j

(x) needs to be computed only for the leaf node leaf(x) and is simply the
posterior mean of G

leaf(x) weighted by 1 � ps
leaf(x)(x). The posterior mean of G

leaf(x), given by
G

leaf(x), can be computed using (4). The first term in F
j

(x) is simply the posterior mean of G
child(|̃),

averaged over �
|̃

, weighted by ps
j

(x). Since no labels are observed in child(|̃), c
child(|̃),· = 0, hence

from (4), we have G
child(|̃) = G

|̃

. We compute G
|̃

using (4). We average over �
|̃

due to the fact
that the discount in (4) for the node |̃ depends on ⌧

|̃

� ⌧
parent(|̃) = �

|̃

. To average over all valid split
times ⌧

|̃

, we compute expectation w.r.t. �
|̃

which is distributed according to a truncated exponential
with rate ⌘

j

(x), truncated to the interval [0,�
j

].

The procedure for computing p
T

(y|x,D1:N ) for any x 2 RD is summarized in Algorithm 8. The
predictive probability assigned by a Mondrian forest is the average of the predictive probability of the
M trees, i.e., 1

M

P
m

p
Tm(y|x,D1:N ).

C Computational complexity

We discuss the computational complexity associated with a single Mondrian tree. The complexity of
a forest is simply M times that of a single tree; however, this computation can be trivially parallelized
since there is no interaction between the trees. Assume that the N data points are processed one by
one. Assuming the data points form a balanced binary tree after each update, the computational cost of
processing the nth data point is at most O(log n) (add the data point into its own leaf, update posterior
counts for HNSP in bottom-up pass from leaf to root). The overall cost to process N data points is
O(

P
N

n=1 log n) = O(logN !), which for large N tends to O(N logN) (using Stirling approximation
for the factorial function). For offline RF and ERT, the expected complexity with n data points
is O(n log n). The complexity of the re-trained version is O(

P
N

n=1 n log n) = O(log

Q
N

n=1 n
n

),
which for large N tends to O(N2

logN) (using asymptotic expansion of the hyper factorial function).
6The superscript s in p

s

j

(x) is used to denote the fact that this split ‘separates’ the test data point x into its
own leaf node.
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Algorithm 8 Predict

�
T,x

�

1: . Description of prediction using a Mondrian tree, given by (5)

2: Initialize j = ✏ and p
NotSeparatedYet

= 1

3: Initialize s = 0
K

. s is K-dimensional vector where s
k

= p
T

(y = k|x,D1:N )

4: while True do
5: Set �

j

= ⌧
j

� ⌧
parent(j) and ⌘

j

(x) =

P
d

�
max(x

d

� ux

jd

, 0) +max(`x
jd

� x
d

, 0)
�

6: Set ps
j

(x) = 1� exp

���
j

⌘
j

(x)

�

7: if ps
j

(x) > 0 then
8: . Let x branch off into its own node child(|̃), creating a new node |̃ which is the parent

of j and child(|̃). G
child(|̃) = G

|̃

from (4) since c
child(|̃),· = 0.

9: Compute expected discount ¯d = E�[exp(���)] where � is drawn from a truncated
exponential with rate ⌘

j

(x), truncated to the interval [0,�
j

].
10: For all k, set c

|̃,k

= tab

|̃,k

= min(c
j,k

, 1)

11: For all k, set G
|̃k

= c�1
|̃,·

⇣
c
|̃,k

� ¯d tab

|̃,k

+

¯d tab

|̃,· G
parent(|̃),k

⌘
. Algorithm 7 and (6)

12: For all k, update s
k

 s
k

+ p
NotSeparatedYet

ps
j

(x)G
|̃k

13: if j 2 leaves(T) then
14: For all k, update s

k

 s
k

+ p
NotSeparatedYet

(1� ps
j

(x))G
jk

. Algorithm 7 and (6)

15: return predictive probability s where s
k

= p
T

(y = k|x,D1:N )

16: else
17: p

NotSeparatedYet

 p
NotSeparatedYet

(1� ps
j

(x))

18: if x
�j  ⇠

j

then j  left(j) else j  right(j) . recurse to the child where x lies

D Pseudocode for paused Mondrians

In this section, we discuss versions of SampleMondrianBlock and ExtendMondrianBlock for paused
Mondrians. For completeness, we also provide the updates necessary for the IKN approximation.

Algorithm 9 SampleMondrianBlock

�
j,D

N(j),�
�

version that depends on labels

1: Add j to T

2: For all d, set `x
jd

= min(X

N(j),d), u
x

jd

= max(X

N(j),d) . dimension-wise min and max

3: if AllLabelsIdentical(Y
N(j)) then

4: Set ⌧
j

= � . pause Mondrian

5: else
6: Sample E from exponential distribution with rate

P
d

(ux

jd

� `x
jd

)

7: Set ⌧
j

= ⌧
parent(j) + E

8: if ⌧
j

< � then
9: Sample split dimension �

j

with probability of choosing d proportional to ux

jd

� `x
jd

10: Sample split location ⇠
j

along dimension �
j

from an uniform distribution over U [`x
jd

, ux

jd

]

11: Set N(left(j)) = {n 2 N(j) : X
n,�j  ⇠

j

} and N(right(j)) = {n 2 N(j) : X
n,�j > ⇠

j

}
12: SampleMondrianBlock

�
left(j),D

N(left(j)),�
�

13: SampleMondrianBlock

�
right(j),D

N(right(j)),�
�

14: else
15: Set ⌧

j

= � and add j to leaves(T) . j is a leaf node

16: InitializePosteriorCounts(j) . Algorithm 5
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Algorithm 10 ExtendMondrianBlock(T,�, j,D) version that depends on labels

1: if AllLabelsIdentical(Y
N(j)) then . paused Mondrian leaf

2: Update extent `x
j

 min(`

x

j

,x),ux

j

 max(ux

j

,x)
3: Append D to D

N(j) . append x to X
N(j) and y to Y

N(j)

4: if y = unique(Y
N(j)) then

5: UpdatePosteriorCounts(j, y) . Algorithm 6

6: return . continue pausing

7: else
8: Remove j from leaves(T)

9: SampleMondrianBlock

�
j,D

N(j),�
�

. un-pause Mondrian

10: else
11: Set e` = max(`

x

j

� x, 0) and eu = max(x� ux

j

, 0) . e` = eu = 0
D

if x 2 Bx

j

12: Sample E from exponential distribution with rate
P

d

(e`
d

+ eu
d

)

13: if ⌧
parent(j) + E < ⌧

j

then . introduce new parent for node j
14: Create new Mondrian block |̃ where `

x

|̃

= min(`

x

j

,x) and ux

|̃

= max(ux

j

,x)

15: Sample �
|̃

with Pr(�
|̃

= d) proportional to e`
d

+ eu
d

16: if x
�|̃ > ux

j,�|̃
, then sample ⇠

|̃

from U [ux

j,�|̃
, x

�|̃ ], else sample ⇠
|̃

from U([x
�|̃ , `

x

j,�|̃
])

17: if j = ✏ then . set |̃ as the new root

18: ✏ |̃
19: else . set |̃ as child of parent(j)
20: if j = left(parent(j)), then left(parent(j)) |̃, else right(parent(j)) |̃

21: if x
�|̃ > ⇠

|̃

then
22: Set left(|̃) = j and SampleMondrianBlock

�
right(|̃),D,�

�
. create new leaf for x

23: else
24: Set right(|̃) = j and SampleMondrianBlock

�
left(|̃),D,�

�
. create new leaf for x

25: else
26: Update `

x

j

 min(`

x

j

,x),ux

j

 max(ux

j

,x) . update extent of node j
27: if j /2 leaves(T) then . return if j is a leaf node, else recurse down the tree

28: if x
�j  ⇠

j

then child(j) = left(j) else child(j) = right(j)
29: ExtendMondrianBlock(T,�, child(j),D) . recurse on child containing x

E Depth of trees

We computed the average depth of the trees in the forest, where depth of a leaf node is weighted by
fraction of data points at that leaf node. The hyper-parameter settings and experimental setup are
described in Section 7. Table 1 reports the average depth (and standard deviations) for Mondrian
forests trained on different datasets. The values suggest that the depth of the forest scales as logN
rather than N .

Dataset N
train

log2 Ntrain

depth
usps 7291 12.8 19.1 ± 1.3

satimages 3104 11.6 17.4 ± 1.6
letter 15000 13.9 23.2 ± 1.8
dna 1400 10.5 12.0 ± 0.3

Table 1: Average depth of Mondrian forests trained on different datasets.

F Comparison to dynamic trees

Dynamic trees [21] approximate the Bayesian posterior over decision trees in an online fashion.
Specifically, dynamic trees maintain a particle approximation to the true posterior; the prediction
at a test point is a weighted average of the predictions made by the individual particles. While this
averaging procedure appears similar to online random forests at first sight, there is a key difference:
MF (and other random forests) performs ensemble model combination whereas dynamic trees use
Bayesian model averaging. In the limit of infinite data, the Bayesian posterior would converge to a
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single tree [15], whereas MF would still average predictions over multiple trees. Hence, we expect
MF to outperform dynamic trees in scenarios where a single decision tree is insufficient to explain
the data.

To experimentally validate our hypothesis, we evaluate the empirical performance of dynamic trees
using the dynaTree7 R package provided by the authors of the paper. Note that while dynamic
trees can use ‘linear leaves’ (strong since prediction at a leaf depends on X) or ‘constant leaves’ for
regression tasks, they use ‘multinomial leaves’ for classification tasks which corresponds to a ‘weak
learner’. We set the number of particles to 100 (equals the number of trees used in MF) and the
number of passes, R = 2 (their code does not support R = 1) and set the remaining parameters to
their default values. Fig. 4 compares the performance of dynamic trees to MF and other random forest
variants. (The performance of all methods other than dynamic trees is identical to that of Fig. 3.)
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Figure 4: Results on various datasets: y-axis is test accuracy in both rows. x-axis is fraction of training data.
The setup is identical to that of Fig. 3. MF achieves significantly higher test accuracies than dynamic trees on
usps, satimages and letter datasets and MF† achieves similar test accuracy as dynamic trees on the dna dataset.

We observe that MF achieves significantly higher test accuracies than dynamic trees on usps, satimages

and letter datasets. On dna dataset, dynamic trees outperform MF (indicating the usefulness of using
labels to guide splits) — however, MF with feature selection (MF†) achieves similar performance as
dynamic trees. All the batch random forest methods are superior to dynamic trees which suggests
that decision trees are not sufficient to explain these real world datasets and that model combination
is helpful.

7http://cran.r-project.org/web/packages/dynaTree/index.html
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