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Abstract

The cutting plane method is an augmentative constrained optimization procedure
that is often used with continuous-domain optimization techniques such as linear
and convex programs. We investigate the viability of a similar idea within message
passing – for integral solutions in the context of two combinatorial problems: 1)
For Traveling Salesman Problem (TSP), we propose a factor-graph based on Held-
Karp formulation, with an exponential number of constraint factors, each of which
has an exponential but sparse tabular form. 2) For graph-partitioning (a.k.a. com-
munity mining) using modularity optimization, we introduce a binary variable
model with a large number of constraints that enforce formation of cliques. In
both cases we are able to derive simple message updates that lead to competitive
solutions on benchmark instances. In particular for TSP we are able to find near-
optimal solutions in the time that empirically grows with N3, demonstrating that
augmentation is practical and efficient.

1 Introduction

Probabilistic Graphical Models (PGMs) provide a principled approach to approximate constraint op-
timization for NP-hard problems. This involves a message passing procedure (such as max-product
Belief Propagation; BP) to find an approximation to maximum a posteriori (MAP) solution. Mes-
sage passing methods are also attractive as they are easily mass parallelize. This has contributed to
their application in approximating many NP-hard problems, including constraint satisfaction [1, 2],
constrained optimization [3, 4], min-max optimization [5], and integration [6].

The applicability of PGMs to discrete optimization problems is limited by the size and number of
factors in the factor-graph. While many recent attempts have been made to reduce the complexity
of message passing over high-order factors [7, 8, 9], to our knowledge no published result addresses
the issues of dealing with large number of factors. We consider a scenario where a large number
of factors represent hard constraints and ask whether it is possible to find a feasible solution by
considering only a small fraction of these constraints.

The idea is to start from a PGM corresponding to a tractible subsset of constraints, and after obtain-
ing an approximate MAP solution using min-sum BP, augment the PGM with the set of constraints
that are violated in the current solution. This general idea has been extensively studied under the
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term cutting plane methods in different settings. Dantzig et al. [10] first investigated this idea in the
context of TSP and Gomory et al.[11] provided a elegant method to generate violated constraints
in the context of finding integral solutions to linear programs (LP). It has since been used to also
solve a variety of nonlinear optimization problems. In the context of PGMs, Sontag and Jaakkola
use cutting plane method to iteratively tighten the marginal polytope – that enforces the local con-
sistency of marginals – in order to improve the variational approximation [12]. This differs from our
approach, where the augmentation changes the factor-graph (i.e., the inference problem) rather than
improving the approximation of inference.

Recent studies show that message passing can be much faster than LP in finding approximate MAP
assignments for structured optimization problems [13]. This further motivates our inquiry regarding
the viability of augmentation for message passing. We present an affirmative answer to this question
in application to two combinatorial problems. Section 2 introduces our factor-graph formulations
for Traveling Salesman Problem (TSP) and graph-partitioning. Section 3 derives simple message
update equations for these factor-graphs and reviews our augmentation scheme. Finally, Section 4
presents experimental results for both applications.

2 Background and Representation

Let x = {x1, . . . , xD} ∈ X = X1×X2 . . .×XD denote an instance of a tuple of discrete variables.
Let xI refer to a sub-tuple, where I ⊆ {1, . . . , D} indexes a subset of these variables. Define the
energy function f(x) ,

∑
I∈F fI(xI) where F denotes the set of factors. Here the goal of

inference is to find an assignment with minimum energy x∗ = argxmin f(x). This model can be
conveniently represented using a bipartite graph, known as factor-graph [14], where a factor node
fI(xI) is connected to a variable node xi iff i ∈ I.

2.1 Traveling Salesman Problem

A Traveling Salesman Problem (TSP) seeks the minimum length tour of N cities that visits each
city exactly once. TSP is NP-hard, and for general distances, no constant factor approximation to
this problem is possible [15]. The best known exact solver, due to Held et al.[16], uses dynamic
programming to reduce the cost of enumerating all orderings from O(N !) to O(N22N ). The de-
velopment of many (now) standard optimization techniques, such as simulated annealing, mixed
integer linear programming, dynamic programming, and ant colony optimization are closely linked
with advances in solving TSP. Since Dantzig et al.[10] manually applied the cutting plane method
to 49-city problem, a combination of more sophisticated cuts, used with branch-and-bound tech-
niques [17], has produced the state-of-the-art TSP-solver, Concorde [18]. Other notable results on
very large instances have been reported by LinKernighan heuristic [19] that continuously improves
a solution by exchanging nodes in the tour. In a related work, Wang et al.[20] proposed a message
passing solution to TSP. However their method does not scale beyond small toy problems (authors
experimented withN = 5 cities). For a readable historical background of the state-of-the-art in TSP
and its various applications, see [21].

2.1.1 TSP Factor-Graph

Let G = (V, E) denote a graph, where V = {v1, . . . , vN} is the set of nodes and the set of edges
E contains ei−j iff vi and vj are connected. Let x = {xe1 , . . . , xeM } ∈ X = {0, 1}M be a set of
binary variables, one for each edge in the graph (i.e., M = |E|) where we will set xem = 1 iff em is
in the tour. For each node vi, let ∂vi = {ei−j | ei−j ∈ E} denote the edges adjacent to vi. Given a
distance function d : E → <, define the local factors for each edge e ∈ E as fe(xe) = xe d(e) – so
this is either d(e) or zero. Any valid tour satisfies the following necessary and sufficient constraints
– a.k.a. Held-Karp constraints [22]:

1. Degree constraints: Exactly two edges that are adjacent to each vertex should be in the tour.
Define the factor f∂vi(x∂vi) : {0, 1}|∂vi| → {0,∞} to enforce this constraint

f∂vi(x∂vi) , I∞

(∑
e∈∂vi

xe = 2

)
∀vi ∈ V
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where I∞(condition) , 0 iff the condition is satisfied and +∞ otherwise.

2. Subtour constraints: Ensure that there are no short-circuits – i.e., there are no loops that contain
strict subsets of nodes. To enforce this, for each S ⊂ V , define δ(S) , {ei−j ∈ E | vi ∈ S, vj /∈ S}
to be the set of edges, with one end in S and the other end in V \ S.

We need to have at least two edges leaving each subset S. The following set of factors enforce these
constraints

fδ(S)(xδ(S)) = I∞

(∑
xe∈S

xe ≥ 2

)
∀S ⊂ V, S 6= ∅

These three types of factors define a factor-graph, whose minimum energy configuration is the small-
est tour for TSP.

2.2 Graph Partitioning

Graph partitioning –a.k.a. community mining– is an active field of research that has recently pro-
duced a variety of community detection methods (e.g., see [23] and its references), a notable one
of which is Modularity maximization [24]. However, exact optimization of Modularity is NP-hard
[25]. Modularity is closely related to fully connected Potts graphical models [26]. However, due to
full connectivity of PGM, message passing is not able to find good solutions. Many have proposed
various other heuristics for modularity optimization [27, 28, 26, 29, 30]. We introduce a factor-graph
representation of this problem that has a large number of factors. We then discuss a stochastic but
sparse variation of modularity that enables us to efficiently partition relatively large sparse graphs.

2.2.1 Clustering Factor-Graph

Let G = (V, E) be a graph, with a weight function ω̃ : V × V → <, where ω̃(vi, vj) 6= 0

iff ei:j ∈ E . Let Z =
∑
v1,v2∈V ω̃(v1, v2) and ω(vi, vj) , ω̃

2Z be the normalized weights.
Also let ω(∂vi) ,

∑
vj
ω(vi, vj) denote the normalized degree of node vi. Graph clustering us-

ing modularity optimization seeks a partitioning of the nodes into unspecified number of clusters
C = {C1, . . . , CK}, maximizing

q(C) =
∑
Ci∈C

∑
vi,vj∈Ci

(
ω(vi, vj) − ω(∂vi)ω(∂vj)

)
(1)

The first term of modularity is proportional to within-cluster edge-weights. The second term is
proportional to the expected number of within cluster edge-weights for a null model with the same
weighted node degrees for each node vi.

Here the null model is a fully-connected graph. We generate a random sparse null model with
Mnull < αM weighted edges (Enull), by randomly sampling two nodes, each drawn indepen-
dently from P(vi) ∝

√
ω(∂vi), and connecting them with a weight proportional to ω̃null(vi, vj) ∝√

ω(∂vi)ω(∂vj). If they have been already connected, this weight is added to their current weight.
We repeat this process αM times, however since some of the edges are repeated, the total number
of edges in the null model may be under αM . Finally the normalized edge-weight in the sparse
null model is ωnull(vi, vj) , ω̃null(vi,vj)

2
∑

vi,vj
ω̃null(vi,vj)

. It is easy to see that this generative process in

expectation produces the fully connected null model.1

Here we use the following binary-valued factor-graph formulation. Let x = {xi1:j1 , . . . , xiL:jL} =
{0, 1}L be a set of binary variables, one for each edge ei:j ∈ E ∪ Enull – i.e., |E ∪ Enull| = L.
Define the local factor for each variable as fi:j(xi:j) = −xi−j(ω(vi, vj) − ωnull(vi, vj)). The
idea is to enforce formation of cliques, while minimizing the sum of local factors. By doing so the

1The choice of using square root of weighted degrees for both sampling and weighting is to reduce the
variance. One may also use pure importance sampling (i.e., use the product of weighted degrees for sampling
and set the edge-weights in the null model uniformly), or uniform sampling of edges, where the edge-weights
of the null model are set to the product of weighted degrees.
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negative sum of local factors evaluates to modularity (eq 1). For each three edges ei:j , ej:k, ei:k ∈
E ∪ Enull, i < j < k that form a triangle, define a clique constraint as

f{i:j,j:k,i:k}(xi:j , xj:k, xi:k) , I∞(xi:j + xj:k + xi:k 6= 2)

These factors ensure the formation of cliques – i.e., if the weights of two edges that are adjacent to
the same node are non-zero, the third edge in the triangle should also have non-zero weight. The
computational challenge here is the large number of clique constraints. Brandes et al.[25] use a
similar LP formulation. However, since they include all the constraints from the beginning and the
null model is fully connected, their method is only applied to small toy problems.

3 Message Passing

Min-sum belief propagation is an inference procedure, in which a set of messages are exchanged be-
tween variables and factors. The factor-to-variable (νI→e) and variable-to-factor (νe→I) messages
are defined as

νe→I(xe) ,
∑

I′3e,I′ 6=I

νI′→e(xe) (2)

νI→e(xe) , min

{
fI(xI\e, xe)

∑
e′∈I\e

νe′→I(xe′)

}
xI\e

(3)

where I 3 e indexes all factors that are adjacent to the variable xe on the factor-graph. Starting
from an initial set of messages, this recursive update is performed until convergence.

This procedure is exact on trees, factor-graphs with single cycle as well as some special settings
[4]. However it is found to produce good approximations in general loopy graphs. When BP is
exact, the set of local beliefs µe(xe) ,

∑
I3e νI→e(xe) indicate the minimum value that can be

obtained for a particular assignment of xe. When there are no ties, the joint assignment x∗, obtained
by minimizing individual local beliefs, is optimal.

When BP is not exact or the marginal beliefs are tied, a decimation procedure can improve the
quality of final assignment. Decimation involves fixing a subset of variables to their most biased
values, and repeating the BP update. This process is repeated until all variables are fixed.

Another way to improve performance of BP when applied to loopy graphs is to use damping, which
often prevents oscillations: νI→e(xe) = λν̃I→e(xe) + (1 − λ)νI→e(xe). Here ν̃I→e is the new
message as calculated by eq 3 and λ ∈ (0, 1] is the damping parameter. Damping can also be applied
to variable-to-factor messages.

When applying BP equations eqs 2, 3 to the TSP and clustering factor-graphs, as defined above,
we face two computational challenges: (a) Degree constraints for TSP can depend on N variables,
resulting in O(2N ) time complexity of calculating factor-to-variable messages. For subtour con-
straints, this is even more expensive as fS(xδ(S)) depends on O(M) (recall M = |E| which can be
O(N2)) variables. (b) The complete TSP factor-graph hasO(2N ) subtour constraints. Similarly the
clustering factor-graph can contain a large number of clique constraints. For the fully connected null
model, we needO(N3) such factors and even using the sparse null model – assuming a random edge
probability a.k.a. Erdos-Reny graph – there are O( L

3

N6N
3) = O( L

3

N3 ) triangles in the graph (recall
that L = |E ∪ Enull|). In the next section, we derive the compact form of BP messages for both
problems. In the case of TSP, we show how to exploit the sparsity of degree and subtour constraints
to calculate the factor-to-variable messages in O(N) and O(M) respectively.

3.1 Closed Form of Messages

For simplicity we work with normalized message νI→e , νI→e(1)− νI→e(0), which is equivalent
to assuming νI→e(0) = 0 ∀I, e. The same notation is used for variable-to-factor message, and
marginal belief. We refer to the normalized marginal belief, µe = µe(1)− µ(0)e as bias.

Despite their exponentially large tabular form, both degree and subtour constraint factors for TSP
are sparse. Similar forms of factors is studied in several previous works [7, 8, 9]. By calculating
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iteration 1 iteration 3 iteration 5 iteration 11

Figure 1: (left) The message passing results after each augmentation step for the complete graph of
printing board instance from [31]. The blue lines in each figure show the selected edges at the end
of message passing. The pale red lines show the edges with the bias that, although negative (µe <
0), were close to zero. (middle) Clustering of power network (N = 4941) by message passing.
Different clusters have different colors and the nodes are scaled by their degree. (right) Clustering
of politician blogs network (N = 1490) by message passing and by meta-data – i.e., liberal or
conservative.

the closed form of these messages for TSP factor-graph, we observe that they have a surprisingly
simple form. Rewriting eq 3 for degree constraint factors, we get:

ν∂vi→e(1) = min{νe′→∂vi}e′∈∂vi\e , ν∂vi→e(0) = min{νe′→∂vi + νe′′→∂vi}e′,e′′∈∂vi\e (4)

where we have dropped the summation and the factor from eq 3. For xe = 1, in order to have
f∂vi(x∂i) < ∞, only one other xe′ ∈ x∂vi should be non-zero. On the other hand, we know that
messages are normalized such that νe→∂vi(0) = 0 ∀vi, e ∈ ∂vi, which means they can be ignored
in the summation. For xe = 0, in order to satisfy the constraint factor, two of the adjacent variables
should have a non-zero value. Therefore we seek two such incoming messages with minimum
values. Let min[k]A denote the kth smallest value in the set A – i.e., minA ≡ min[1]A. We
combine the updates above to get a “normalized message”, ν∂vi→e, which is simply the negative of
the second largest incoming message (excluding νe→∂vi ) to the factor f∂vi :

ν∂vi→e = ν∂vi→e(1)− ν∂vi→e(0) = −min[2]{νe′→∂vi}e′∈∂vi\e (5)

Following a similar procedure, factor-to-variable messages for subtour constraints is given by

νδ(S)→e = −max{0,min[2]{νe′→δ(S)}e′∈δ(S)\e}} (6)

Here while we are searching for the minimum incoming message, if we encounter two messages
with negative or zero values, we can safely assume νδ(S)→e = 0, and stop the search. This results
in significant speedup in practice. Note that both eq 5 and eq 6 only need to calculate the second
smallest message in the set {νe′→δ(S)}e′∈δ(S)\e. In the asynchronous calculation of messages, this
minimization should be repeated for each outgoing message. However in a synchronous update by
finding three smallest incoming messages to each factor, we can calculate all the factor-to-variable
messages at the same time.

For the clustering factor-graph, the clique factor is satisfied only if either zero, one, or all three of
the variables in its domain are non-zero. The factor-to-variable messages are given by

ν{i:j,j:k,i:k}→i:j(0) = min{0, νj:k→{i:j,j:k,i:k}, νi:k→{i:j,j:k,i:k}}
ν{i:j,j:k,i:k}→i:j(1) = min{0, νj:k→{i:j,j:k,i:k} + νi:k→{i:j,j:k,i:k}} (7)

For xi:j = 0, the minimization is over three feasible cases (a) xj:k = xi:k = 0, (b) xj:k = 1, xi:k = 0
and (c) xj:k = 0, xi:k = 1. For xi:j = 1, there are two feasible cases (a) xj:k = xi:k = 0 and
(b) xj:k = xi:k = 1. Normalizing these messages we have

ν{i:j,j:k,i:k}→i:j =min{0, νj:k→{i:j,j:k,i:k} + νi:k→{i:j,j:k,i:k}}− (8)

min{0, νj:k→{i:j,j:k,i:k}, νi:k→{i:j,j:k,i:k}}

3.2 Finding Violations

Due to large number of factors, message passing for the full factor-graph in our applications is not
practical. Our solution is to start with a minimal set of constraints. For TSP, we start with no subtour
constraints and for clustering, we start with no clique constraint. We then use message passing to
find marginal beliefs µe and select the edges with positive bias µe > 0.
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Figure 2: Results of message passing for TSP on different benchmark problems. From left to right, the
plots show: (a) running time, (b) optimality ratio (compared to Concorde), (c) iterations of augmentation and
(d) number of subtours constraints – all as a function of number of nodes. The optimality is relative to the
result reported by Concorde. Note that all plots except optimality are log-log plots where a linear trend shows
a monomial relation (y = axm) between the values on the x and y axis, where the slope shows the power m.

We then find the constraints that are violated. For TSP, this is achieved by finding connected com-
ponents C = {Si ⊂ V} of the solution in O(N) time and define new subtour constraints for each
Si ∈ C (see Figure 1(left)).

For graph partitioning, we simply look at pairs of positively fixed edges around each node and if
the third edge of the triangle is not positively fixed, we add the corresponding clique factor to the
factor-graph; see Appendix A for more details.

4 Experiments
4.1 TSP
Here we evaluate our method over five benchmark datasets: (I) TSPLIB, which contains a variety
of real-world benchmark instances, the majority of which are 2D or 3D Euclidean or geographic
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Table 1: Comparison of different modularity optimization methods.
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polbooks y 105 441 5461 5.68% 0.511 .07 3624 13.55% 0.506 .04 0.525 1.648 0.467 0.179 0.501 0.643 0.489 0.03
football y 115 615 6554 27.85% 0.591 0.41 5635 17.12% 0.594 0.14 0.601 0.87 0.487 0.151 0.548 0.08 0.602 0.019
wkarate n 34 78 562 12.34% 0.431 0 431 15.14% 0.401 0 0.444 0.557 0.421 0.095 0.410 0.085 0.443 0.027

netscience n 1589 2742 NA NA NA NA 53027 .0004% 0.941 2.01 0.907 8.459 0.889 0.303 0.926 0.154 0.948 0.218
dolphins y 62 159 1892 14.02% 0.508 0.01 1269 6.50% 0.521 0.01 0.523 0.728 0.491 0.109 0.495 0.107 0.517 0.011
lesmis n 77 254 2927 5.14% 0.531 0 1601 1.7% 0.534 0.01 0.529 1.31 0.483 0.081 0.472 0.073 0.566 0.011

celegansneural n 297 2359 43957 16.70% 0.391 10.89 21380 3.16% 0.404 2.82 0.406 5.849 0.278 0.188 0.367 0.12 0.435 0.031
polblogs y 1490 19090 NA NA NA NA 156753 .14% 0.411 32.75 0.427 67.674 0.425 0.33 0.427 0.305 0.426 0.099

karate y 34 78 562 14.32% 0.355 0 423 17.54% 0.390 0 0.417 0.531 0.393 0.086 0.380 0.079 0.395 0.009

distances.2 (II) Euclidean distance between random points in 2D. (III) Random (symmetric) dis-
tance matrices. (IV) Hamming distance between random binary vectors with fixed length (20 bits).
This appears in applications such as data compression [32] and radiation hybrid mapping in ge-
nomics [33]. (V) Correlation distance between random vectors with 5 random features (e.g., using
TSP for gene co-clustering [34]). In producing random points and features as well as random dis-
tances (in (III)), we used uniform distribution over [0, 1].

For each of these cases, we report the (a) run-time, (b) optimality, (c) number of iterations of aug-
mentation and (d) number of subtour factors at the final iteration. In all of the experiments, we use
Concorde [18] with its default settings to obtain the optimal solution.3 Since there are very large
number of TSP solvers, comparison with any particular method is pointless. Instead we evaluate the
quality of message passing against the “optimal” solution. The results in Figure 2(2nd column from
left) reports the optimality ratio – i.e., ratio of the tour found by message passing, to the optimal
tour. To demonstrate the non-triviality of these instance, we also report the optimality ratio for two
heuristics that have optimality guarantees for metric instances [35]: (a) nearest neighbour heuristic
(O(N2)), which incrementally adds the to any end of the current path the closest city that does not
form a loop; (b) greedy algorithm (O(N2 log(N))), which incrementally adds a lowest cost edge to
the current edge-set, while avoiding subtours.

In all experiments, we used the full graph G = (V, E), which means each iteration of message
passing is O(N2τ), where τ is the number of subtour factors. All experiments use Tmax = 200
iterations, εmax = median{d(e)}e∈E and damping with λ = .2. We used decimation, and fixed
10% of the remaining variables (out of N ) per iteration of decimation.4 This increases the cost of
message passing by an O(log(N)) multiplicative factor, however it often produces better results.

All the plots in Figure 2, except for the second column, are in log-log format. When using log-log
plot, a linear trend shows a monomial relation between x and y axes – i.e., y = axm. Here m
indicates the slope of the line in the plot and the intercept corresponds to log(a). By studying the
slope of the linear trend in the run-time (left column) in Figure 2, we observe that, for almost all
instances, message passing seems to grow with N3 (i.e., slope of ∼ 3). Exceptions are TSPLIB
instances, which seem to pose a greater challenge, and random distance matrices which seem to be
easier for message passing. A similar trend is suggested by the number of subtour constraints and
iterations of augmentation, which has a slope of ∼ 1, suggesting a linear dependence on N . Again
the exceptions are TSPLIB instances that grow faster than N and random distance matrices that
seem to grow sub-linearly.5 Finally, the results in the second column suggests that message passing
is able to find near optimal (in average ∼ 1.1-optimal) solutions for almost all instances and the
quality of tours does not degrade with increasing number of nodes.

2Geographic distance is the distance on the surface of the earth as a large sphere.
3For many larger instances, Concorde (with default setting and using CPLEX as LP solver) was not able

to find the optimal solution. Nevertheless we used the upper-bound on the optimal produced by Concord in
evaluating our method.

4Note that here we are only fixing the top N variables with positive bias. The remaining M −N variables
are automatically clamped to zero.

5Since we measured the time in milliseconds, the first column does not show the instances that had a running
time of less than a millisecond.

7



4.2 Graph Partitioning

For graph partitioning, we experimented with a set of classic benchmarks6. Since the optimization
criteria is modularity, we compared our method only against best known “modularity optimization”
heuristics: (a) FastModularity[27], (b) Louvain [30], (c) Spin-glass [26] and (d) Leading eigenvec-
tor [28]. For message passing, we use λ = .1, εmax = median{|ω(e) − ωnull(e)|}e∈E∪Enull

and
Tmax = 10. Here we do not perform any decimation and directly fix the variables based on their
bias µe > 0⇔ xe = 1.

Table 1 summarizes our results (see also Figure 1(middle,right)). Here for each method and each
data-set, we report the time (in seconds) and the Modularity of the communities found by each
method. The table include the results of message passing for both full and sparse null models, where
we used a constant α = 20 to generate our stochastic sparse null model. For message passing, we
also included L = |E + Enull| and the saving in the cost using augmentation. This column shows
the percentage of the number of all the constraints considered by the augmentation. For example,
the cost of .14% for the polblogs data-set shows that augmentation and sparse null model meant
using .0014 times fewer clique-factors, compared to the full factor-graph.

Overall, the results suggest that our method is comparable to state-of-the-art in terms both time and
quality of clustering. But more importantly it shows that augmentative message passing is able to
find feasible solutions using a small portion of the constraints.

5 Conclusion

We investigate the possibility of using cutting-plane-like, augmentation procedures with message
passing. We used this procedure to solve two combinatorial problems; TSP and modularity optimiza-
tion. In particular, our polynomial-time message passing solution to TSP often finds near-optimal
solutions to a variety of benchmark instances.

Despite losing the guarantees that make cutting plane method very powerful, our approach has sev-
eral advantages: First, message passing is more efficient than LP for structured optimization [13]
and it is highly parallelizable. Moreover by directly obtaining integral solutions, it is much easier
to find violated constraints. (Note the cutting plane method for combinatorial problems operates
on fractional solutions, whose rounding may eliminate its guarantees.) For example, for TSPs,
our method simply adds violated constraints by finding connected components. However, due to
non-integral assignments, cutting plane methods require sophisticated tricks to find violations [21].
Although powerful branch-and-cut methods, such as Concorde, are able to exactly solve instances
with few thousands of variables, their general run-time on benchmark instances remains exponen-
tial [18, p495], while our approximation appears to be O(N3). Overall our studies indicate that
augmentative message passing is an efficient procedure for constraint optimization with large num-
ber of constraints.
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input : Graph G = (V, E), distance function d : E → <, maximum iterations Tmax, damping λ,
threshold εmax.

output: A subset T ⊂ E of the edges in the tour.
construct the initial factor-graph
initialize the messages νi→e ← 0 ∀i, e ∈ ∂i
initialize µe ← d(e) ∀e ∈ E
while True do // the augmentation loop

ε← 0, T ← 0
while ε < εmax and T < Tmax do // BP loop

ε← 0
for each f(xI) do // inc. fδ(S), f∂vi

find three lowest values in {νe→I}e∈I
for each e ∈ I do

calculate ν̃I→e using eqs (5,6)
εI→e ← ν̃I→e − νI→e
νI→e ← νI→e + λεI→e
µe ← µe + εI→e
ε← max{ε, |εI→e|}

end
end
T ← T + 1

end
T ← {e ∈ E | µe > 0} // respecting degree constraints.
C ← ConnectedComponents((V, T ))
if |C| = 1 then return T
else augment the factor-graph with fSi(xδ(Si)) ∀Si ∈ C
initialize νSi→e ← 0 ∀Si ∈ C, e ∈ Si

end
Algorithm 1: Message Passing for TSP
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input : Graph G = (V, E), weight function ω̃ : E → <, maximum iterations Tmax, damping λ,
threshold εmax.

output: A clustering C = {C1, . . . , CK} of nodes.
construct the null model
µe ← 0 ∀e ∈ E ∪ Enull
while True do // the augmentation loop

ε← 0, T ← 0
while ε < εmax and T < Tmax do // BP loop

ε← 0
for ei−j ∈ E ∪ Enull do

µoldei−j
← µei−j

µei−j
← (ω(vi, vj)− ωnull(vi, vj))

for I 3 ei−j do // update beliefs

calculate νI→ei−j
using eq 8

µei−j
← µei−j

+ νI→ei−j

end
ε← max{ε, |µei−j

− µoldei−j
|}

for I 3 ei−j do // update msgs.

ν̃ei−j→I ← µei−j
− νI→ei−j

νei−j→I ← λν̃ei−j→I + (1− λ)νei−j→I
end

end
T ← T + 1

end
for vi ∈ V do

for ei−j , ei−k ∈ E ∪ Enull do
if µei−j

> 0 and µei−k
> 0 and µei−k

≤ 0 then add the corresponding clique factor to
the factor-graph

end
end
if no factor was added then break out of the loop
else νe→I ← 0 ∀I, e ∈ I

end
C ← ConnectedComponents((V, {e ∈ E ∪ Enull | µe > 0}))

Algorithm 2: Message Passing for Modularity Maximization.
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A Factor-Graphs and PseudoCodes

Algorithms 1 and 2 present the pseudocode for both TSP and graph-partitioning by message passing. Note that
the scheduling of message updates in these two algorithms is very different. This difference in scheduling is
mainly due to the presense of high-order factors in TSP factor-graph and intends to minimize the time com-
plexity. Also, while TSP message passing is re-using the messages from the previous augmentation iteration,
for clustering, we initialize the messages to zero. This is because the number of factors in each augmentation
step for clustering is relatively large and in practice initializing the messages to zero is more efficient. For both
problems, we have included the message from local factors in the marginals and therefore they are ignored
during the message update. In practice we do not need to store any of the messages for TSP. Instead we can
only keep the three smallest incoming messages to each factor and calculate factor-to-variable messages us-
ing these values. The variable-to-factor messages can also be recomputed as required using the marginals and
factor-to-variable messages: νe→I(xe) = µe(xe)− νI→e(xe).
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