
Supplemental Appendix

For the proofs in this appendix, it will be convenient to express f (H;φH ,ψH) as a function over M
vectors in the set {0, 1}|V |. We can partition the vertex set V H into M disjoint sets V1, . . . , VM
such that each set contains exactly one copy of each vertex in the graph G. Then, without loss
of generality, any x ∈ {0, 1}M |V | can be expressed as x1, . . . , xm ∈ {0, 1}|V | where xm is
an assignment to the variables in Vm for all m ∈ {1, . . . ,M}. In this case, we will write
f (H;φH ,ψH)(x) = f (H;φH ,ψH)(x1, . . . , xM ).

A Proof of Theorem 3.3

Before proving Theorem 3.3, we prove a useful inequality for log-supermodular functions from
which the desired theorem will easily follow. This approach is similar to that used by Ruozzi [11]
in the proof of Theorem 2.4 but is much simpler as we only need 2-cover inequalities.

Theorem A.1. Let f1, f2 : {0, 1}n → R≥0 and g : {0, 1}2n → R≥0 such that g is log-
supermodular. If for all x, y ∈ {0, 1}n

f1(x)f2(y) ≤ g(x ∨ y, x ∧ y),

then [∑
x

f1(x)
][∑

y

f2(y)
]
≤

∑
x,y

g(x, y).

Proof. The proof of the theorem follows by induction on n. We begin by showing that the result
holds for the case n = 1. By assumption, we have the following inequalities.

f1(1)f2(1) ≤ g(1, 0)
f1(0)f2(1) ≤ g(1, 1)
f1(1)f2(0) ≤ g(1, 1)
f1(0)f2(0) ≤ g(0, 1)

Similarly, the following inequality follows from the above inequalities and the log-supermodularity
of g.

[f1(1)f2(0)][f1(0)f2(1)] = [f1(1)f2(1)][f1(0)f2(0)]

≤ g(1, 0)g(0, 1)
≤ g(1, 1)g(0, 0)

Combining these two sets of inequalities and using the observation that weak log-majorization im-
plies weak majorization yields the desired result for the base case [25].

The remainder of the proof now follows by induction on n. Let n ≥ 2 and suppose that the result
holds for all n − 1. Let f1, f2 : {0, 1}n → R≥0 and g : {0, 1}2n → R≥0 be nonnegative real-
valued functions such that g is log-supermodular. Further, suppose that these functions satisfy the
assumptions of the theorem.

Define f ′ : {0, 1}n−1 → R≥0 and g′ : {0, 1}2(n−1) → R≥0 as

f ′i(y) = fi(y, 0) + fi(y, 1)

g′(y1, y2) =
∑

s1,s2∈{0,1}

g(y1, s1, y2, s2)

Notice that g′ is log-supermodular because it is the marginal of a log-supermodular function. If we
can show that

f ′1(y
1)f ′2(y

2) ≤ g′(y1 ∨ y2, y1 ∧ y2)

for all y1, y2 ∈ {0, 1}n−1, then the result will follow by induction on n.
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To show this, fix z1, z2 ∈ {0, 1}n−1 and define f ′′ : {0, 1} → R≥0 and g′′ : {0, 1}2 → R≥0 as

f ′′i (s) = fi(z
i, s)

g′′(s1, s2) = g(z1 ∨ z2, s1, z1 ∧ z2, s2).

We can easily check that g′′(s1, s2) is log-supermodular and that g′′(s1 ∨ s2, s1 ∧ s2) ≥
f ′′1 (s

1)f ′′1 (s
2) for all s1, s2 ∈ {0, 1}. Hence, by the base case,

f ′1(z
1)f ′2(z

2) =
∑

s1,s2∈{0,1}

f ′′1 (s
1)f ′′2 (s

2)

≤
∑

s1,s2∈{0,1}

g′′(s1, s2)

= g′(z1 ∨ z2, z1 ∧ z2)
which completes the proof of the theorem.

We now use Theorem A.1 in order to prove Theorem 3.3.

Theorem. For any pairwise binary graphical model (G;φ, ψ), Z(G2;φG
2

, ψG
2

) ≥ Z(G;φ, ψ)2.

Proof. For each (i, j) ∈ E, either ψij is log-supermodular, in which case

ψij(x
1
i , x

1
j )ψij(x

2
i , x

2
j ) ≤ ψij(x1i ∨ x2i , x1j ∨ x2j )ψij(x1i ∧ x2i , x1j ∧ x2j )

for all x1, x2 ∈ {0, 1}, or log-submodular, in which case

ψij(x
1
i , x

1
j )ψij(x

2
i , x

2
j ) ≤ ψij(x1i ∨ x2i , x1j ∧ x2j )ψij(x1i ∧ x2i , x1j ∨ x2j )

for all x1, x2 ∈ {0, 1}. Applying these inequalities to the disconnected 2-cover yields

f (G;φ,ψ)(x1)f (G;φ,ψ)(x2) ≤ f (G
2;φ,ψ)(x1 ∨ x2, x1 ∧ x2).

Now, define the log-supermodular switching of f (G
2;φ,ψ) as g(x1, x2) , f (G

2;φ,ψ)(x1, x2) for all
x1, x2 ∈ {0, 1}n. This gives

f (G;φ,ψ)(x1)f (G;φ,ψ)(x2) ≤ g(x1 ∨ x2, x1 ∧ x2) (2)

for all x1, x2 ∈ {0, 1}n. Applying Theorem A.1 to (2), yields Z(G;φ, ψ)2 ≤ Z(G2;φG
2

, ψG
2

) as
desired.

B Proof of Theorem 4.1

Proof. (1⇒ 2) follows from by switching f (G;φ,ψ) to a log-supermodular function and then invok-
ing Theorem 2.4, and (2⇒ 3) is trivial.

For the remaining implication (3⇒ 1) suppose by way of contradiction, that f (G;φ,ψ) is not switch-
ing log-supermodular (i.e., the graphical model contains a negative cycle). We can assume that the
model contains no edge potentials that are simultaneously log-supermodular and log-submodular as
these potentials can always be written as a product of two self-potentials over different variables and
absorbed into other edge potentials without affecting the signs on the edges of the graph [26].

Pick one negative cycle in the model. Denote it by C = (VC , EC). We can assume that the cycle C
is cordless. If not, we can find a smaller negative cycle that uses one of the cords.

As the external field does not affect the existence of negative cycles, we are free to choose it as we
please. Construct an external field φ̂ as follows. For each k ∈ V \ VC , φ̂k(1) = 1 and φ̂k(0) = 0.
For each i ∈ VC and xi ∈ {0, 1},

φ̂i(xi) =
1∏

k∈∂i\VC ψ̂ik(xi, 1)
.
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This external field effectively reduces the problem of computing the partition function of the entire
graph to that of computing the partition function over only the cycle VC in the absence of an external
field.

Z(G; φ̂, ψ) = κZ(C;φconst, ψEC )

Here, φconst is a constant external field, κ is a positive constant, and ψEC is the restriction of ψ to
the cycle C. A similar expression holds for the graphical model (G2; φ̂G

2

, ψG
2

).

Z(G2; φ̂G
2

, ψG
2

) = κ2Z(C2;φconst, ψG
2

EC )

To complete the proof, we will show that

Z(C;φconst, ψEC )
2 < Z(C2;φconst, ψG

2

EC )

in contradiction of bullet 3 of the theorem. To see this, we need a few observations about the
computation of the partition function on a cycle. First, we will represent each potential function ψij
as a matrix Aij ∈ R2×2

≥0 where Aijab = ψij(a− 1, b− 1) for all a, b ∈ {1, 2}.

By assumption C does not contain any edge potentials that are both log-submodular and log-
supermodular, so we must have that, for each (i, j) ∈ EC , the sign of the edge corresponds to
the determinant of Aij . Further note that, by the Perron-Frobenius Theorem and the fact that Aij
is a nonnegative matrix, Aij must have either two positive eigenvalues or one positive eigenvalue
and one negative eigenvalue. From this, we can conclude that every Aij corresponding to a negative
edge has one positive and one negative eigenvalue while every Aij corresponding to a positive edge
must have two positive eigenvalues.

Now, pick some i ∈ VC and walk in one direction around the cycle labeling the vertices, starting
with i, successively as c1, ..., c|VC |. With these definitions, we have

Z(C;φconst, ψEC ) =
∑
xC

∏
(i,j)∈EC

ψij(xi, xj)

=
∑
xC

∏
(i,j)∈EC

Aijxi,xj

= trace(Ac1c2 ...Ac|VC |c1).

Denote the matrix product Ac1c2 ...Ac|VC |c1 simply as the matrix AC . Note that the sign of det(AC)
is equal to the sign of the cycle (which is negative by assumption). Similarly, for the two cover C2,

Z(C2;φconst, ψG
2

EC ) = trace(ACAC).

Finally, denote the eigenvalues of AC as λ1 and λ2. From the arguments above, exactly one of these
is positive and one is negative. This completes the proof as

trace(ACAC) = λ21 + λ22 > (λ1 + λ2)
2 = trace(AC)2.

C Marginal Probability Experiment

In this experiment, we analyze the performance of BP, TRBP, and BP on the 2-cover for marginal
estimation. Figure 5 shows the error in the singleton marginals for the experiment in Figure 3 with
a randomly chosen external field.

D Epinions Social Network

For the Epinions experiments, we randomly generated node induced subgraphs from the Epinions
network data collected by Richardson et al. [27]. Figure 6 shows two graphs generated in this way.
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Figure 5: Plots of the error between the true marginals and the approximate marginals for a complete
graph on four nodes with no external field as the strength of the negative edges goes from 0 to -2.
For TRBP, ρij = .5 for all (i, j) ∈ E. The error is computed as the 2-norm between the vector of
true singleton marginals evaluated at one and the approximate singleton marginals evaluated at one.

(a) EPIN1: 92 nodes, 482 edges (b) EPIN2: 80 nodes, 185 edges

Figure 6: Node-induced subgraphs of the Epinions network.
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