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1 Lower bound on the maximum eigenvalue of the Langevin connectivity
matrix

Here we give an informal derivation of the lower bound on Re
(
λWL−I
max

)
found in Eq. 7 of the main

text. Let us recall that (WL − I) is real and symmetric, so its eigenvalues are all real, and since
WL − I = −σ2

ξΣ
−1 we can write1

λWL−I
max = −σ2

ξλ
Σ−1

min = −
σ2
ξ

λΣ
max

(1)

Now, again because of its symmetry, Σ is a normal matrix, and so it is similar to (i.e. equal to the
unitary transformation of) a diagonal matrix that contains its eigenvalues. Since unitary transforma-
tions preserve the Frobenius norm, we can write

∑
i,j Σ2

ij =
∑
i

(
λΣ
i

)2
and since all the eigenvalues

of Σ are positive, we have N
(
λΣ
max

)2 ≥∑i

(
λΣ
i

)2
. Plugging this into Eq. 1, we arrive at a bound

that relates the maximum eigenvalue of (WL − I) to a basic summary statistics, the sum of all
(co)variances, of the posterior covariance matrix Σ:

λWL−I
max ≥ −σ2

ξ

√
N∑
ij Σ2

ij

(2)

In the N →∞ limit, assuming that pairwise correlations do not vanish, the denominator is O(N2),
meaning that 0 > λWL−I

max ≥ −O(1/
√
N): the slowest eigenmode of WL becomes critically slow.

To make this bound more concrete, let us assume that Σii ' σ2
0 (all posterior variances are roughly

equal) and that the distribution of pairwise posterior correlations has zero mean and standard devia-
tion σr. We can then rewrite Eq. 2 as

λWL−I
max ≥ −(σξ/σ0)2√

1 +Nσ2
r

(3)

which is Eq. 7 of our main text.

1For a non-singular matrix M, the eigenvalues of M−1 are the inverses of those of M; and since Σ is a
positive definite covariance matrix, all its eigenvalues are positive, which yields Eq. 1.
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2 Minimization of the slowing cost ψslow

Let us recall the definition of the slowing cost for convenience:

ψslow(S) =
1

2τmN2

∫ ∞
0

∥∥∥Λ− 1
2 K(S, τ)Λ−

1
2

∥∥∥2
F

dτ (4)

where K(S, τ) ≡
〈
δr(t+ τ) δr(t)>

〉
t
.

From Ornstein-Uhlenbeck theory [1], we know that K(S, τ) obeys the following differential equa-
tion:

τm
dK(S, τ)

dτ
= [W(S)− I] K(S, τ) (5)

such that for τ ≥ 0, we have K(S, τ) = e[W(S)−I] τ/τm Σ. We may thus rewrite ψslow(S) as

ψslow(S) =
1

2N2
trace

[
V

(∫ ∞
0

eτ [W(S)−I]UU>eτ[W(S)>−I]dτ

)
V>
]

(6)

with the shorthand notation U ≡ ΣΛ−
1
2 and V ≡ Λ−

1
2 . Equation 6 is the canonical form used in

linear quadratic control theory [2] and affords the following gradient:

∂ψslow(S)

∂S
=

1

N2

[
(Σ−1PQ)> − (Σ−1PQ)

]
(7)

Here P and Q are the unique solutions of a pair of Lyapunov equations,

(W − I)P + P(W − I)> = −ΣΛ−1Σ (8)

(W − I)>Q + Q(W − I) = −Λ−1, (9)

which can be solved efficiently [3], e.g. using the Matlab function lyap. Note also that ψslow(S) =
trace(Λ−1/2PΛ−1/2)/2N2 [2].

TheL2-penalty term in the overal cost function (Eq. 13 of the main text) is more easily differentiated,
yielding the gradient

∂L(S)

∂S
=

1

N2

[
(Σ−1PQ)> − (Σ−1PQ)

]
+
λL2

N2

[
SΣ−2 + Σ−2S

]
(10)

which is skew-symmetric, as it should.

3 Only Langevin sampling (LS) satisfies detailed balance (in our model class)

Consider a Markov chain {xt} with stationary distribution p(xt) and a probability of transitioning
from state xt into state xt+1 given by p(xt+1|xt). Detailed balance is satisfied if, and only if for
any pair of states (xt,xt+1), we have

p(xt+1|xt) p(xt) = p(xt|xt+1) p(xt+1) (11)

Equation 11 states that any state sequence xt → xt+1 should be visited as often as the reverse
sequence xt+1 → xt, that is, time is reversible. Taking the logarithm on both sides, we rewrite the
detailed balance condition as

log p(xt+1|xt) + log p(xt) = log p(xt|xt+1) + log p(xt+1) (12)

To see whether or not detailed balance holds in our samplers, we write the network dynamics (Eq. 3
in the main text) in discrete time, i.e. for ε→ 0 we have

xt+1 = xt + εAxt +
√

2εηt (13)

where A ≡ W − I = (−I + S)Σ−1 is the effective connectivity (it includes the leak term),
ηt ∼ N (0, I), and both τm and σξ have been set to unity without loss of generality.

Thus

log p(xt+1|xt) = −N
2

log(2πε)− ‖xt+1 − (I + εA)xt‖2

4ε
(14)
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and, given that our samplers have the right stationary distribution N (0,Σ) (detailed balance is not
required to show this, see [1]),

log p(xt) = −N
2

log(2π)− 1

2
log |Σ| − 1

2
x>t Σ−1xt (15)

Therefore, detailed balance is satisfied if, and only if for any state pair (xt,xt+1) we have:

‖xt+1 − (I + εA)xt‖2 + 2εx>t Σ−1xt = ‖xt − (I + εA)xt+1‖2 + 2εx>t+1Σ
−1xt+1 (16)

Keeping only first-order terms in ε, and inserting the parameterization A = (−I+S)Σ−1, we obtain
the following necessary and sufficient condition for reversibility:

2(xt+1 − xt)
>SΣ−1(xt+1 − xt) = 0 (17)

Clearly, if S = 0, the condition is satisfied, therefore detailed balance holds. Conversely, if detailed
balance holds, then Eq. 17 must hold for any pair (xt,xt+1), from which it is easy to see that SΣ−1

must be zero, and therefore S = 0 too. Therefore, only the Langevin solution (which corresponds
to S = 0) satisfies time reversibility.

4 LS is at the pessimum of the slowness cost function

Here we prove that LS corresponds to a pessimum of the slowness cost function ψslow used through-
out the paper to optimize for sampling speed. To do this, we show that the gradient ∂ψslow/∂S is
zero at S = 0.

Let us assume that S = 0. Then,
A = −σ2

ξΣ
−1 (18)

such that the two Lyapunov equations (Eqs. 8 and 9) of Sec. 2 become:

σ2
ξ

(
Σ−1P + PΣ−1

)
= ΣΛ−1Σ (19)

σ2
ξ

(
Σ−1Q + QΣ−1

)
= Λ−1 (20)

Now,

σ2
ξ

(
Σ−1(ΣQΣ) + (ΣQΣ)Σ−1

)
= σ2

ξ (QΣ + ΣQ) (21)

= σ2
ξΣ
(
Σ−1Q + QΣ−1

)
Σ (22)

= ΣΛ−1Σ (23)

(the last equality uses Eq. 20). Thus, ΣQΣ is a solution to Eq. 19, and since the solution is unique
because P is positive definite [2], we conclude that

P = ΣQΣ (24)

i.e
Σ−1P = QΣ (25)

Using this result in Eq. 7, together with the fact that P, Q and Σ are symmetric, we compute:

∂ψslow(S)

∂S
∝
(
Σ−1PQ

)> −Σ−1PQ (26)

= QPΣ−1 −QΣQ (27)

= Q(Σ−1P)> −QΣQ (28)

= Q(QΣ)> −QΣQ (29)
= QΣQ−QΣQ (30)
= 0 (31)

At this stage, we have shown that S = 0 corresponds to a critical point of ψslow. The fact that small,
random (unstructured) perturbations of S around 0 only decrease ψslow (Fig. 3 of the main text)
suggest that LS is in fact (locally, but perhaps also globally) the slowest possible sampler for our
problem.
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5 Details of the balanced E/I network optimization

To build optimized networks that obey Dale’s law, we assume that there are Nexc. = N excitatory
neurons, where N is the dimension of the distribution we want to sample from, and Ninh. inhibitory
neurons whose activity distribution is irrelevant (i.e. we regard inhibitory neurons as auxiliary sam-
pling variables, in the spirit of Hamiltonian Monte Carlo methods [4]). In the main paper, N = 200
and NI = 100. Let M = Nexc. +Ninh. denote the total network size. The dynamics do not change,
i.e. we still have

dr =
dt

τm
[−r(t) + Wr(t) + Fh] + σξ

√
2

τm
dξ(t) (32)

The connectivity matrix W is now made of N positive columns followed by NI negative columns.
This makes it difficult to apply the approach of Sec. 5 of the main text, as picking an arbitrary skew-
symmetric matrix S in Eq. 11 (main text) will not yield the column sign structure of an E/I network in
general. Therefore, we no longer have a parametric form for the solution matrix manifold on which
to search for the fastest network. However, with a few simple variations, we can still formulate the
problem as one of unconstrained optimization, as explained now.

The first step is to enforce Dale’s law through the following re-parameterization of W:

Wij = (1− δij) sj expβij (33)

where sj is a fixed sign that depends only on presynaptic neuron j (sj = +1 for j ≤ N , −1
otherwise), and the βij’s are unconstrained free parameters. Note that we do not allow for autapses,
hence the (1− δij) term in Eq. 33). Second, since the target posterior distribution specifies only the
N×N upper-left quadrant Σ of the overall covariance matrix which we denote by Σtot, we are free
to optimize over the other quadrants. We parameterize Σtot by its Cholesky factor:

Σtot = LL>, L ≡
(

L11 0
L12 L22

)
(34)

where L11 is the Cholesky factor of the posterior covariance matrix Σ (i.e. Σ = L11L
>
11), and

the two matrices L12 and L22 are free parameters. Note that L12 is a full rectangular matrix of
size NI ×N , while L22 is lower-triangular with dimensions NI ×NI . Third, in order to force the
network to sample from the right multivariate Gaussian distribution, we incorporate the Lyapunov
equation (cf. Eq. 4 in the main text) as an additional constraint in our loss function. This additional
term reads:

ψsol. ≡
1

2M2

∥∥(W − I)Σtot + Σtot(W − I)> + 2σ2
ξI
∥∥2
F

(35)

When ψsol. is zero, the Lyapunov equation (Eq. 4 in the main text) is satisfied, and therefore the
stationary covariance matrix of the network dynamics matches Σtot. In particular, their upper-left
quadrant would then be equal, meaning that the excitatory sub-network would be sampling from the
right posterior.

Note that ψsol. depends on both the βij’s (through W) and the free covariance parameters L12 and
L22 (through Σtot). The corresponding gradients can be obtained after a bit of algebra, and read:

∂ψsol.

∂L
=

2

M2

[
(GA) + (GA)>

]
L (36)

∂ψsol.

∂W
=

2

M2
GΣtot (37)

where
G ≡ (W − I)Σtot + Σtot(W − I)> + 2σ2

ξI (38)
Note that we are interested only in the lower-triangular part of Eq. 36. The application of the chain
rule to go from W to the βij’s in Eq. 37 is straightforward (it can be performed element-wise).

The total cost function we minimize is

L ≡ ψsol. + λslowψslow +
λL2

2M2
‖W‖2F (39)

where ψslow penalizes the magnitude of lagged auto- and cross-correlations over an infinite time
horizon, in the excitatory sub-network only. To give a formal definition of ψslow, let us use the
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notation Ã to denote the zeroing of all elements but those in the upper-left N ×N quadrant of any
M ×M matrix A. The modified slowness loss is then written as

ψslow(S) ≡ 1

2τmN2

∫ ∞
0

∥∥∥Λ− 1
2 K̃(S, τ)Λ−

1
2

∥∥∥2
F

dτ (40)

where Λ is a diagonal matrix that contains the diagonal of Σ in its upper-left quadrant and zeros
everywhere else. The kernel K is defined as in the main text, i.e.

K(S, τ) ≡ 〈r(t)r(t+ τ)>〉t (41)

= e(W−I)τ/τmΣtot (42)

(the second equality can be found in e.g. [1]). Observing that K̃(S, τ) = ĨK(S, τ)Ĩ, and making
the change of variable τ/τm → τ , we can rewrite the slowness cost as

ψslow(S) =
1

2N2
trace

[
V

(∫ ∞
0

eτ(W−I)UU>eτ(W−I)>dτ

)
V>
]

(43)

with

V ≡ Λ−
1
2 Ĩ = Λ̃−

1
2 (44)

U ≡ ΣĨΛ−
1
2 = ΣΛ̃−

1
2 (45)

As in the main text we have to solve two dual Lyapunov equations for matrices P and Q:

AP + PA> = −ΣtotΛ̃
−1Σtot (46)

A>Q + QA = −Λ̃−1 (47)

Thus [2],

ψslow =
1

2N2
trace

(
Λ̃−

1
2 PΛ̃−

1
2

)
(48)

and the gradient w.r.t. the synaptic weights is again given by
∂ψslow

∂W
=

QP

N2
(49)

The gradient w.r.t. the Cholesky factor L requires a bit more algebra, and reads
∂ψslow

∂L
= 2

[(
Λ̃−1ΣtotQ

)
+
(

Λ̃−1ΣtotQ
)]

L (50)

We used again the L-BFGS algorithm (from the NLopt library) to optimize L (Eq. 39), with param-
eters λL2

= λslow = 0.1.

6 Connection to Newton preconditioning

Given an arbitrary target distribution p(r) ∝ exp [−V (r)], LS can be more generally written as [5]

dr = −B∇rV (r(t))dt+
√

2Bdξ(t) (51)

where ξ is a unitary Wiener process and B is an arbitrary positive definite matrix (a ”precondition-
ing” matrix). Note that the noise must also be preconditioned.

Inspired by classical Newton methods for gradient-based optimization, which take into account the
curvature of the objective function, Martin et al. [5] advocate the use of the inverse Hessian as a
preconditioner, shown to yield substantial speed improvements in many cases. In our Gaussian case,
picking the inverse Hessian H−1 = −Σ of the log-posterior as a preconditioner gives exactly:

dr(t) = −r(t) +
√

2Σdξ(t) (52)

i.e. it pushes the target covariance in the noise term and removes all recurrent interactions (note that
we have assumed zero posterior mean without loss of generality).

Our optimized samplers are thus quite different from smartly preconditioned Langevin sampling, in
that they can still make use of independent noise sources.
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7 Why feed-forward networks are insufficient

In the main text, we have shown how recurrent neural networks can sample fast from multivari-
ate Gaussian distributions. Algorithmically, it is straightforward to draw independent samples from
such distributions, and indeed, the standard Cholesky sampling algorithm can be seen as a feed-
forward neural network in which the input layer is made of independent noisy neurons, and the
output layer (consisting of the neurons that represent the posterior) mixes those inputs, as well as
the external stimulus, linearly. However, this solution assumes that some neurons are stochastic and
uncorrelated, and their only role is generating noise for the rest of the brain, while others (those
representing the posterior in the output layer) respond deterministically to their inputs. We find this
dichotomy physiologically highly unrealistic. Moreover, a feedforward layout is inconsistent with
the ubiquitously recurrent nature of cortical connectivity, of which, in contrast, our networks make
optimal use to support the computation.

8 Application to a nonlinear, non-Gaussian system

A fundamental motivation for focusing on recurrent networks is the intuition that only such complex
architectures will be able to sample from non-Gaussian posterior distributions in which not only the
mean, but also higher-order moments might have non-trivial dependencies on the input. Although
the analytical results of the main text, in particular the gradient of the slowness cost function, are lim-
ited to linear networks, we have made preliminary explorations of nonlinear, non-Gaussian systems
through simulations.

Our starting point is a nonlinear, random network with stochastic dynamics of the form:

du =
dt

τm

[
−u(t) + W(0)r(t)

]
+ σξ

√
2

τm
dξ(t) with ri(t) = tanh[ui(t)] (53)

where W (0)
ij ∼ N (0, R2/N) such that W(0) has a circular eigenvalue spectrum of radius R = 5.

We set the network size to N = 200. A sample activity trace from this nonlinear system, ri(t),
is shown in Fig. 1A (blue). Neurons tend to spend prolonged periods of time at either lower or
upper saturation of their nonlinear gain function (tanh), yielding an autocorrelation length about
3-4 times greater than the membrane time constant (Fig. 1B, blue). There are strong negative and
positive correlations in the joint activity of neuron pairs (Fig. 1C, x-axis).

We then asked if we could build a nonlinear network that would sample from (approximately) the
same distribution, but faster. To apply our linear framework, we first estimated the covariance ma-
trix Σu ≡ 〈u(t)u(t)>〉t on the basis of a 100 second-long simulation of the nonlinear stochastic
dynamics of Eq. 53. We then built an optimal linear network to sample from a normal distribution
with covariance Σu as described in the main text, and finally used the resulting connectivity matrix
W in place of W(0) in the dynamics of Eq. 53.

This procedure yielded a nonlinear network that turned out to sample from approximately the same
non-Gaussian multivariate distribution p(r) as the original nonlinear network. Indeed, individual
pairwise correlations 〈ri(t)rj(t)〉t approximated those in the original network to a good degree
(Fig. 1C), as did individual marginals of p(ri) (not shown). Importantly, sampling was several times
faster, as can be inferred from the sample activity trace of Fig. 1A (red) and as summarized in the
average autocorrelation of ri(t) shown in Fig. 1B (red). Note, that since the original nonlinear
network often operates close to saturation, and thus makes heavy use of its nonlinearities, it is not
at all trivial that our speed optimization based on a linear approximation work so well. In fact,
if, instead of the speed optimized nonnormal weight matrix, we use the corresponding Langevin
solution from the linearized dynamics, then the nonlinear version of the dynamics does not only
slow down but even fails to match the correct stationary distribution. This is because the Langevin
solution encodes the posterior distribution in the principal eigenvectors of the weight matrix, and
those are the directions along which saturation occurs the most.
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Figure 1: Speeding up sampling for a non-Gaussian distribution in a nonlinear system. (A) Sam-
ple activity traces for a single unit in the nonlinear, chaotic network (blue), and in the optimized
network (red). (B) Firing rate autocorrelation 〈ri(t)ri(t + kτm)〉t (with ri transformed to z-score)
averaged across neurons (flanking lines denote ± one std.), for the two networks. (C) Pairwise
activity correlations 〈ri(t)rj(t)〉t (with the rk’s transformed to z-scores) in the nonlinear, chaotic
network (x-axis) vs. those in the optimized network (y-axis).

References

[1] C. W. Gardiner. Handbook of stochastic methods: for physics, chemistry, and the natural sci-
ences. Berlin: Springer, 1985.

[2] J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl. The smoothed
spectral abscissa for robust stability optimization. SIAM Journal on Optimization, 20:156–171,
2009.

[3] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX+XB=C. Communications
of the ACM, 15:820–826, 1972.

[4] R. Neal. MCMC using Hamiltonian dynamics. Handbook of MCMC, pages 113–162, 2011.
[5] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas. A stochastic Newton MCMC method for

large-scale statistical inverse problems with application to seismic inversion. SIAM Journal on
Scientific Computing, 34:A1460–A1487, 2012.

7


	Lower bound on the maximum eigenvalue of the Langevin connectivity matrix
	Minimization of the slowing cost slow
	Only Langevin sampling (LS) satisfies detailed balance (in our model class)
	LS is at the pessimum of the slowness cost function
	Details of the balanced E/I network optimization
	Connection to Newton preconditioning
	Why feed-forward networks are insufficient
	Application to a nonlinear, non-Gaussian system

