
A Voting Rules

We first define positional scoring rules and Bucklin’s rule, and then prove Proposition 1.

Positional Scoring Rules A positional scoring rule is given by a scoring vector (α1, . . . , αm)
where αi ≥ αi+1 for all i ∈ {1, . . . ,m} and α1 > αm. Under this rule for each vote σ and
i ∈ [m], αi points are awarded to the alternative σ(i). The alternative with the most points overall
is selected as the winner. The proof of Proposition 1 holds irrespective of the tie-breaking rule used.
Special positional scoring rules include plurality with scoring vector (1, 0, 0, . . . , 0), Borda count
with scoring vector (m,m − 1, . . . , 1), the veto rule with scoring vector (1, 1, . . . , 1, 0), and the
harmonic rule [5] with scoring vector (1, 1/2, . . . , 1/m).

Bucklin’s rule The Bucklin score of an alternative a is the minimum k such that a is among the
first k positions in the majority of input votes. Bucklin’s rule outputs the alternative with the lowest
Bucklin score, and breaks ties among alternatives with the same Bucklin score ` according to the
number of rankings that have the alternative in the first ` positions.
Proposition 1. All positional scoring rules (including plurality and Borda count) and Bucklin’s rule
are PD-c rules.

Proof. Consider a profile π with n rankings and a position-dominating winner a. We show that any
positional scoring rule as well as Bucklin’s rule outputs a on π. For any j ∈ {1, . . . ,m − 1}, let
Tπ(c, j) denote the number of votes where alternative c is among the first j positions in π.

For Bucklin’s rule, consider arbitrary alternative a′ 6= a. Let k denote the Bucklin score of a and k′
denote the Bucklin score of a′. If k > k′, then Tπ(a′, k′) > n/2 and Tπ(a, k′) ≤ Tπ(a, k − 1) <
n/2, which is impossible since the a is the position-dominating winner in π. If k < k′, then
Bucklin’s rule would select a over a′, as required.

If k = k′ 6= m, then we have Tπ(a, k) > Tπ(a′, k) because a is the position-dominating winner.
Hence, the tie is broken in favor of a. Lastly, we note that k = k′ = m is not possible because it
would imply that the total number of appearances of a and a′ in the last position is n − Tπ(a,m −
1) + n− Tπ(a′,m− 1) > 2 · n− 2 · Tπ(a,m− 1) > n. Thus, Bucklin’s rule would choose a over
every other alternative a′, i.e., it would output a as the winner, as required.

Consider a positional scoring rule with scoring vector (α1, . . . , αm). As shown in the proof of
Theorem 3.10 in [8], the score of an alternative a′ in π is equivalently given by

∑m−1
k=1 βk ·Tπ(a′, k),

where βi = αi − αi−1 ≥ 0. It is now easy to see that the position-dominating winner a would have
strictly higher score than every other alternative because βi > 0 for some i. Hence, every positional
scoring rule would also output a, as required.

B Proof of Lemma 1

Let m be the number of alternatives. The result is trivial for m = 1. For m ≥ 2, let P 1 and P 2

be PD-α1 and PD-α2 noise models, respectively. For i, j ∈ [m], let T 1(i, j) and T 2(i, j) be the
probabilities that the ith alternative in the true ranking is placed in position j in a sample from P 1

and P 2, respectively.1 For i, j ∈ [m], let F 1(i, j) =
∑j
l=1 T

1(i, l) and F 2(i, j) =
∑j
l=1 T

2(i, l).
Now, fix 1 ≤ p < q ≤ m. The difference between the probabilities of the pth and qth alternatives in
the true ranking appearing among the first k positions in a sample from P 2 ◦ P 1 is

k∑
i=1

m∑
j=1

T 1(p, j)T 2(j, i)−
k∑
i=1

m∑
j=1

T 1(q, j)T 2(j, i)

=

k∑
i=1

m∑
j=1

T 2(j, i)
(
T 1(p, j)− T 1(q, j)

)
=

m∑
j=1

F 2(j, k)
(
T 1(p, j)− T 1(q, j)

)
=

m∑
j=1

(
F 2(j, k)− F 2(j + 1, k)

) (
F 1(p, j)− F 1(q, j)

)
≥ α1 · α2,

1Note that due to neutrality of P 1 and P 2, these probabilities are independent of the true ranking.
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where the second transition follows by interchanging the order of summation, the third transition
follows by simple algebra (we let F 2(m + 1, k) = 0 because there are only m alternatives), and
the last transition holds because for j = 1, the two terms in the summation are at least α2 and α1,
respectively, as P 1 and P 2 are PD-α1 and PD-α2 noise models, respectively, and for j > 1, both
terms are non-negative.

C Example: Composition of PM Noise Models

Consider a neutral noise model P over 3 alternatives that is of the rank-to-rank type. We describe
the probabilities of various rankings when the ground truth is a � b � c (the probabilities of various
permutations of the true ranking are independent of the true ranking): PrP [a � b � c; a � b �
c] = 0.51, PrP [b � a � c; a � b � c] = 0.09, PrP [c � b � a; a � b � c] = 0.4. That is, the true
ranking stays unchanged with probability 0.51, the top two alternative are swapped with probability
0.09, and the first and the last alternatives are swapped with probability 0.4.

Clearly, P is PM-0.02 because every pairwise comparison is preserved with probability at least 0.51.
Let us consider the composition P ◦ P . We evaluate the probability that the top alternative in the
true ranking stays above the second alternative in the true ranking in a vote sampled from P ◦ P .
This probability is precisely

0.51 · 0.51 + 0.09 · 0.49 + 0.4 · 0.4 = 0.4642 < 0.5.

Hence, in P ◦ P the pair of top two alternatives in the true ranking is flipped with probability more
than 0.5. It follows that P ◦ P is not PM-α for any α > 0.

D Proof of Lemma 2

The result is trivial for m = 1. Let m ≥ 1. Let P 1 and P 2 be PPM-α1 and PM-α2 noise models
respectively. Let m denote the number of alternatives. Fix 1 ≤ i < j ≤ m. For 1 ≤ i′ < j′ ≤ m,
define T 1(i, j, i′, j′) to be the probability that the alternatives in positions i and j in the true ranking
appear in positions i′ and j′, respectively, in a vote sampled from P 1. Since P 1 is PPM-α1, we have
T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) for all 1 ≤ i′ < j′ ≤ m and T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) + α1 for
some 1 ≤ i′ < j ≤ m′.
Let T 2(i, j) denote the probability that the alternative in position i in the true ranking is preferred to
the alternative in position j in the true ranking in a vote sampled from P 2. Since P 2 is PM-α2, we
know that T 2(i, j) ≥ T 2(j, i) + α2. Now, the difference between the probability of the alternative
in position i in the true ranking being preferred to the alternative in position j in the true ranking in
a vote from P 2 ◦ P 1 and the probability of its converse is∑
i′,j′∈[m]

T 1(i, j, i′, j′) · T 2(i′, j′)−
∑

i′,j′∈[m]

T 1(i, j, i′, j′) · T 2(j′, i′)

=
∑

i′,j′∈[m]

T 1(i, j, i′, j′) ·
(
T 2(i′, j′)− T 2(j′, i′)

)
=

∑
1≤i′<j′≤m

(
T 1(i, j, i′, j′) ·

(
T 2(i′, j′)− T 2(j′, i′)

)
+ T 1(i, j, j′, i′) ·

(
T 2(j′, i′)− T 2(i′, j′)

))
=

∑
1≤i′<j′≤m

(
T 1(i, j, i′, j′)− T 1(i, j, j′, i′)

)
·
(
T 2(i′, j′)− T 2(j′, i′)

)
≥ α1 · α2,

where the last transition holds because our assumptions on P 1 and P 2 imply that there exist 1 ≤
i′ < j′ ≤ m for which T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) + α1, and for those values of i′ and j′, we
have T 2(i′, j′) ≥ T 2(j′, i′) + α2. Thus, P 2 ◦ P 1 is PM-(α1 · α2).

E Proof of Theorem 1

We show that three classical noise models—the Mallows-φ model, the Thurstone-Mosteller model,
and the Plackett-Luce model—satisfy our four assumptions. For assumption A4, we only show that
the noise models are PPM-α; this implies that they are also PM-α.
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Proof of Theorem 1. Let m denote the number of alternatives. Let L(A) be the set of all rankings
over m alternatives. In all the proofs below, P will denote the noise model under consideration,
and pi,j will denote the probability that the alternative in position i in the true ranking appears in
position j in a vote sampled from P . We begin with the proof for the Mallows-φ model.

Part I: The Mallows-φ model.

We prove that the Mallows-φ model with φ ∈ [ρ, 1− ρ] and constant ρ ∈ (0, 1/2) satisfies assump-
tions A1, A2, A3, and A4.

Assumption A1: It is well-known and easy to check that neutrality of the Kendall-Tau distance
implies neutrality of the Mallows-φ model for all φ ∈ (0, 1). Hence, the Mallows-φ model satisfies
assumption A1.

Assumption A2: We need to show that there exists a constant η > 0 such that p1,k ≤ 1 − η for
all k ∈ [m]. Lemma 3.8 in [8] shows that when σ is sampled from the Mallows-φ model with true
ranking σ∗ and m alternatives,

pi,1 =
φi−1∑m−1
j=0 φj

.

The proof explicitly evaluates the probability by summing the probabilities of all rankings where
σ(1) = σ∗(i). Using an almost identical proof technique, we evaluate the similar probability p1,i
used in assumption A2. First, we show that for any i ∈ [m − 1], we have p1,i+1 = φ · p1,i. To see
this,

p1,i − p1,i+1 =

∑
σ∈L(A)|σ(i)=σ∗(1) φ

dKT (σ,σ
∗) −

∑
σ∈L(A)|σ(i+1)=σ∗(1) φ

dKT (σ,σ
∗)

Zmφ

=

∑
σ∈L(A)|σ(i)=σ∗(1)

(
φdKT (σ,σ

∗) − φdKT (σσ(i)↔σ(i+1),σ
∗)
)

Zmφ

=
∑

σ∈L(A)|σ(i)=σ∗(1)

φdKT (σ,σ
∗) · (1− φ)

Zmφ
= (1− φ) · p1,i,

where the second transition holds because σ ↔ σσ(i)↔σ(i+1) is a bijection between the set of
rankings where σ∗(1) = σ(i) and the set of rankings where σ∗(1) = σ(i+ 1). The third transition
holds because swapping σ(i) = σ∗(1) with the alternative σ(i + 1) does not change any pairwise
comparisons between σ and σ∗, except that of σ∗(1) and σ(i+ 1). The latter is mismatched with σ∗
after the exchange. Hence, the Kendall Tau distance to σ∗, which is equal to the number of pairwise
mismatches with σ∗, increases by exactly 1 after the exchange.

Hence, p1,i− p1,i+1 = (1−φ) · p1,i, which implies that p1,i+1 = φ · p1,i. Applying this repeatedly,
we have that p1,i = p1,1 · φi−1, for every i ∈ [m]. Summing over i ∈ [m] and observing that∑m
i=1 p1,i = 1, we get that

p1,i =
φi−1∑m−1
j=0 φj

≤ φi−1∑∞
j=0 φ

j
= φi−1 · (1− φ).

Hence, for all i ∈ [m], p1,i ≤ p1,1 ≤ 1 − φ ≤ 1 − ρ. Hence, the Mallows-φ model satisfies
assumption A2 with η = ρ.

Assumption A3: We need to show that for all i, j ∈ [m] with i < j and k ∈ [m− 1],

PrP [σ∗(i) ∈ σ([k])] > PrP [σ∗(j) ∈ σ([k])]. (5)

12



We take the difference of the two terms, and remove the set of common rankings where both σ∗(i)
and σ∗(j) are in σ([k]). Thus, we get

PrP [σ
∗(i) ∈ σ([k])]− PrP [σ

∗(j) ∈ σ([k])] =
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

PrP [σ;σ
∗]−

∑
σ∈L(A)

σ∗(j)∈σ([k])
σ∗(i)/∈σ([k])

PrP [σ;σ
∗]

=
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

(
PrP [σ;σ

∗]− PrP [σσ∗(i)↔σ∗(j);σ
∗]
)

(6)

≥ (1− φ) ·
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

PrP [σ;σ
∗]

≥ (1− φ) · φ
−m2

Zmφ
≥ ρ1−m−m

2

,

where the second transition holds because σ ↔ σσ∗(i)↔σ∗(j) is a bijection between the set of rank-
ings where σ∗(i) ∈ σ([k]) and σ∗(j) /∈ σ([k]), and the set of rankings where σ∗(i) /∈ σ([k])
and σ∗(j) ∈ σ([k]). The third transition holds because σ matches with σ∗ in the pairwise com-
parison of σ∗(i) and σ∗(j) (because σ∗(i) ∈ σ([k]) and σ∗(j) /∈ σ([k])), thus swapping them
increases its distance from σ∗ by at least 1 due to the swap-increasing property of the Kendall-Tau
distance (Lemma 3.5 in [8]). Hence, the probability drops at least by a factor of φ from Equa-
tion (1). The fourth transition holds because there is at least one ranking where σ∗(i) ∈ σ([k]) and
σ∗(j) /∈ σ([k]), and the ranking has probability at least φ−m

2

/Zmφ . Finally, the last transition holds
because 1/Zmφ ≥ (1− φ)m (which is easy to show), and φ ∈ [ρ, 1− ρ].

Hence, there exists a constant α = ρ1−m−m
2

> 0 such that Pr[σ∗(i) ∈ σ([k])] ≥ Pr[σ∗(j) ∈
σ([k])] + α for all i, j ∈ [m] with i < j and k ∈ [m− 1], as desired.

Assumption A4: We want to show that there exists a constant α > 0 such that for all i, j ∈ [m]
with i < j, the quantity

PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)] (7)

is non-negative for all i′, j′ ∈ [m] with i′ < j′ and at least α for some i′, j′ ∈ [m] with i′ < j′.

Fix i, j, i′, j′ ∈ [m] such that i < j and i′ < j′. Similarly to Equation (6), we note that σ ↔
σσ∗(i)↔σ∗(j) is also a bijection between the set of rankings where σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′),
and the set of rankings where σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′). Hence, following the same steps, we
can derive

PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)]

≥ (1− φ) · PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)].

Thus, the difference is always non-negative. Further, note that there always exists a ranking σ where
σ∗(i) = σ(i′)∧σ∗(j) = σ(j′). Thus, using the same bound as in the case of assumption A3, we get
that there exists a constant α > 0 depending only on ρ and m such that the quantity in Equation (7)
is at least α for all 1 ≤ i′ < j′ ≤ m.

PART II: The Thurstone-Mosteller and the Plackett-Luce models.

We give a common proof by viewing both noise models as special cases of a random utility model.
Let θa denote the true quality of alternative a. Let µa(θa) denote the distribution from which noisy
estimate of the quality of alternative a is sampled. Let fθa and Fθa denote the PDF and CDF,
respectively, of µa(θa), i.e., the noisy quality estimate comes from a distribution that only depends
on the true quality. We assume the following two properties on fθ.

(P1) fθ shifts with θ, i.e., fθ(x) = fθ′(x+ θ′ − θ) for all x, θ, θ′ ∈ R.
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(P2) It is more likely that a higher quality estimate emerged from higher true quality and lower
quality estimate emerged from lower true quality, than vice-versa. Formally, for all θ > θ′

and x > x′, fθ(x) ·fθ′(x′)−fθ(x′) ·fθ′(x) > 0. Further, for x, x′, θ, θ′, x−x′, and θ− θ′
bounded from above and below by constants the difference is at least a constant.

(P3) A random variable X distributed according to fθ satisfies that Pr[|X − θ| ≤ c], Pr[X >
θ + c], and Pr[X < θ − c] are all positive constants less than 1 if c is a positive constant.
Further, the set of values {fθ(θ+x)}x∈[−c,c] is bounded from above and below by positive
constants if c is a constant.

Lemma 3. The normal distribution (with variance parameter bounded from above and below by
positive constants) and the Gumbel distribution satisfy properties P1, P2, and P3.

Proof. Property P1 follows directly from the definition of the two distributions. For property P2,
first consider the normal distribution with fixed variance ν.

fθ(x) · fθ′(x′)− fθ(x′) · fθ′(x)

=
1

2πν2

(
e−

(x−θ)2

2ν2 · e−
(x′−θ′)2

2ν2 − e−
(x′−θ)2

2ν2 · e−
(x−θ′)2

2ν2

)
=

1

2πν2

(
e−

(x−θ)2+(x′−θ′)2

2ν2 − e−
(x′−θ)2+(x−θ′)2

2ν2

)
> 0,

where the last transition holds because

(x′ − θ)2 + (x− θ′)2 − (x− θ)2 − (x′ − θ′)2

= 2 (xθ + x′θ′ − xθ′ − x′θ)
= 2(x− x′)(θ − θ′) > 0.

Similarly, for the Gumbel distribution, we have

fθ(x) · fθ′(x′)− fθ(x′) · fθ′(x)

= e−(x−θ)−e
−(x−θ)

· e−(x
′−θ′)−e−(x′−θ′)

− e−(x
′−θ)−e−(x′−θ)

· e−(x−θ
′)−e−(x−θ′)

= e−x+θ−x
′+θ′ ·

(
e−e

−(x−θ)−e−(x′−θ′)
− e−e

−(x′−θ)−e−(x−θ′)
)
.

Finally, we have that

e−(x−θ) + e−(x
′−θ′) − e−(x

′−θ) − e−(x−θ
′)

=
(
e−x

′
− e−x

)(
eθ
′
− eθ

)
< 0.

In both of these cases, it can easily be checked that the difference is at least a positive constant if x,
x′, θ, θ′, x− x′, and θ − θ′ are bounded from both sides by constants.

For property P3, this is a well-known fact for the normal distribution when the standard deviation
σ itself is bounded from above and below by constants. For the Gumbel distribution, this can be
checked using its explicit PDF fθ(x) = e−(x−θ)−e

−(x−θ)
and its explicit CDF Fθ(x) = e−e

−(x−θ)
.

Hence, both distributions satisfy all three properties.

Next, we show that any random utility model where the PDF satisfies these three properties satisfies
our four assumptions. Recall that the set of alternatives and therefore their true qualities are fixed.
We use a slightly different notation for the following proofs. For i ∈ [m], let the true quality of
alternative σ∗(i) be θi, and let its noisy quality estimate be the random variable Xi whose value is
drawn from µa(θi), where a = σ∗(i). Let fXi and FXi denote the PDF and CDF ofXi respectively.
Let X−i denote the set of random variables {X1, . . . , Xi−1, Xi+1, . . . , Xm}.
For a set S of t random variables and k ∈ [t], let topk(S) be the random variable denoting the
kth highest value among the random variables in S, i.e., it is the t − k + 1th order statistic of S.
Correspondingly, let ftopk(S) and Ftopk(S) denote its CDF and PDF respectively.
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Assumption A1: Neutrality is evident because the noisy quality estimates (and therefore the rank-
ing of the alternatives in a sample vote) depend on the true qualities of the alternatives, but are
independent of the identities of the alternatives.

Assumption A2: We want to show that there exists a constant η > 0 such that p1,i ≤ 1 − η for all
i ∈ [m]. Note that

p1,1 ≥ Pr

[
X1 >

θ1 + θ2
2

]
·
m∏
i=2

Pr

[
Xi <

θ1 + θ2
2

]
.

On the right hand side, we use the fact that Xi are independent of each other. Each term represents
the probability of an Xi bounded within a constant amount on one side. Hence, due to property (P3)
and the fact that m is constant, we have that p1,1 ≥ η1 for some constant η1 > 0. This immediately
implies that p1,i ≤ 1 − η1 for all i ∈ {2, . . . ,m}. We now prove that p1,1 ≤ 1 − η2 for some
constant η2 > 0. This is sufficient because it then follows that assumption A2 is satisfied with
η = min(η1, η2) > 0.

Note that

p1,1 ≤ 1− Pr

[
X1 <

θ1 + θ2
2

]
· Pr

[
X2 >

θ1 + θ2
2

]
.

Once again, both probability terms on the right hand side are positive constants due to property P3.
Hence, p1,1 is a constant less than 1. Hence, we have that assumption A2 is satisfied.

Assumption A3: We want to show that there exists a constant α > 0 such that for all i, j ∈ [m]
with i < j and k ∈ [m− 1], we have PrP [σ∗(i) ∈ σ([k])] ≥ PrP [σ∗(j) ∈ σ([k])] + α.

Note that σ∗(i) ∈ σ([k]) is the probability that the quality estimate of σ∗(i) is among the k highest
quality estimates. This is equivalent to the quality estimate Xi of σ∗(i) being higher than the kth
highest quality estimate among X−i. Hence,

PrP [σ∗(i) ∈ σ([k])] =

∫ ∞
t=−∞

fXi(t)Ftopk(X−i)(t) dt. (8)

Let ∆ = θi − θj . Now, similarly to Equation (8) we also have

PrP [σ∗(j) ∈ σ([k])] =

∫ ∞
t=−∞

fXj (t)Ftopk(X−j)(t) dt

=

∫ ∞
t=−∞

fXj (t−∆)Ftopk(X−j)(t−∆) dt. (9)

Due to our assumption P1, we have fXi(t) = fXj (t−∆) for all t ∈ R. Now, we also have that for
all t ∈ R,

Ftopk(X−j)(t) ≤ Ftopk(X−i)(t). (10)

To see this, note thatX−j andX−i have identical components except the former hasXi and the latter
has Xj in its place. Note that Xi first-order stochastically dominates Xj because of our assump-
tion P1. Hence, it follows that every order statistic of X−j first-order stochastically dominate the
corresponding order statistic of X−i. In particular, topk(X−j) first-order stochastically dominates
topk(X−i), which is exactly Equation (10).

Substituting Equation (10) in the difference of Equations (8) and (9), we get

PrP [σ∗(i) ∈ σ([k])]− PrP [σ∗(j) ∈ σ([k])]

≥
∫ θi

θj

fXi(t) ·
(
Ftopk(X−j)(t)− Ftopk(X−j)(t−∆)

)
dt

=

∫ θi

θj

fXi(t) · Pr[topk(X−j) ∈ (t−∆, t]] dt.

Now, due to property P3 and because a continuous function achieves its minimum on a closed
interval, both fXi(t) and Pr[topk(X−j) ∈ (t−∆, t]] are bounded from below by positive constants
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for t ∈ [θj , θi]. Hence, the integral of their product is bounded from below by a positive constant,
which implies that assumption A3 is satisfied.

Assumption A4: We show a stronger condition that there exists a positive constant α > 0 such that
for all i, j, i′, j′ ∈ [m] with i < j and i′ < j′,

Ω = PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)] ≥ α. (11)

Fix i, j ∈ [m] with i < j and i′, j′ ∈ [m] with i′ < j′. We explicitly evaluate the probability
difference Ω in Equation (11) by conditioning on the values of XS = {Xk}k∈S , where S = [m] \
{i, j}. Consider two cases.

Case 1: j′ > i′ + 1 In this case, we want that Xi ∈ (topi′(XS), topi′−1(XS)] and Xj ∈
(topj′−1(XS), topj′−2(XS)]. (The latter interval has shifted indices because insertion of
Xi would shift the rank of Xj by one.) Thus, we can evaluate ∆ in Equation (11) as
follows.

Ω =

∫
tS

∫ topi′−1(XS)

ti=topi′ (XS)

∫ topj′−2(XS)

tj=topj′−1(XS)

fXi(ti)fXj (tj)fXS (tS) dtj dti dtS

−
∫
tS

∫ topi′−1(XS)

tj=topi′ (XS)

∫ topj′−2(XS)

ti=topj′−1(XS)

fXi(ti)fXj (tj)fXS (tS) dtj dti dtS

=

∫
tS

∫ topi′−1(XS)

q=topi′ (XS)

∫ topj′−2(XS)

q′=topj′−1(XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS .

Now, define ∆ = (1/3) · mink,l∈[m],k 6=l |θk − θl|. Then, the intervals {[θk − ∆, θk +
∆]}k∈[m] do not intersect. Further, there is a constant probability that Xk is sampled from
the interval [θk −∆, θk + ∆] is a positive constant for all k ∈ S due to property (P3). Let
us denote by R the region in which this this happens for all k ∈ S. Hence, Pr[tS ∈ R]
is also a positive constant. We lower bound Ω by restricting the integration over tS to R.
Further, due to property (P2), we have that over that region,

β = min
tS∈R

q∈(topi′ (tS),topi′−1(tS)]

q′∈(topj′−1(tS),topj′−2(tS)]

fXi(q)fXj (q
′)− fXi(q′)fXj (q)

is a positive constant. Hence, we get that Ω is lower bounded by a positive constant, as
required.

Case 2: j′ = i′ + 1. This case is similar to the previous case, except that the conditions on Xi and
Xj change slightly. In this case, we need to haveXi, Xj ∈ (topi′(XS), topi′−1(XS)] along
with Xi > Xj . Hence, the evaluation of Ω in Equation (11) changes to

Ω =

∫
tS

∫ topi′−1(XS)

q=topi′ (XS)

∫ q

q′=topi′ (XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS

≥
∫
tS

∫ topi′−1(XS)

q=
(1/3)topi′ (XS)+
(2/3)topi′−1(XS)

∫ (2/3)topi′ (XS)+
(1/3)topi′−1(XS)

q′=topi′ (XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS

≥ β > 0,

where in the third transition,

β = min
tS∈R

q∈
[
(1/3)topi′ (tS)+
(2/3)topi′−1(tS)

,topi′−1(tS)

]
q′∈
[

topi′ (tS),
(2/3)topi′ (tS)+
(1/3)topi′−1(tS)

]
fXi(q)fXj (q

′)− fXi(q′)fXj (q),

where R is the same region as defined in Case 1. Once again, property (P2) implies that β
is a positive constant. Hence, Ω is lower bounded by a constant.
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Hence, both the Thurstone-Mosteller and the Plackett-Luce models are PPM-α for a constant α > 0.
This completes the proof that the three classical noise models, under suitable assumptions, satisfy
our four assumptions.

F Proof of Theorem 2

We first prove an upper bound on the accuracy of the uniform team. Fix an agent i ∈ N . Consider a
state s ∈ S. For an alternative a ∈ As, Pr[f(πkis) = a | σis] is the probability that the uniform team
chooses a when the biased truth is σis. The winner is chosen by applying f to k sampled votes from
P 2
i (σis). Therefore, the neutrality of P 2

i (assumption A1) and of f (assumption in the theorem)
imply that for every permutation τ of the alternatives,

Pr[f(πkis) = τa | τσis] = Pr[f(πkis) = a | σis]. (12)

Consider the set of rankings Goodis ⊆ L(As) such that the true best alternative σ∗s (1) has the
highest winning probability among all alternatives in As if and only if σis ∈ Goodis. From Equa-
tion (12), we can see that permuting the alternatives in σis permutes the winning probabilities of
the alternatives accordingly. Hence, the rankings in Goodis are obtained by taking one ranking in
Goodis and applying all possible permutations that fix (i.e., do not relabel) σ∗s (1), and thus do not
change its position in the ranking. Thus, there exists a k ∈ [ms] such that Goodis is the set of
rankings where σ∗s (1) is in position k.

Let Badis = L(As) \Goodis. By assumption A2, there exists a constant η > 0 such that

Pr[σis ∈ Badis] ≥ η,∀s ∈ S. (13)

Further, when σis ∈ Badis, we know that there exists an alternative a ∈ As with winning probabil-
ity at least as high as that of σ∗s (1). Hence, the winning probability of σ∗s (1) is at most 1/2. That is,

E
[
Xk
is | σis ∈ Badis

]
≤ 1/2. (14)

Putting everything together, we have that

E
[
Xk
is

]
=
∑
s∈S

µ(s) ·
[
Pr[σis ∈ Badis] · E

[
Xk
is | σis ∈ Badis

]
+ Pr[σis ∈ Goodis] · E

[
Xk
i | σis ∈ Goodis

] ]
≤
∑
s∈S

µ(s) ·
[
Pr[σis ∈ Badis] ·

1

2
+ Pr[σis ∈ Goodis] · 1

]
≤
∑
s∈S

µ(s) ·
[
η · 1

2
+ (1− η) · 1

]
= 1− η

2
,

where the second transition holds due to Equation (14), and the third transition holds due to Equa-
tion (13). Taking c = η/2 proves the first part of the theorem.

For the results regarding the diverse team, recall that in a state s ∈ S, every agent i ∈ N first
draws its biased truth σis ∼ P 1

i (θs), and then draws a sample ψis ∼ P 2
i (σis). Equivalently, we

can say that each agent i ∈ N draws its vote ψis ∼ (P 2
i ◦ P 1

i )(θs). Let Pi = P 2
i ◦ P 1

i . Thus,
ψns is a profile consisting of one sample from Pi(θs) for each i ∈ N . We want to show that
limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1. We establish this under each of the two conditions mentioned in
the second part of the theorem.

First, let assumptions A1 and A3 hold, and let f be a PD-c voting rule. Fix a state s ∈ S. Since P 1
i

and P 2
i are PD-α (assumption A3), Pi is PD-α2 due to Lemma 1. Thus, by definition we have that

for every agent i ∈ N , every alternative a ∈ As \ {σ∗s (1)}, and every j ∈ [ms − 1],

Pr [σ∗s (1) ∈ ψis([j])] ≥ Pr [a ∈ ψis([j])] + α2.

Recall that Tψns (a, j) denotes the number of times alternative a appears among first j positions in
ψns . Due to Kolmogorov’s strong law, we have that for all a ∈ As\{σ∗s (1)} and for all j ∈ [ms−1],

lim
n→∞

Pr
[
Tψns (σ∗s (1), j) ≤ Tψns (a, j)

]
= 0.
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Taking the union over a ∈ As \ {σ∗s (1)} and j ∈ [ms − 1], and applying the union bound, we
get that the probability that σ∗s (1) is not the position-dominating winner in ψns is zero in the limit
when n → ∞. Since this holds for each state s ∈ S, it holds in expectation over the state space
S. Moreover, the PD-c rule f always outputs the position-dominating winner (with probability 1)
whenever it exists. Hence, we have limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1, as required.

The proof for Condorcet consistent rules is almost identical to the proof for PD-c rules. Let assump-
tions A1 and A4 hold, and let f be a Condorcet consistent voting rule. Fix a state s ∈ S. Since P 1

i
and P 2

i are PPM-α and PM-α respectively (assumption A4), Pi is PM-α2 due to Lemma 2. Thus,
by definition we have that for every agent i ∈ N and alternative a ∈ As \ {σ∗s (1)},

Pr [σ∗s (1) �ψis a] ≥ Pr [a �ψis σ∗s (1)] + α2.

Due to Kolmogorov’s strong law, a majority of votes in ψns would rank σ∗(1) above a with proba-
bility 1 as n → ∞, for every a ∈ As \ {σ∗s (1)}. Hence, in the limit, σ∗s (1) becomes the Condorcet
winner with probability 1. Since this holds for each state s ∈ S, it holds in expectation over the state
space S. Moreover, the Condorcet consistent voting rule f must output the Condorcet winner (with
probability 1) whenever it exists. Hence, once again we have limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1, as
required. (Proof of Theorem 2)

While Theorem 2 is already quite general, it is possible to generalize it even further. We preferred to
present the simpler version for ease of exposition; but let us informally say that it is also possible to
handle the case where the ground truth is an objective true quality for each alternative (and then one
would rather know the expected quality of the chosen alternative), and the case where the number
of alternatives in each state is not fixed.

G Parametrized Agents

In Table 1 we present the parameters that were sampled to generate parametrized versions of Fuego.
For each random draw, we used a uniform random distribution, defined in the interval shown in the
column “Range”. Also, depending on the domain of each parameter, we sample integers or floating
point numbers. A detailed description of these parameters is available in the Fuego documentation,
at http://fuego.sourceforge.net/fuego-doc-1.1/.

H Additional Experimental Results

In this section we present further analysis of our experimental results. First we show that the original
Fuego is, indeed, stronger than the parametrized agents. Like in our experiments, we ran 1000 9× 9
Go games, with the system under evaluation playing as white, against the original Fuego playing as
black. In Figure 3 we can see the winning rate of Fuego and of each one of the parametrized agents.
The original Fuego is the strongest agent (with p < 0.01 for all but 3 agents), having a winning rate
close to 50%. The parametrized agents, on average, have a winning rate of 32.3% (std: 10.4%).

We also evaluate the diversity of a team of parametrized agents, by analyzing a sample of 10
parametrized agents. We use the metric proposed in [19], where diversity is defined as the aver-
age Hellinger Distance [11] between the probability density functions (PDFs) of all possible com-
binations of pairs of agents across different world states. We show three different results: Control
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Figure 3: Winning rate of Fuego and of the parametrized agents.
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Parameter Domain Range
uct param globalsearch mercy rule Integer [0,1]

uct param globalsearch territory statistics Integer [0,1]
uct param globalsearch length modification Float [0, 0.5]
uct param globalsearch score modification Float [0,0.5]

uct param player forced opening moves Integer [0,1]
uct param player reuse subtree Integer [0,1]
uct param player use root filter Integer [0,1]

uct param policy nakade heuristic Integer [0,1]
uct param policy fillboard tries Integer [0, 5]

uct param rootfilter check ladders Integer [0,1]
uct param search check float precision Integer [0,1]

uct param search prune full tree Integer [0,1]
uct param search rave Integer [0,1]

uct param search virtual loss Integer [0,1]
uct param search weight rave updates Integer [0,1]
uct param search bias term constant Float [0, 1.0]
uct param search expand threshold Integer [1,4]
uct param search first play urgency Integer [1,10000]

uct param search knowledge threshold Integer [0,10000]
uct param search number playouts Integer [1,3]
uct param search prune min count Integer [1,128]

uct param search randomize rave frequency Integer [0,200]
uct param search rave weight final Integer [1000,10000]

uct param search rave weight initial Integer [0,999]

Table 1: Parameters sampled to generate different versions of Fuego.

compares each agent with a second sample of itself, in order to measure the noise in our evaluation;
Parametrized Agents compares all possible pairs of parametrized agents, in order to estimate the
diversity of our team; and Independent Agents compares each parametrized agent with Pachi [4], an
independently developed Computer Go program. In order to perform the analysis, we estimate the
PDFs of Pachi and 10 agents from the diverse team, using 100 different board states. For each board
state we sample 100 moves for each agent. The results are shown in Figure 4(a). These results in-
dicate that the level of diversity is especially high when the parametrized agents are compared with
Pachi, suggesting that the current parametrization methodology falls short of creating an idealized
diverse team. That said, the methodology does lead to some diversity, as indicated by the statistically
significant difference between the Control bar and Parametrized Agents bar.

We also evaluate the level of diversity by testing whether there is a set of board states where all
parametrized agents have a low probability of playing the best action. Again, we evaluate a sample
of 10 agents from the diverse team. We first estimate the best move for each of 100 board states.
To this end, we use Fuego to evaluate the given board state, but with a time limit 50x higher than
the default one. Then, based on the previous estimated PDFs of the parametrized agents, we can
obtain the probability of each agent playing the optimal action. Finally, we calculate the proportion
of board states in which all parametrized agents play the best action with probability below a certain
threshold. The results are shown in Figure 4(b). It turns out that all parametrized agents play the
optimal action with probability smaller than 1/2 in 40% of the board states. Moreover, in 10% of
the board states, the probability of playing the optimal action is lower than 10%. Hence, there is still
a large set of board states in which all agents play badly, regardless of the parametrization.
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(a) Diversity of the parametrized agents, compared
with a second sample and with the diversity between
independently developed agents
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(b) Percentage of world states where all parametrized
agents have probability of playing the best action be-
low the given threshold

Figure 4: Evaluation of the diversity of the parametrized agents, and the fraction of states in which
all of them have a low probability of playing the optimal action. The error bars show 99% confidence
intervals.
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