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In this supplementary material, we give some additional experimental results on the Ocean video,
graph regularized extensions, and detailed proofs of some lemmas and theorems.

Notations

Definition 4. The Kronecker product A⊗B ∈ Rmp×nq of two matrices A ∈ Rm×n and B ∈ Rp×q

is defined as

A⊗B =


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB

 .

Definition 5. The Hadamard product A ⊙ B ∈ Rm×n of two same-sized matrices A, B ∈ Rm×n

is given by

A⊙B =


a1,1b1,1 a1,2b1,2 · · · a1,nb1,n
a2,1b2,1 a2,2b2,2 · · · a2,nb2,n

...
...

. . .
...

am,1bm,1 am,2bm,2 · · · am,nbm,n

 .

The definition can be extended to N-th order tensors by the following form,

(A⊙ B)i1,i2,··· ,iN = ai1,i2,··· ,iN bi1,i2,··· ,iN .

1 More Experimental Results

We test our gHOI method for color video inpainting problems, and compare gHOI against
WTucker1, WCP2, FaLRTC3 and Latent4 on the Ocean video used in [2]. The color videos
are naturally represented as a fourth-order tensor (i.e., length×width×channels×frames), whose
size is 112 × 160 × 3 × 32. For WTucker and our gHOI method, the tensor ranks are set to

∗Corresponding author.
1http://www.lair.irb.hr/ikopriva/marko-filipovi.html
2http://www.sandia.gov/˜tgkolda/TensorToolbox/
3http://pages.cs.wisc.edu/˜ji-liu/
4http://ttic.uchicago.edu/˜ryotat/softwares/tensor/
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Figure 1: Recovery results on the Ocean video with 20% SR. From left to right in the first row: input
color image and the reconstruction results of WTucker and WCP. From left to right in the second
row: the results of FaLRTC, Latent and gHOI, respectively (Best viewed in color).

Table 1: RSE and time cost (seconds) comparison on the Ocean video.
WTucker WCP FaLRTC Latent gHOI

RSE±std 0.1109±0.0005 0.1852±0.0084 0.1174±0.0006 0.1438±0.0011 0.1041±0.0002
Time±std 381.46±11.26 230.48±6.19 130.82±5.53 1490.76±20.81 31.72±1.43

R1 = R2 = R4 = 20 and R3 = 3, and the regularization parameter λ = 100. For FaLRTC
and our gHOI method, the weights αn (n = 1, . . . , 4) are set to be {1, 1, 10−3, 10−3}. In addition,
the smoothing parameters of FaLRTC are set to be 5αn/In for n = 1, . . . , 4. The tolerance value of
all these methods is fixed at tol = 10−4. The recovery results on one randomly chosen frame with
20% SR are shown in Fig. 1. Moreover, we also report the recovery accuracy (RSE) and running
time (seconds) in Table 1. From these results, we can observe that our gHOI method consistently
performs better than the other methods in terms of accuracy and efficiency.

2 Graph Regularization Extensions

2.1 Graph Regularized Model

As our gHOI method is a tensor decomposition method, and inspired by the work [3], we exploit the
auxiliary information given as similarity matrices in a regularization model:

min
G,{Un},X

N∑
n=1

∥G(n)∥∗ +
λ

2
∥X − G ×1 U1 · · · ×N UN∥2F + γTr(

N∑
n=1

UT
n LnUn),

s.t., PΩ(X ) = PΩ(T ), Un ∈ St(In, Rn), n = 1, · · · , N,

where γ ≥ 0 is a regularization constant, Tr(·) denotes the matrix trace, Ln is the graph Laplacian
matrix, i.e., Ln = Dn −Wn, Wn is the weight matrix for the object set Sn, and Dn is the diagonal
matrix whose entries are column sums of Wn, i.e., (Dn)ii =

∑
j(Wn)ij . Moreover, Algorithm 1

can be extended to solve our graph regularized tensor completion problem.

2.2 Multi-Relational Learning Applications

In this part, we test our graph regularized gHOI (RgHOI) method for link prediction problems on
a real-world network data set, YouTube5 [4]. YouTube is currently the most popular video sharing
web site, which allows users to interact with each other in various forms such as contacts, subscrip-
tions, sharing favorite videos, etc. In total, this data set contains 848,003 users, with 15,088 users
sharing all of the information types, and includes 5-dimensions of interactions: contact network,

5http://leitang.net/heterogeneous_network.html
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Figure 2: Running time (in seconds and in logarithmic scale) comparison of RWTucker, RWCP,
FaLRTC and RgHOI on the YouTube data set. For each dataset, we use 20% for training. Note that
RWTucker, RWCP and FaLRTC could not run for sizes {8, 000, 15, 088} due to runtime exceptions.
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Figure 3: ROC curves showing the performance of link prediction methods with 10% (left) and 20%
(right) training data, respectively (Best viewed in color).

co-contact network, co-subscription network, co-subscribed network, and favorite network. We run
these experiments on a machine with 6-core Intel Xeon 2.4GHz CPU and 64GB memory.

For the graph regularized WTucker (RWTucker) and WCP (RWCP), and our RgHOI method, we
set the tensor ranks R1 = R2 = 40 and R3 = 5, and λ = 100. For FaLRTC and RgHOI, αn

(n = 1, 2, 3) are set to be {1, 1, 10−3}. The smoothing parameters of FaLRTC are set to be 5αn/In
for n = 1, 2, 3. The tolerance value of all these methods is fixed at tol = 10−4.

We use the 15,088 users who share all of the information types and have 5-dimensions of interactions
in our experiments. So the size of the input tensor is 15, 088×15, 088×5. We first report the average
running time (in seconds) of three graph regularized algorithms including RWTucker [3], RWCP [3]
and our RgHOI method, and FaLRTC over 10 independent runs in Fig. 2, where the number of users
is gradually increased. Our RgHOI method is much faster than RWTucker, RWCP and FaLRTC.
The running time of our RgHOI method increases only slightly when the number of users increases.
On the contrary, the running time of RWTucker, RWCP and FaLRTC increases dramatically. They
could not yield experimental results within 48 hours when the number of users is 8,000 or 15,088.
This shows that our RgHOI method has very good scalability and can address large-scale problems.

As the other methods cannot finish running when the problem size is large, we choose 4,117 users
who have more than 10 interactions to form a subset of size 4, 117×4, 117×5. We randomly select
10% or 20% entries as the training set, and the remainder as the testing data. We illustrate the average
prediction accuracy (the score Area Under the receiver operating characteristic Curve, AUC) over
10 independent runs in Fig. 3. From the results, we can see that our RgHOI method significantly
outperforms the state-of-the-art LRTC methods in terms of both effectiveness and efficiency.
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Appendix A: Proof of Theorem 1

Before giving the proof of Theorem 1, we will first present some properties of matrices and tensors
in the following.
Property 1. Let X ∈ Rm×l, Y ∈ Rn×l, and Z ∈ Rl×l, then

∥XZY T ∥∗ = ∥Z∥∗,

where both X and Y are column-orthonormal, i.e., X ∈ St(m, l) and Y ∈ St(n, l).

Property 2. Let A ∈ Rm×n, B ∈ Rp×q, and C and D be two matrices of suitable sizes, then we
have the following results:

I. (A⊗B)⊗ C = A⊗ (B ⊗ C).

II. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

III. (A⊗B)T = AT ⊗BT .

Property 3. Let X = G ×1 U1 ×2 · · · ×N UN , where X ∈ RI1×I2···×IN , G ∈ RR1×R2···×RN , and
Un ∈ RIn×Rn , n = 1, . . . , N , then, for any n ∈ {1, . . . , N}, we have

X(n) = UnG(n)(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1)
T .

Proof of Theorem 1:

Proof.
Let Qn = UN ⊗ . . .⊗Un+1⊗Un−1⊗ . . .⊗U1 and Un ∈ St(In, Rn), n = 1, . . . , N , and according
to Property 2, we have the following conclusion:

QT
nQn

=(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1)
T (UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1)

=(UT
N ⊗ . . .⊗ UT

n+1 ⊗ UT
n−1 ⊗ . . .⊗ UT

1 )(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U1)

=(UT
N ⊗ . . .⊗ UT

n+1 ⊗ UT
n−1 ⊗ . . .⊗ UT

2 )(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U2)⊗ (UT
1 U1)

=(UT
N ⊗ . . .⊗ UT

n+1 ⊗ UT
n−1 ⊗ . . .⊗ UT

2 )(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U2)⊗ IR1

=(UT
N ⊗ . . .⊗ UT

n+1 ⊗ UT
n−1 ⊗ . . .⊗ UT

3 )(UN ⊗ . . .⊗ Un+1 ⊗ Un−1 ⊗ . . .⊗ U3)⊗ (UT
2 U2)⊗ IR1

...
=IRN

⊗ . . .⊗ IRn+1 ⊗ IRn−1 ⊗ . . .⊗ IR2 ⊗ IR1

=IJn ,

where IRi ∈ RRi×Ri (i = 1, . . . , N) are all identity matrices, IJn ∈ RJn×Jn is also an identity
matrix, and Jn = Πj ̸=nRj .

Then by Property 3, we have

∥X(n)∥∗ = ∥UnG(n)(UN ⊗ . . . Un+1 ⊗ Un−1 . . .⊗ U1)
T ∥∗.

According to Properties 1 and 3, and QT
nQn = IJn , we obtain

∥X(n)∥∗ = ∥UnG(n)(UN ⊗ . . . Un+1 ⊗ Un−1 . . .⊗ U1)
T ∥∗ = ∥G(n)∥∗.

Hence, ∥X∥∗ = ∥G∥∗.
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Appendix B: Proof of Theorem 2

Proof. Let

f(G, U1, . . . , UN ) =

N∑
n=1

µk

2
∥G(n) − V k

n + Y k
n /µk∥2F +

λ

2
∥X k − G ×1 U1 · · · ×N UN∥2F , (24)

then the closed-form solution of (24) with respect to G is given by

G =
1

λ+Nµk
(λM+ µkN ). (25)

By (25), and according to the definitions of the tensors M and N , we obtain

⟨X k, G ×1 U1 · · · ×N UN ⟩
=⟨X k ×1 (U1)

T · · · ×N (UN )T , G⟩

=

⟨
M,

1

λ+Nµk
(λM+ µkN )

⟩
=

λ

λ+Nµk
∥M∥2F +

µk

λ+Nµk
⟨M, N⟩,

(26)

and

⟨G, N⟩

=

⟨
1

λ+Nµk
(λM+ µkN ), N

⟩
=

λ

λ+Nµk
⟨M, N⟩+ µk

λ+Nµk
∥N∥2F .

(27)

Hence, f(G, U1, U2, . . . , UN ) is rewritten as follows:

f(G, U1, . . . , UN )

=
λ

2
∥X k∥2F − λ⟨X k,G ×1 U1 · · · ×N UN ⟩+ λ

2
∥G∥2F

+
Nµk

2
∥G∥2F − µk⟨G, N⟩+ µk

2

N∑
n=1

∥V k
n − Y k

n /µk∥2F .

(28)

Substituting (25), (26) and (27) into (28), then the cost function (28) is formulated in the following
form,

f(G, U1, . . . , UN )

=
λ

2
∥X k∥2F − λ⟨M, G⟩+ λ+Nµk

2
∥G∥2F − µk⟨G, N⟩

+
µk

2

N∑
n=1

∥V k
n − Y k

n /µk∥2F

=ζ − 1

2(λ+Nµk)
∥λM+ µkN∥2F

=ζ − 1

2(λ+Nµk)
g(U1, U2, . . . , UN ),

where ζ = λ
2 ∥X

k∥2F + µk

2

∑N
n=1 ∥V k

n − Y k
n /µk∥2F is a constant with respect to {G, U1, . . . , UN}.

Combination with the above results proves the theorem.
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Appendix C: Proof of Theorem 3

The proof sketch of Theorem 3 is similar to that in [1]. We first prove the boundedness of multipliers
and some variables of Algorithm 1, and then we analyze the convergence of Algorithm 1. To prove
the boundedness, we first give the following lemmas.
Lemma 1 ([1]). Let X be a real Hilbert space endowed with an inner product ⟨·⟩ and a correspond-
ing norm ∥ · ∥ (e.g., the Schatten 1-norm), and y ∈ ∂∥x∥, where ∂∥ · ∥ denotes the subgradient of
the norm. Then ∥y∥∗ = 1 if x ̸= 0, and ∥y∥∗ ≤ 1 if x = 0, where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Lemma 2. Let Y k+1
n = Y k

n + µk(Gk+1
(n) − V k+1

n ) for any n ∈ {1, . . . , N}, then the sequences
{Gk+1}, {Y k+1

n } and {V k+1
n } (n = 1, . . . , N) produced by Algorithm 1 are bounded.

Proof. Let U k+1 = (Uk+1
1 , Uk+1

2 , . . . , Uk+1
N ), V k+1 = (V k+1

1 , V k+1
2 , . . . , V k+1

N ) and Y k+1 =

(Y k+1
1 , Y k+1

2 , . . . , Y k+1
N ). By the optimality condition of (10), we have

0 ∈ ∂VnLµk(X k,Gk+1,U k+1,V k+1,Y k), ∀n ∈ {1, · · · , N},

i.e.,
Y k
n + µk(Gk+1

(n) − V k+1
n ) ∈ ∂∥V k+1

n ∥∗, ∀n ∈ {1, · · · , N},
and

Y k+1
n ∈ ∂∥V k+1

n ∥∗ ∀n ∈ {1, · · · , N}.

By Lemma 1, we have
∥Y k+1

n ∥2 ≤ 1, ∀n ∈ {1, · · · , N},
where ∥ · ∥2 is the spectral norm, which is equal to the largest singular value of the matrix. Hence,
{Y k

n }, n = 1, . . . , N , are bounded.

By (13), we obtain

∥X k+1 − Gk+1 ×1 U
k+1
1 · · · ×N Uk+1

N ∥2F
=∥PΩ(T − Gk+1 ×1 U

k+1
1 · · · ×N Uk+1

N )∥2F
≤∥PΩ(T − Gk+1 ×1 U

k+1
1 · · · ×N Uk+1

N )∥2F + ∥PΩC (X k − Gk+1 ×1 U
k+1
1 · · · ×N Uk+1

N )∥2F
=∥X k − Gk+1 ×1 U

k+1
1 · · · ×N Uk+1

N ∥2F .

By the iteration procedure, we have

Lµk(X k+1,Gk+1,U k+1,V k+1,Y k)

≤Lµk(X k,Gk+1,U k+1,V k,Y k)

≤Lµk(X k,Gk,U k,V k,Y k)

=Lµk−1(X k,Gk,U k,V k,Y k−1) + βkΣ
N
n=1∥Y k

n − Y k−1
n ∥2F ,

where βk = µk−1+µk

2(µk−1)2
and µk = ρµk−1.

Since
∞∑
k=1

µk−1 + µk

2(µk−1)2
=

ρ(ρ+ 1)

2µ0(ρ− 1)
< ∞,

{Lµk−1(X k,Gk,U k,V k,Y k−1)} is bounded due to the boundedness of {Y k
n } for n = 1, . . . , N .

N∑
n=1

∥V k
n ∥∗ +

λ

2
∥X k − Gk ×1 U

k
1 ×2 · · · ×N Uk

N∥2F

=Lµk−1(X k,Gk,U k,V k,Y k−1)− 1

2

N∑
n=1

∥Y k
n ∥2F − ∥Y k−1

n ∥2F
µk−1

is upper bounded, hence {Gk}, {X k} and {V k
n }, n = 1, . . . , N , are bounded.
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Proof of Theorem 3:

Proof. I. By (Gk+1
(n) −V k+1

n ) = (µk)−1(Y k+1
n −Y k

n ), the boundedness of {Y k
n } and limk→∞ µk =

∞, we have
lim
k→∞

∥Gk+1
(n) − V k+1

n ∥F = 0, ∀n ∈ {1, · · · , N}.

Thus, (Gk, V k
n ,X k) approaches to a feasible solution.

Next we prove that the sequences {Gk} and {V k
n }, n = 1, . . . , N , are Cauchy sequences.

By (20), we have

Gk+1 − Gk

=
1

λ+Nµk
(λX k ×1 (U

k+1
1 )T · · · ×N (Uk+1

N )T )

+
µk

λ+Nµk

N∑
n=1

refold(V k
n − Y k

n /µk − Gk
(n))−

λ

λ+Nµk
Gk.

By the result above, we have ∥Gk
(n) − V k

n ∥F = O((µk)−1). Since {Gk} is bounded, then we have
λ

λ+NµkGk → 0. ∥Gk+1 − Gk∥F = O((µk)−1), and then
∑∞

k=1(µ
k−1)−1 = ρ

µ0(ρ−1) < ∞. Hence,
{Gk} is a Cauchy sequence, and it has a limit, G∞.

Similarly, {V k
n } (n = 1, . . . , N) are also Cauchy sequences, therefore they have their limits, V ∞

n ,
respectively.

II. The Karush-Kuhn-Tucker (KKT) conditions of (6) are formulated as follows:

0 ∈
N∑

n=1

refold(∂∥G∗
(n)∥∗) + λ(G∗ −X ∗ ×1 (U

∗
1 )

T · · · ×N (U∗
N )T ),

X ∗
Ω = TΩ, X ∗

ΩC =(G∗ ×1 U
∗
1 · · · ×N U∗

N )ΩC ,

U∗
n ∈ St(In, Rn), n = 1, . . . , N.

According to Algorithm 1, the first-order optimal condition of the problem (10) at the k-th iteration
is formulated as follows:

0 ∈
N∑

n=1

refold(∂∥V k+1
n ∥∗) +NµkGk+1 − µk

N∑
n=1

refold(V k+1
n − Y k

n /µk). (29)

The first-order optimal condition of the problems (9) with respect to G is

0 =
N∑

n=1

(λ+Nµk)Gk+1−µk
N∑

n=1

refold(V k
n −Y k

n /µk)−λ(X k×1(U
k+1
1 )T · · ·×N (Uk+1

N )T ). (30)

Since {V k
n }, n = 1, . . . , N , and {Gk} are Cauchy sequences, and let V ∞

n (n = 1, . . . , N) and G∞

be their limit points, respectively. By the result (I), we have V ∞
n = G∞

n for all n = 1, . . . , N . By
(29) and (30), we obtain

0 ∈
N∑

n=1

refold(∂∥G∞
(n)∥∗) + λ(G∞ −X∞ ×1 (U

∞
1 )T · · · ×N (U∞

N )T ).

Furthermore, by (18) and (13), we have

X∞
Ω = TΩ, X∞

ΩC = (G∞ ×1 U
∞
1 · · · ×N U∞

N )ΩC ,

U∞
n ∈ St(In,Rn), n = 1, . . . , N.

(31)

Hence, the sequence {Gk,X k, Uk
1 , . . . , U

k
N} generated by Algorithm 1 converges the KKT point of

(6).
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Appendix D: Proof of Theorem 4

We extend the results in [5] to our tensor completion and decomposition model (6) with Schatten
1-norm regularization. By substituting (31) into (6), then the minimization problem (6) is trivially
equivalent to

min
G,{Un}

N∑
n=1

∥G(n)∥∗ +
λ

2
∥PΩ(T )− PΩ(G ×1 U1 · · · ×N UN )∥2F . (32)

According to Theorem 3, we can know that (G, U1, · · · , UN ) is also a KKT point of the problem
(32). To prove Theorem 4, we first give the following lemma [5].

Lemma 3. Let L(X) = 1√
mn

∥X − X̂∥F and L̂(X) = 1√
|Ω|

∥PΩ(X − X̂)∥F be the actual and

empirical loss function respectively, where X, X̂ ∈ Rm×n (m ≤ n). Furthermore, assume entry-
wise constraint maxi,j |Xij | ≤ β1. Then for all rank-r matrices X , with probability greater than
1− 2 exp(−n), there exists a fixed constant C3 such that

sup
X∈Sr

|L̂(X)− L(X)| ≤ C3β1

(
nr log(n)

|Ω|

)1/4

,

where Sr = {X ∈ Rm×n : rank(X) ≤ r, ∥X∥F ≤
√
mnβ1}.

Here we set M = maxi,j(Xij − X̂ij)
2 ≤ (2β1)

2 and ϵ = 9β1 as in [5]. According to Theorem 2 in
[5], thus we have

sup
X∈Sr

|L̂(X)− L(X)|

≤ 2ϵ√
|Ω|

+

(
M2

2

2nr log(9β1n/ϵ)

|Ω|

)1/4

≤ 18β1√
|Ω|

+ 2β1

(
nr log(n)

|Ω|

)1/4

=

(
2 +

18

(|Ω|nr log(n))1/4

)
β1

(
nr log(n)

|Ω|

)1/4

.

Hence, C3 can be set to 2 + 18
(|Ω|nr log(n))1/4

.

Proof of Theorem 4:

Proof. Let A = G×1U1× . . .×N UN , we first need to bound ∥T − A∥F . By C1 = ∥PSPΩ(T −A)∥F

∥PΩ(T −A)∥F
,

we have

∥T − A∥F√
IN

≤

∣∣∣∣∣∥T − A∥F√
IN

− ∥PSPΩ(T − A)∥F
C1

√
|Ω|

∣∣∣∣∣+ ∥PSPΩ(T − A)∥F
C1

√
|Ω|

=

∣∣∣∣∣∥T − A∥F√
IN

− ∥PΩ(T − A)∥F√
|Ω|

∣∣∣∣∣+ ∥PSPΩ(T − A)∥F
C1

√
|Ω|

.

Let φ(Ω) =

∣∣∣∣ 1√
IN

∥T − A∥F − 1√
|Ω|

∥PΩ(T − A)∥F
∣∣∣∣, then we need to bound φ(Ω). Accord-

ing to Lemma 3, we unfold the tensors T and A along the n-th mode, ∀n ∈ {1, · · · , N}. Since
rank(A(n)) ≤ R and A(n) ∈ SR, then with probability greater than 1− 2 exp(−IN−1), there exists
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a fixed constant C = 2 + 18
(|Ω|IN−1R log(IN−1))1/4

such that

sup
A(n)∈SR

φ(Ω) =

∣∣∣∣∣∥A(n) − T(n)∥F√
IN

−
∥(PΩ(A))(n) − (PΩ(T ))(n)∥F√

|Ω|

∣∣∣∣∣
≤Cβ

(
IN−1R log(IN−1)

|Ω|

) 1
4

.

(33)

Next we need to bound ∥PSPΩ(T − A)∥F . Since (G, U1, · · · , UN ) is a KKT point of the problem
(32), the first-order optimal condition of the problem (32) with respect to G is written as follows:

λPΩ(T − A)×1U
T
1× . . .×N UT

N ∈
N∑

n=1

refold(∂∥G(n)∥∗). (34)

In other words, there exist {Pn ∈ RR×RN−1

, n = 1, · · · , N} such that

λPn ∈ ∂∥G(n)∥∗, n = 1, 2, · · · , N, (35a)

PΩ(T − A)×1U
T
1× . . .×N UT

N =

N∑
n=1

refold(Pn). (35b)

Using Lemma 1 in Appendix C and (35a), we obtain

λ∥Pn∥2 ≤ 1,

where ∥ · ∥2 is the spectral norm. According to rank(Pn) ≤ R, we have

∥Pn∥F ≤
√
R∥Pn∥2 ≤

√
R

λ
. (36)

By (35b) and (36), we obtain

∥PΩ(T − A)×1U
T
1× . . .×N UT

N∥F

≤
N∑

n=1

∥refold(Pn)∥F =

N∑
n=1

∥Pn∥F

≤N
√
R

λ
.

(37)

By the definition of PS , we have

∥PSPΩ(T − A)∥F
=∥PΩ(T − A)×1U

T
1× . . .×N UT

N∥F

≤N
√
R

λ
.

(38)

By (33) and (38), we have

RMSE =
∥D −A∥F√

IN

≤∥E∥F√
IN

+
∥T − A∥F√

IN

≤∥E∥F√
IN

+ φ(Ω) +
∥PSPΩ(T − A)∥F

C1

√
|Ω|

≤∥E∥F√
IN

+ Cβ

(
IN−1R log(IN−1)

|Ω|

) 1
4

+
N
√
R

C1λ
√

|Ω|
.

This completes the proof.
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Lower Boundedness of C1

By the definition of C1, we have that C1 ≤ 1. In the following, we will first discuss the lower
boundedness of C1, that is, it is lower bounded by a positive constant.

By the characterization of the subdifferentials of norms, we have

∂∥X0∥∗ = {η | ⟨η, X0⟩ = ∥X0∥∗, ∥η∥2 ≤ 1}. (39)

By (35a) and (39), we have

⟨λPn, G(n)⟩ = ∥G(n)∥∗, ∀n ∈ {1, · · · , N}.
Hence, ⟨

λ
N∑

n=1

refold(Pn), G

⟩
=

N∑
n=1

∥G(n)∥∗.

Note that ∥A∥∗ ≥ ∥A∥F and ⟨A,B⟩ ≤ ∥A∥F ∥B∥F for any matrices A and B of the same size.
Thus

λ

∥∥∥∥∥
N∑

n=1

refold(Pn)

∥∥∥∥∥
F

∥G∥F

≥

⟨
λ

N∑
n=1

refold(Pn), G

⟩
=

N∑
n=1

∥G(n)∥∗

≥N∥G∥F .

By (35b), ∥G∥F > 0 and λ ̸= 0, thus we obtain

∥PΩ(T − A)×1U
T
1× . . .×N UT

N∥F

=

∥∥∥∥∥
N∑

n=1

refold(Pn)

∥∥∥∥∥
F

≥N

λ
,

i.e.,

∥PSPΩ(T − A)∥F ≥ N

λ
.

G is the optimal solution of the subproblem (32) with the given matrices U1, U2, · · · , UN . By
Theorem 1, we have

λ

2
∥PΩ(T − A)∥2F

<
λ

2
∥PΩ(T − A)∥2F +

N∑
n=1

∥G(n)∥∗

≤λ

2
∥PΩ(T )∥2F .

Hence,

C1 =
∥PSPΩ(T − A)∥F
∥PΩ(T − A)∥F

≥ N

λ∥PΩ(T )∥F
.

In other words, N
λ∥PΩ(T )∥F

≤ C1 ≤ 1. In fact, the value of C1 is usually much greater than
its lower bound, as shown in Fig. 4, where the ordinate is the average results on 10 indepen-
dent random sampling inputs, and the abscissa denotes the sampling rate, which is chosen from
{0.001, 0.005, 0.01, 0.05, 0.1, . . . , 0.95, 0.99}. Moreover, the regularization parameter λ is set to
100. Similarly, we have that C2 in Theorem 5 is lower bounded by a positive constant.
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Figure 4: The average value and standard deviation of C1 vs. sampling rate for gHOI. For a fixed
sampling rate, we can see that although C1 is not a constant, the value of C1 is stable with respect
to the sampling operator PΩ (Best viewed zoomed in).

Appendix E: Proof of Theorem 5

Proof. Similar to Theorem 4, the following result holds by the first-order optimal condition of the
problem (22) with respect to G,

∥PSX ∗(y − X (A))∥F ≤ N
√
R

λ
,

where X ∗ : Rm → RI1×I2···×IN denotes the adjoint operator of X . By the RSC condition of the
linear operator X , we have

RMSE =
∥D −A∥F√

IN

≤∥X (D −A)∥2√
mκ(X )IN

≤ ∥ε∥2√
mκ(X )IN

+
∥y − X (A)∥2√

mκ(X )IN

=
∥ε∥2√

mκ(X )IN
+

∥PSX ∗(y − X (A))∥F
C2

√
mκ(X )IN

≤ ∥ε∥2√
mκ(X )IN

+
N
√
R

C2λ
√
mκ(X )IN

.

This completes the proof.
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