A Derivation of Moments for the IBP (Section 3)

A.1 Moments for the Linear Gaussian Latent Feature Model

Key to the derivation is the fact that z and € are independent random variables, hence their expectations can be
taken independently.

Order 1 tensor: By using Equation (4), we have
S1:=My =E;[z] =E;[Az+ ¢] = AE. [z] = T'(7, A). (25)

To infer the number of latent variables k and deal with the noise term, we need to determine the rank of the
covariance matrix E; [(z — Ez[z]) ® (z — E;[z])]. Because there is additive noise, the smallest (d — K)
eigenvalues will not be exactly zero. Instead, they amount to the variance arising from e since

cov[Az + €] = AT cov[z] A + cov[e]. (26)

Consequently the smallest eigenvalues of the covariance matrix of x allow us to read off the variance o%: for
any normal vector v corresponding to the d — k smallest eigenvalues we have

E, |:(’UT (z—E [X}))Q] =o' A cov[z]Av + v cov]elv = o”. (27)

Order 2 tensor: For the second-order tensor, we plug in (6) and use independence of z and €. Linear terms in
€ vanish. Hence we get

My =E;[z®z]=T (E. [z®z],A,A)+021:T(7r®7r+diag(7r77r2),A,A)+J21
=S ® S1 + T (diag (7 — 7%) , A, A) + o°1. (28)

This yields the statement in Equation (13).
Order 3 tensor: As before, denote by v an eigenvector corresponding to the (d — k) smallest eigenvalues, i.e.
v' A = 0. We first define an auxiliary term

2 2
my :=E, [ac (’UT (z — E[Jc])) } =E, [ac (UT (A(z —7) + 5)) }
2
-E, [w (vTa) } = o>T(x, A). (29)
Since the Normal Distribution is symmetric, only even moments of e survive. Using (9), the third order
moments yield
M;=E;[t2Qz]=E.[Az®@ Az2® Az] + E. [63[Az Q@ € ® €] (30)
=TE:.[z02®2],4,A,A)+63(m1 ®1) €)Y
=51 ®51® 851+ 65 [S1 ® So] + T (diag (7 — 377 +2m)) , A, A, A) + &3 (m1 @ 1)

Thus, we get Equation (14).
Order 4 tensor: We obtain the fourth-order tensor by first calculating an auxiliary variable related to the ad-
ditive noise term

4 4
ms =E, [(UT (z — E, [a:])) } /3= E[(UTe) 1/3 = o*. (32)
Here the last equality followed from the isotropy of Gaussians. With Equation (10), the forth order moments
are
Mi=E;[zQzQz® x|

=E.[Az2Q Az Q@ Az®@ Az] + E. [Gs[Az2Q A2R Q€| + E[t®c® e €] (33)
=T(E.[2020202],4,A,A,A) +0°66[S2 @ 1] +0'63[1 ® 1] (34)

=51 ®51® 51 ®S51+ 66 [S2® 51 ®S1]+ G3[S2 x S2] + 64 (S5 ® S1]
+ T (diag (67" +127° —7n° + 7) , A, A A) + 0766 [S2 @ 1] + maG3 [1®1].  (35)

A.2 Moments for the Infinite Sparse Factor Analysis Model

Since both Y and e are symmetric and have zero mean, the odd order tensors vanish. That is M; = 0 and
M3 = 0. It suffices for us to focus on the even terms.
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Order 2 tensor: Using covariance matrix of (6) yields

My=E,[z®z] =T (E.[(209) ® (209)],G,G) +¢°1 (36)
:T((E [z®2] ®E, [y°]1),G,G) + 0’1 37
((ﬂ®7r+d1ag (7r—71' ))@Ey [yQ] 1,G7G) +021 (38)

T (Ey [y°] diag () ,G, G) + 01 = T (diag () , G, G) + 0”1, (39)

As before, the variance o of e can be inferred by Equation (27). Here we get Equation (18).
Order 4 tensor: With Equation (10) and E,, [y*] = 3, we have
Mi=E;[zQ2zQ1® x| (40)
=E.[Gz0y)0G(20y)0G(20y)®G (20 y)]
+E:[G[G(20y)®G(20y) Qe +E[e®@e®e®

=T(E.:[¢®20202 OE, [y']1,4,A4,4,A) + 0°G[S2 @ 1] + 063 [1 @ 1] (41)
=G5 [S2 ® S] + T (diag (Ey [y"] m — 3B, [y*]° Tr?) JALA A, A)

+0%66[Sa @ 1]+ 0'63[1®1) (42)
=65 [S2 ® Sa] + T (3 (mi — 77) , A, A, A, A) + 0°66 [S2 ® 1] + muG3 [1 ® 1] (43)

where m4 can be inferred by (17).

If the prior on Y is drawn from a Laplace distribution the model is called a ilCA. The lower-order moments are
similar to that of isFA, except for E, [y°] = 2 and E, [y*] = 24. Replacing these terms in Equation (39) and
(42) yields the claim.

B Concentration measure of bounded moments

B.1 Proof of the Moment Bound of Theorem 2
Denote by X the m-sample used in generating M. Moreover, denote by
2[X]:= sup |[T[Mi,u,---,u] —T[My,u,---,u (44)
uifluf <1

the largest deviation between empirical and expected moments, when applied to the test vectors u. Bounding
this quantity directly is desirable since it allows us to avoid having to derive pointwise bounds with regard to
M. We prove that =[X] is concentrated using McDiarmid’s bound [25]. Substituting single observations in
E[X] yields

IN

% [T [qﬁl(a:j)—d)l(x/),u,...u]] (45)
Lol + o] < 2R 6)

Plugging the bound of 2R /m into McDiarmid’s theorem shows that the random variable Z[ X is concentrated
for Pr{E[X] — Ex[E][X]] > €} < § with probability 6 < exp ( ) Solving the bound for e shows that

with probability at least 1 — § we have that ¢ < \/—21log d/mR".

2]~ E[(X\ {z5}) U {='}]]

IN

2R21

The next step is to bound the expectation of Z[X]. For this we exploit the ghost sample trick and the convexity
of expectations. This leads to the following:

Ex [E[X]] <Ex x- |: sup

wsfluf <1

T[Mlvuy"' au] 7T[Mlyu7"' 7u]’:|

:EGEX,X’ “ H ZGJ d)l 'TJ 7u} - T[Qﬁl(l';)th co ,U]) :|
u: <1
< 2 E,E - sup Za [Pi(z5),u u] 47)
S—LhsbhXx Uy« y
m wifjul|<1 ! n
2 25 ulk 2R!
<*EUEX (oF] d)l X S - X ) S - (48)
| 321 J 3) m vm




Here the first inequality follows from convexity of the argument. The subsequent equality is a consequence of
the fact that X and X' are drawn from the same distribution, hence a swapping permutation with the ghost-
sample leaves terms unchanged; The following inequality is an application of the triangle inequality. Next we
use the Cauchy-Schwartz inequality, convexity and last the fact that ||¢(x)|| < R. Combining both bounds

yields € < [2+ /=2log ] R'//m.
B.2 Tools for bounding tensors with bounded moments

To prove the guarantees for tensors, we rely on the triangle inequality on tensorial reductions

sup |T(A + B,u) — T(A" + B',u)| < sup |T(A,u) — T(A',u)| +sup |T(B,u) — T(B,u)| (49

and moreover, the fact that for products of bounded random variables the guarantees are additive, as stated in
the lemma below:

Lemma 4 Denote by f; random variables and by fAl their estimates. Moreover, assume that each of them is
bounded via | f;| < R; and |fi| < R; and

Pr{|E[f¢]ffi\ >6¢} < 6 (50)

In this case the product is bounded via
o110

Proof We prove the claim for two variables, say fi and f2. We have

’E[fllE[fﬂ - f1f2‘ < ‘(E[fll - fl)E[fﬂ‘ + ’f1(E[f2] - fz)) < e1Ry + Riea

€4

%, 51)

1=

> e} < Zéi where € =

with probability at least 1 — §; — d2, when applying the union bound over E[fi] — f1 and E[fa] — fo
respectively. Rewriting terms yields the claim for n = 2. To see the claim for n > 2 simply use the fact that
we can decompose the bound into a chain of inequalities involving exactly one difference, say E[f;] — f;

and n — 1 instances of E[f;] or f; respectively. We omit details since they are straightforward to prove (and
tedious).

C Proof of Equation (21)

For simplicity in the proof, in Equation (13) (14) (15), we define the diagonal coefficients for S; to be C; € R,
ie,Co=m—72,Cs=m—312+ 21 and Cy = m — Tn? + 1273 — 67?, so that

Sy = T(diag (C2), A, A), Ss=T(diag(Cs),A, A, A), Si=T(diag(Cs),A,A,A,A).

Following step 6 in Algorithm 1, we obtain whitening matrix W by doing svd on S2. Suppose the svd of matrix
T(diag (v/C2) ,A) = USY?V"  wehave S, = US'2VTVESY2UT = USU” and W = US™!/2, Using

the fact that S5 = T (diag (Cgc;?’/ 2)  diag (v/T3) A, diag (v/C3) A, diag (v/C3) A), we have
Ws = T (S5, W, W, W)
=T (diag (0302‘3/2) S 2uT sy Ty, s U T (ws Ay T, E’I/QUT(U21/2VT)>
-T (diag (0302‘3/2) VIvT, VT) . (52)

The diagonalized tensor W3, with some permutation 7 on [K] and s; € {£1}, has eigenvalues and eigenvec-
tors:

Xi = 803,052, vi = si(V'), ey, (53)

where C; ; representing the j-th element in C;. After obtaining v;, we multiply v; by (W*)T to rotate it back
to A; as describing in step 15 in Algorithm 1, where W = WTw)='w' = SY2UT, we get

(WT)T'UZ‘ = SiUEI/QVTeT(i) = siT(diag (\/ CQ) ,A)e.,.(i) = Si\/ CzyiAT@), (54)
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which yields A, ;) = % With the fact that s; = Cg,¢C;§/2A;1 from Equation (53), we have

i 2,i
T = (Cs,icg’il)
Plug in the definition of Cb, we get the scale factor for ¢ € [K1]. For A; which are recovered by conducting
tensor decomposition on Wy, we first examine

A WhHTe, =5 2whH T, (55)

X3

Wi =T (Ss, W, W, W, W) =T (diag (C1:C52) VT,V VT, VT) , (56)
and obtain
i =CuiC57, vi=si(V e (57)
By using the fact that s; = s; C’4,iC;,i2 ;" !and Equation (54), we have
W) T 4 _ )
Ay = WL 8 i = s(W) o =505 2 (W) Ty, Vi€ [Ki+1,--- K]

siv/Cai (CauCs ) A
(58)

Note that the value of 7; used to construct C; can be recovered by Equation (53) and (57) after obtaining \;.

D Reconstruction accuracy for Algorithm 1

In this section, we provides bounds for moments of linear gaussian latent feature model. The concentration
behavior is more complicated than that of the bounded moments in Theorem 2 due to the additive Gaussian
noise. Here we restate the model as

r=Az+e¢ (59

where z € R? is the observation, z € {0, 1}K is a binary vector indicating the possession of certain latent
vector and ¢ is gaussian noise drawn from N (0, o%1).

D.1 Concentration measure of unbounded moments

In order to utilize the bounds for gaussian random vectors, we need to subtract the term Az from z by op-
erating [M — M] . The bounds for observation generated by different z are examined separately. Let B =
{x1, 22, , T, } and, for a specific z; € {0,1}*, write B,, := {z € B : z = z;} and W, = |B,,| /| B| for
i€{0,1---2% — 1} and 2; = binary(i). Define the conditional moments to be

M., =Ez|lz=2], Mo, =E[zQz|z=2], Ms., =E[zQ®zQz|z=z],

My, =Ez@zQz®z|z=2],
while the empirical moments are

Ml,zi = |BZ,L.|71 Z T, MZ,zi = |BZ,L.|71 Z TR, ngzi = |Bzi|71 Z TRTQ T,

meBzi meBzi zEBzi

M4,z,; = |Bzi|_1 Z IRrRQr .

z€Bz;

Lemma 5 (Concentration of conditional empirical moments) With probability greater than 1 — 6, pick any
8 € (0,1) and any random matrix V€ R¥*" of rank r, the following guarantee holds
1. For the first-order moments, we have

K K
T (Vo — My, V)| <o vy, 2V IR @E/O + 2 2R/0) s oKy
2 2 Wa,n

2. For the second-order moments, we have
(3 )|
2
128 (rIn9 + In (2K+2/§ 4 (rin9 +1In (25+2/5
sUWvﬁ(¢ (rn9 +1n (2+2/5)) 4 ( (2572/9))

Wz, n WL, N

i

2 In (2K+1/§ 21n (2K+1/6§
“”2¢r+ Vrin (D) 2GR s ¢ (10 1)
2

Wy, N

i

+20 HVTMl,zi
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3. For the third-order moments, we have

~ 3 9K 3
HT (Ms,zi —Ms,zi,V,V,V)H <o |V|? (\/m&e [rIn13+ In(3-2K/§)] >
2

Wo, N

7

+ 30 HVTMM

) HVH§ (\/128(rln9+ln(3.2K+1/5)) N 4(T1n9+ln (3_2K+1/6))>

Wz, m Wa, N

i

+30 ||V My,

2 2\/rIn(3-2K/0) + 21In (3 - 2K /5
||V||2\/T+ rin(3-27/0) +2In(3-2%/9) Vie{0,1m2K—1}
2 Wz N

Z4

4. For the fourth-order moments, we have

Cm———]
2

L9K+1 2 LOK+1 3
SO‘4||V||;1 \/8192(r1n17+1n(4 2 /%)) +32(r1n17+ln(4 2 /0))

n2 n3

+ 40 HVTML%

Ve <\/10863[r1n13+ ln(4-2K/5)]3>

Wa, N

i

2 9K +1 4(rin9 +1In(4-25+1/§
oo |[vTan | v <\/128(T1n9+}n(4 2641/5)) 4 (rIn9 +In ( /8))
2 Wz; M Wz; M
3 2/rIn(4-2K/6) + 21In (4- 25 /6
+40HVTM1,zi |V|2\/T+ rin( uf}ﬁ n(4-29/9) Vie{0,1~~-2K—1},
2 2

Proof Here we only show the derivation of the fourth-order conditional moments. The other inequalities can
be found in [23]. Under the stated model, the fourth-order conditional moment can be expended as

My, =M., @ My, @ My, @ My, +0°66[Mi., @M., 1] +E[e®@e®@e® ¢,
which yields

sz,zi — My,
= (Y (- Min) ® (@5 — M) ® (35— M) @ (2 — Mis,) — o' Ss [1@ 1]
inn\ 2 j e j 2 j 2 j 2
+ Z (64 [ML%' ® (xj - Ml,z'i) ® ('TJ' - Mlvzi) ® (xj - MLZi)])
zGBzi
+ Z (66 [Miz, ® My, @ (5 — Miz,) ® (m5 — Miz,) — 021)])
zEBzi
+ Z G4 [Ma,z; @ My, @ My 2, @ (x5 — Mlzb)]) (60)
zEBzi

Suppose V' = ViV, is the SVD of V, where Vi € R4*" consists of orthonormal columns. With Yj,z; =
Vi" (x; — M,,,), applying triangle inequalities to Equation (60) yields

fr (- )

1
<[Vl pr D (We @Yz @Yz QY — 0 G3[1®1))

24

xGBZi 9
T 1
+4‘V Mlvzi 5 wZin ZB Yizi @ Yjozi @ Yj,z
€ z; 2
S 2 S
+ 6|V M| N ZGZB: (vj=e @ yje —0°1)|| +4|[RTM -, | oon GZB: Yizi|
z; 9 rebz;

2
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By using Lemma 13, we bound the first term by

1
Pr{ —— > Ui B Yjn D Yjz; OV, —Ble@e@e@e])

W, N
v zGBzi 2

2 3

S 04\/8192 (rln 17J;1n (2K/9)) n 32(rlnl7 +;n (2K/9)) <5 61)
n n

|

The other norm can be bounded by using the bounds for low-order conditional moments. We finish the proof
by adding the bounds for every term. By using inequalities for conditional moments, We get the bounds for
completed moments stated in the following Lemma.

Lemma 6 ( Lemma 6 in [23]; Concentration of empirical moments) For a fixed matrix V€ RE<",

(-]

<1+ 2K/26w) max HT (Mi,z - M., Ve, V)
2

2—|—2K/2maXHT (M@ZJ,V,-” ,V
zj

J H2€w

Vi€ [4],V) € {o,1~~-2K—1}

1
2
where €, = (Z (12)2] wzj)2> < L\/‘gl/é).

%5

D.2 Estimation of o, S5, S3, S,

Note that we have 02 = Ain [M2 — M1 ® M1] = cx[M2 — My ® M;], where ; [M] denoting the ¢t —
th singular value of matrix M which is defined in Theorem 3. Here we define 5”2, K to be the best rank &
approximation of M, — My ® My — 621, which is the truncated matrix S in Algorithm 1. S; denotes the
empirical tensors derived from summation of MZ and &. S; denotes the theoretical values.

Lemma 7 (Accuracy of 0%, o* and M )

~ ~ 2 ~
?| < |0tz = e 2+HM1—M1 2+2HM1‘M1 I, 62)
&t — — %" + 207 |62 — 0| (63)
~ ~ ~ 2 ~
|92 = 52 2§4(HM2—M2 | = 2|+ 280, Ml—MIHQ) (64)

Proof

For the first order tensor, the inequality holds trivially due to the guarantees for HM 1 — Mi|| . Next we bound

the difference in variance estimates. Using the fact that differences in the k-th eigenvalues are bounded by the
matrix norm of the difference we have that

62— | = ‘Ck [M2—M1®M1] — sp[Ma2 — M ®M1]‘ (65)
< H[M2 _m@z\zl] — M - My@ M| (66)

~ N 2 ~
< HszM2 2+HM17M1 2+2HM17M1 ]l 67)

The second inequality follows the Weyl’s inequality and the last inequality is obtained by the triangle inequality.
For estimation of o4,

~d 2)2+202(&2_02)| < |&2_02’2+202|&2_02|. (68)
For the last claimed inequality, with Weyl’s inequality,
‘ »§2,k - (MQ — M, ® My — &21)H < Gr+1 [Mz — My ® M, — 521] (69)
2
= H§k+1 [MQ — My ® M — 621] — Ghy1 [M2 — My ® My — 0?1] ) (70)
< || W~ M1 @ 2 - 671 (M — My @ My - 071)| (71)
2
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, which yields
ngk — S

< HS2k — (MQ — My ® M — §21)
2

‘ 2

MQ—M1®M1—&21—(MQ—M1®M1—021)H (72)
2

+

~ N 2
< (-, o~ 30 2|

My =+ 167 02|) (73)

. ) , A
<4 (HM2 = M|+ |30 = a4+ 20 || 7 - Mle) _ .
n

The inequalities for o can be used for bounding the tensors Sz, S3 and Sy, which will be shown next, and the
inequality for Sa 5 will be used in bounding whitened tensor in Section D.3.

Lemma 8 (Accuracy of Sa, Ss and S4) For a fixed matrix V' € R4XK
2

HT (5'2 — 52,V,V)

e

2 + HT (Ml B MI’V)

2

27 V), |7 (30 - 20, V) |+ IVIE |6 - o) 75)
|7 (8 = s vvv)],
< || (3t = aa, v vV ||+ (|7 (8 = 2, V) | 40T 0, VL) = 1 O,

wa( [ (31 -2, V) | 7 (52 = v+ I 000l 7 (82 - 52020
n HT (Ml - Ml,V)H2 ||T(SQ,V,V)H2) +3[V2 (,&2 — o HT (Ml - Ml,v)H2
w0t | (31 - 30,V +16* = o 1T a1, V)L o

HT (34 — S, V,VV, v)

2

< |z (3t = 2t vvv )|+ (7 (50 - 2,V i vl = i, v

+6]|7 (82— 52,V V) || 1T (4, V)IE + 6( |7 (82 = $2,viV)||, +11T (82,2 V)Hg)
(21 oty (ot 0+ (3 =3 ) (5 - o)
+2|7 (82— sV, V)| ||T<sz,wv>||2) +6|VII3 (02 |7 (8252w v )|+

+16% = o (HT (SQ ~ 5, V,V) HQ T (S2, V,V)||2) > +3]6t = ot VI

T(M1 —Ml,V)

T, v,

T(S‘g — 55, V,V, V)H2

2

+4( HT (Ss — 55, V,V, V)

+ 1T (85, V.V V)l |7 (3 _MlvV)H2) )

Proof To bound the second order tensor, we use the inequality for bounding 6 in Lemma 7 and get
|7 (82 v) =7 (52, v V)|
2

< HT (M2 — M.V, V) H2 + HT ((Ml ~ M) ® (N — M), MV) H2 (78)

42 HT (M1 ® (Ny — M), V, V)‘

L HIVIE* -

< |7 (32 = a1z, v, v') 20T O, V)l |1 (8 - a0, vV

n HT (Ml — M.V, v)
2 2
+ V|2 |6% - o?|. (79)
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Similarly, for 5‘3, we have that
HT (s},,v,v, V) T (85, V,V, V)H2
< |7 (3 = Mo, v v V) |+ | (30 @ 30 @ M - @ My @ M VLV V) |
+3 HT (S‘l ® s — S ®52,V7V,V)H2 +3 HT ((&21\2/1 - 02M1) ® 1,V,V7V)H2 . @®80)
Note that the second term can be written as
Mi® My ® My — M1 ® M1 ® My
= (M1 - Ml) ® (Ml - Ml) ® (M1 - Ml)
+ 63 [Ml ® (Ml - M1) ® (Ml - Ml)] + 63 [Ml ® M ® (Ml - Ml)] . (81)
Using the same expansion trick, the third term becomes
S1® 82— 81 ®82= (51 —S1)®(S2 — S2) + 51 @ (S2 — S2) + (S1 — S1) @ So. (82)

Using triangle inequality, the bound for Equation (81) is
HT (Ml ® My ® My — My @ My ®M17V7V7V)H
2

< | (5 - Ml,V)Hz + 3T (M1, V), |7 (81 - Ml’V)HZ

+3T (M, V)|I3

(o),
and the bound for Equation (82) is
HT (5'1 ®8 -5 ® S2, V, V, V) Hz

< |7 (8 -5V |7 (82 = 8w |+ 1T (S0, V)

r(s-sr)]
+HT (5’1—Sl,V)H2||T(S2,V,V)\|2 (84)
|7 (6% = o2 ) @1,V V)

< I3 (

5 — | IT (M, V)]l5)
(85)

ol - (),

By combining all the inequalities, we get the bound for S3. The bound for S4 can be derived by similar
procedure. |

To complete the bounds, we need to examine the bounds for the whitening matrix and also the whitened tensors.

D.3 Properties with whitening matrix

Note that in Algorithm 1 we have W3 := T (S5, W, W, W), Wy := T (S4, W, W, W, W). To bound || W3|| and
|[W4||, we use the fact stated in Section C that these tensor are diagonalized so that finding the norm is actually
equivalent to finding the largest eigenvalue of 7'(Ss, W, W, W) and T'(S4, W, W, W, W), respectively. Note
that in Algorithm 1, the first K; eigenvectors and their corresponding eigenvalues are solved by conducting
tensor decomposition on W3, while the others are extracted from Wy. With Equation (53) and (57),

—2m;+1 e
i if i < K3

N=Q Ve . (86)
it otherwise.

As we have mentioned previously, eigenvalues of S3 degenerate to zero at the value of 7; = 0.5 while eigenval-
ues of Sy degenerate to zero at the value of m; ~ 0.2,0.8. So here we define thresholds, 7+, and 7rh,,,,.,,
such that

2T Thgguwn +1 —2MTh., +1

=1,

-1 (87)
2 2
\/ﬂ'Thdown T hgown TThup — TThy,,
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In other words, we solve the latent factors by the third-order moments if m; < 7Tn,,,,, OF Ti > TTh,,
otherwise we turn to the fourth-order moments. Since \; is a symmetric function of 7; on the m; = 0.5 axis for
i € [K], we set Trn = TThy,,,, to simplify the proof. Here we have

1= LJFQ §|/\i\S7T7+ ifi < K3 (88)
\VTTh — Ty, Tmin — 71'72,”'"
2
— 1
—2< N\ < 6m7n = 6mrn + 1 ~ —1 otherwise, (89)

TTh = Ty,
where Tmin = argmax; g |7ri — 0.5|. Since W3 and W are diagonalized tensor, we have that
—2Tmin + 1

3 )
V Tmin — Tyin

Next, in order to bound [VAVZ - WZ}, we need to consider the bounds using empirical whitening matrix. Let

[Wsll, < [Wall, < 2. (90)

W denotes the empirical whitening matrix in our algorithm. Here we define W := W(WSQW)_% and

€5y 1= HS'Q E— S2 H2 /Sk [S2] in order to use the bounds for whitening matrix stated in lemma 10 in [23].

Lemma 9 (Lemma 10 in [23]) Assume €s, < 1/3. We have

- 1
LW 'SeW=1, 2. .W <
2 (1 - 652)§ [SQ]
R N\1/2 R N\ -1/2
3. H (WSQW) 1| <1.5es,, H (WSQW) 1| < 1.5es,
2 2
H(VAV)Tzﬁldiag(W—71'2)1/2 < /1 + 1.5€s,,
2
H(Vv — W) Adiag(r — 73)2|| < \/TF 1.5¢s,.
2
Using Lemma 9, we can complete the bounds for empirical whitened tensors.
Lemma 10 Assume es, < 1/3. Then
2 P 2 % 2 -2 min 1
Wo =W < |7 (85— 85,0, W, W) 4+3——tmintl
2 2 Tmin — Tr'rznin
W4 - W4H < HT (54 — §4, W,W, W, W) H + 10
2 2

Proof Here we only show the second inequality, the first one can be derived with similar procedure.
Hm - W4H - HT(S4, W, W, W, W) — T (34, W,W LW, W) H
2 2

< HT(S4, W, W, W, W) = T (S, W, W, W, 1) H2 + HT (81— S0, W, W, W, W)

2

on
For the first term, using Lemma 9 and Equation (90), we have:
HT(S4,W, W, W, W) —T (54,17[/, W, WW) H2
< |7 (0 = wiir ) + |7 (S0, W, W = W v, W) H2
+ | (s woww —ww)|| |7 (ss wowwow = w)|| 92)
< T (50, W, W, W, W), [[ (0T sa10) 2 1 (H(WTS2W)1/2H2 ot | R sy 2 Z)
<|T (Sas W, W, W, W)]|, - (1.5€s,) (1 + L5es,)* + -+ (1 + Lbes,) +1) <5-2 =10 (93)
n

18



D.4 Reconstruction analysis

Before putting everything together, we utilize the eigendecomposition analysis in Appendix C.7 of [23]. First,
we consider the case where A; is recovered by applying tensor decomposition on W, i.e., for i < K. Note

that, in Algorithm 1, Z; = \/m; — 72. Following the approached in [23], define

1 HW3 B WT’H
Vs 1= €Sy = T
2maxie(r,] /(m — 72)VeK (%]) V83

1 HW4 - W4H
754 = 2 K+1 ’ 654 = N
2max;s i, \/(m — 73)V eK( 5 ) YS4

Lemma 11 (Reconstruction Accuracy in [25]) Assume €s, < 1/3, €s, < 1/4andes, < 1/4, and e1 < 1/3.
With k [S2] := 1 [S2] /sk [Sa), there exists a permutation 7 on [K| such that

A = Ai]| < 311 Ano v + 208202 o, Vi € [K]
where
oo {(5.5552 +7esy) [V Tmin — T € K]
’ 13.75€s, + 17.5€g, otherwise
((6.875»@ [Sa]/2 + 2) €5y + (8.755 [S2]"2 + Y3/ Tomin — nzm.n) 653)
€1, = / (’Yss Tmin — WZm) ifielKi],

2.5 ((6.875& [S2]/% + 2) €s, + (8.75#; [S2]% + 0.4754) 654) /s, otherwise

D.5 Proof of Theorem 3

The proof can be accomplished by finding out the sufficient sample size that satisfies the assumption in Lemma

11. First, assume that n > Ck log(1/d) to make sure £, < 1. In this proof, we use ¢, c1, ¢z, -+ to denote
some positive constant. By Lemma 5 and 6, with probability greater than 1 — §, bounds for first and second

-order moments are
d + log (2% /6) ul 2K log (1/5)
o taX My = o9
. k d+log (2%/6 k
HM2_M2H o <02 /d+lo%(2 /9) , 2+ oig( /)+U /d+1o§;(2 /5)) ©3)
2 ™ ™ ™

K K
fa (Z 1412 +02> 2K log (1/6) (96)
=1

n

K k
<ca (2 (Z | A2 + 02> \/ d+ loig’ (24/9) + a2d+ lo% (2 /5)> 97)
=1 ™ ™

Using Lemma 7, we derive the bound for ¢ and approximate rank-k second-order tensor as

{5~ [ -5.}

at g d+log (2%/6
o oS ) (BB ptzbste
im1 ™ ™
d+log (20) & 2K log (1/3)
+ 8¢t <a\/ EEREETT LS Ay ) Y )
™ n

=1

d+log (2¢/5) | < 2K log (1/6
+ 81 M, (a\/(’;ﬁ”+2mi|2 i”)> ©8)

=1

K k
<e <Z HAZHE +02> < d + log (2%/96) " d+1o% (2 /5)> . (99)
i=1

™ ™

Ml —M1 SC
2
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To ensure that

&2—02’ Vi ®
max{ —————, <e3—2—— <1/3, 100
X{ (52 [ S s <Y o

we set the sample size as

2

12 [ & 2 2
v [2] (;nmuzw )

K
1/2 2 2
e [ [ (£ 143+ o)
= Z V3, TSk [S2] €

T V3, TSk [Sa2] €

+

To examine the moments after multiplying whitening matrix W, by Lemma 9,

W| <\/1.5/ ¢k [S2] (101)

2
< HWTAdiag (7r — 7r2)1/2H A Tmin — T2, (102)
2

max HT (Ml,zi,W>

z;€[2K]
<15/ (mmin —72,1,) (103)
LWL W] <1. in — T 2 (1.
211161?2)[((] HT (MQ,z“W, W) H _1 5/ (7Tmzn ﬂ-mzn) +o (1 5/§K [SQ]) (104)
z; ! i j < . min 2 i 8/
Zirrglg)}({] HT (Mg, S W, W, W) H < (1 5/ (7r ﬂmm))
13015/ (mmin — 72,.,) (15/5x¢ [S2]) (105)
N e A 2.25
z; < . min 2 i ? 2
max |7 (Maeis W, W, W W) | < (15/ (Romin = i) + 60 R v
+ 30 (1.5 /5K [S2])? (106)
Using Lemma 6,
~ A K+1 2K /1§ 1 2K ] 1/6
|7 (31 = M, W) || <ea—2— Tloe28/9) 08 1/9) (197,
Sk [S2] ™ V min = T2 n
. L 2 K +log (2K /8) K +log (25/6
| (12— v W) | <0 +log 0/0) | K +los (27/7)
Sk [S2] n n
1 2K] 1/6
‘el - og (1/6)
V Tmin — aninQ{ [SQ} n
+eg 1 n 1 Klog (1/6) (108)
Sk [S2] Tmin — T2y n
. . . . 3 K 3
HT(M?,—M37W,W7W)HSC4 o 32\/(K+10%(2 /8))
Sk [S2] / ™
o’ K +log (2K/6) = K +1log (2% /5)
+ca — + =
SK [SQ] Tmin — ﬂ-?nin ™ ™
K +1 2K /1§
b @ +lo @X/5)
5x [S2)'? (Tomin — 72,1,) ™
2 1 Klog(1/§
tes o n - og (1/6)
Sk [S2] v/ Tmin — Tir, (Tmin = T2in) n
(109)
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™ ™

HT(Z\ZM _M4,,W,W,W,W>H <C4<KT4 . (KJrlOig (2K/6)> <K+log (2K/6)>

o \/ (K + log (25 /)"

+c ~
4 - [5,2]3/2 n
o? K +log (2K/6) K +log (2%/9)
+ cq -
Sk [S2] m mn
K +1 2K /5
b (K Re D
Sk [S2] ™
o* o? Klog(1/6)
. 110
o (<K [S2] T [52]> n (10

With Lemma 8 and 10,
\F@—&WWmSWOHWhWWN+W@“ﬂﬂ@ﬁ
T (31— a0, W)+

HT(S} — S5, W, W, W) H < HT (M3 = M, W, W, W) H2

3 3
+ ([ (i amw)| + Eme) — (ee)
7Tmaac_77maa: \/m

Tmax

+2 & —a*| a1

Tmaz — Tmax

w37 (3t = a3 |7 (82 = a0 ) |+ o=z 1 (30 - o)
+ |7 (3 = a0, )| ﬂi:;”f:l )+<K4§2](&z_aﬂHT(Ml_Ml,w)HQ
+0’2HT(M17M1, )H e ”mf”ﬂ > (112)

\/—
71/26 we set

Plug this in Lemma 10, we get the overall bounds for HWg - W3H To getes, < c5 5]

X 2
2 Al o

S1 [52] i=1 g 1 Tmax
SK [Sg]’ SK [SQ] ’ SK [SZ]7 \/Wmin — Tmin?2 ’ \/ﬂ'maz - ﬂ—?na:t

1 1
n > poly | d, K, =,1log(1/6), =,
€ T

(113)

Similarly, for A; reconstructed by W4, n should be set to

Lis 2
Ai
o [S3] 2 Az

w %] xS xS | (114)

n> poly | d. K, log(1/0), =,
™

€. The overall bounds can be obtained by Equation 113, 114 and Lemma 11.

s VF
in order to eg, < CGW

E Tail Inequalities
Here we derive the tail inequality for the fourth-order subgaussian random tensor.
Lemma 12 Let x1,x2,- - , Ty be i.i.d. random variables such that

E; [exp (nz;)] < exp (fyn2/2) VneR (115)
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Then for any t > 0 and %t < i,

1, 4 1 6412 ( 167215) 1 _
Pr|— z, — B lzg|) >y 8y — <e (116)
L3 m ) /5 ) i
1 812 vt 1 -
Pr|= " (xf — Ei[27]) < —v (27+ )ﬁ <e, (117)
n— n? n (1 + 7;)
) . : : : 1 l-o
Proof We use Chernoff’s bounding method to derive the inequality. For n < Gegr Setn = 57 for some
o > 0, we have
E; [exp(nzi)] = 1+ nE; [z]] + 77/ (exp (n€’) — 1) E; [1{z?>52}} deé? (118)
o ;
<1+ nE; [2i] + 27;/0 (exp (n€’) — 1) exp (2» 2ede (119)
<1+nE; [mf] + 4n (/ € exp (_—06) de — / €exp <_—E) de) (120)
0 2y 0 2y
1
<1+nE; [z}] +4n (472 (—2 - 1)) (121)
g
< exp (nEi [xi] +4n ( (— - 1))) (122)
o?
Th dli the fact that Pr [z} > 2] < Eloelalzil)l < goPlre®/2) _ — =) witha =
e second line uses the fact that Pr {x; > €*| < ep(0e1/?) = Zoxp(ac/?) = exp (—g55 ) withor =

E [exp (nil (ac;l —E; [xﬂ)>:| = ﬁ E; [exp (n (yﬁi1 —E; [xﬂ))] (123)

< exp (16717)72 (% - 1)) (124)

With Chernoff’s inequality, for 0 < n < ﬁ and € > 0,

Lo :
Pr - ; (:Cil - E; [xf]) > 6:| < exp (—nne + 16n7y° (; — 1)) . (125)

Zando =1 — %, for ”’;t < %, we get the first inequality. Forn < 0 and € > 0,

Setting n = 275

n

B :
Pr - ; (36;1 - E; [mf]) < —e:| < exp (nne + 16nny° (p - 1)) . (126)

Setting 0 = 1 + ~t gives the claimed inequality.

|
Lemma 13 (Fourth-order normal random vectors). Let y1,y2, - - - yn € R? be i.i.d. N(0, I') random vectors.
For e € (0,1/4) and § € (0,1),

1 & 1
= @Yy ey —Ele®c®e®d| > ———e€qun| <20 (127)
n = ) 1 —4eo
where
20481In ((1 4 2/€0)4/5)? 81n (14 2/e0)4/6)?
€cotn = 3 = (128)

n
Proof We follow the approach of [22]. Let Y := 2 3~ 4, @y @y ®y:i—E [e1 ® €1 ® €1 @ €1]. By [28], there
i=1
exists @ C S := {a € R? : |la||, = 1} with cardinality at most (1 + 2¢)? such that Voo € S*"'3¢ € Q
la — qll, < eo. Since, for any ¢ € Q, y; q is distributed as N (0, 1), with union bounds and Lemma 12, for
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JPri3¢e QT (Y, q,¢,9,9)| > €ep,t,n] < 25. So we assume with probability greater than 1 — 26, Vg € @,
T (Y,q,9,q,q)| < €cq,t.n- Let g = argmax,, cga—1 |T (Y, o, @, @, )|, we have
IYl, =T (Y, a, o, o, vo)| (129)
<min|T(Y,¢,4,¢,9)| + T (Y, a0 = 4,4, ¢, 9)| + T (Y, 0, 0 = 4,4, 9)|

+ |T (Y, o, o, 0 — q,q)| + |T (Y, cvo, 0, o, o — q)| (130)
< min T (Y,4,0,4,0)| + 4]0 ~ al[[ Y] (131)
<ecotn +deo [V, (132)
which yields
HYMS—QLffmm (133)
1 —4eo
|
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