
Convolutional Kernel Networks

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid
Inria∗

firstname.lastname@inria.fr

Abstract

An important goal in visual recognition is to devise image representations that are
invariant to particular transformations. In this paper, we address this goal with a
new type of convolutional neural network (CNN) whose invariance is encoded by
a reproducing kernel. Unlike traditional approaches where neural networks are
learned either to represent data or for solving a classification task, our network
learns to approximate the kernel feature map on training data.

Such an approach enjoys several benefits over classical ones. First, by teach-
ing CNNs to be invariant, we obtain simple network architectures that achieve a
similar accuracy to more complex ones, while being easy to train and robust to
overfitting. Second, we bridge a gap between the neural network literature and
kernels, which are natural tools to model invariance. We evaluate our methodol-
ogy on visual recognition tasks where CNNs have proven to perform well, e.g.,
digit recognition with the MNIST dataset, and the more challenging CIFAR-10
and STL-10 datasets, where our accuracy is competitive with the state of the art.

1 Introduction

We have recently seen a revival of attention given to convolutional neural networks (CNNs) [22]
due to their high performance for large-scale visual recognition tasks [15, 21, 30]. The architecture
of CNNs is relatively simple and consists of successive layers organized in a hierarchical fashion;
each layer involves convolutions with learned filters followed by a pointwise non-linearity and a
downsampling operation called “feature pooling”. The resulting image representation has been em-
pirically observed to be invariant to image perturbations and to encode complex visual patterns [33],
which are useful properties for visual recognition. Training CNNs remains however difficult since
high-capacity networks may involve billions of parameters to learn, which requires both high com-
putational power, e.g., GPUs, and appropriate regularization techniques [18, 21, 30].

The exact nature of invariance that CNNs exhibit is also not precisely understood. Only recently, the
invariance of related architectures has been characterized; this is the case for the wavelet scattering
transform [8] or the hierarchical models of [7]. Our work revisits convolutional neural networks,
but we adopt a significantly different approach than the traditional one. Indeed, we use kernels [26],
which are natural tools to model invariance [14]. Inspired by the hierarchical kernel descriptors
of [2], we propose a reproducing kernel that produces multi-layer image representations.

Our main contribution is an approximation scheme called convolutional kernel network (CKN) to
make the kernel approach computationally feasible. Our approach is a new type of unsupervised
convolutional neural network that is trained to approximate the kernel map. Interestingly, our net-
work uses non-linear functions that resemble rectified linear units [1, 30], even though they were not
handcrafted and naturally emerge from an approximation scheme of the Gaussian kernel map.

By bridging a gap between kernel methods and neural networks, we believe that we are opening
a fruitful research direction for the future. Our network is learned without supervision since the

∗LEAR team, Inria Grenoble, Laboratoire Jean Kuntzmann, CNRS, Univ. Grenoble Alpes, France.

1



label information is only used subsequently in a support vector machine (SVM). Yet, we achieve
competitive results on several datasets such as MNIST [22], CIFAR-10 [20] and STL-10 [13] with
simple architectures, few parameters to learn, and no data augmentation. Open-source code for
learning our convolutional kernel networks is available on the first author’s webpage.

1.1 Related Work

There have been several attempts to build kernel-based methods that mimic deep neural networks;
we only review here the ones that are most related to our approach.

Arc-cosine kernels. Kernels for building deep large-margin classifiers have been introduced
in [10]. The multilayer arc-cosine kernel is built by successive kernel compositions, and each layer
relies on an integral representation. Similarly, our kernels rely on an integral representation, and
enjoy a multilayer construction. However, in contrast to arc-cosine kernels: (i) we build our se-
quence of kernels by convolutions, using local information over spatial neighborhoods (as opposed
to compositions, using global information); (ii) we propose a new training procedure for learning a
compact representation of the kernel in a data-dependent manner.

Multilayer derived kernels. Kernels with invariance properties for visual recognition have been
proposed in [7]. Such kernels are built with a parameterized “neural response” function, which con-
sists in computing the maximal response of a base kernel over a local neighborhood. Multiple layers
are then built by iteratively renormalizing the response kernels and pooling using neural response
functions. Learning is performed by plugging the obtained kernel in an SVM. In contrast to [7], we
propagate information up, from lower to upper layers, by using sequences of convolutions. Further-
more, we propose a simple and effective data-dependent way to learn a compact representation of
our kernels and show that we obtain near state-of-the-art performance on several benchmarks.

Hierarchical kernel descriptors. The kernels proposed in [2, 3] produce multilayer image repre-
sentations for visual recognition tasks. We discuss in details these kernels in the next section: our
paper generalizes them and establishes a strong link with convolutional neural networks.

2 Convolutional Multilayer Kernels

The convolutional multilayer kernel is a generalization of the hierarchical kernel descriptors intro-
duced in computer vision [2, 3]. The kernel produces a sequence of image representations that are
built on top of each other in a multilayer fashion. Each layer can be interpreted as a non-linear trans-
formation of the previous one with additional spatial invariance. We call these layers image feature
maps1, and formally define them as follows:

Definition 1. An image feature map ϕ is a function ϕ : Ω → H, where Ω is a (usually discrete)
subset of [0, 1]d representing normalized “coordinates” in the image and H is a Hilbert space.

For all practical examples in this paper, Ω is a two-dimensional grid and corresponds to different
locations in a two-dimensional image. In other words, Ω is a set of pixel coordinates. Given z
in Ω, the point ϕ(z) represents some characteristics of the image at location z, or in a neighborhood
of z. For instance, a color image of size m × n with three channels, red, green, and blue, may be
represented by an initial feature map ϕ0 : Ω0 → H0, where Ω0 is an m × n regular grid, H0 is the
Euclidean space R3, and ϕ0 provides the color pixel values. With the multilayer scheme, non-trivial
feature maps will be obtained subsequently, which will encode more complex image characteristics.
With this terminology in hand, we now introduce the convolutional kernel, first, for a single layer.

Definition 2 (Convolutional Kernel with Single Layer). Let us consider two images represented
by two image feature maps, respectively ϕ and ϕ′ : Ω → H, where Ω is a set of pixel locations,
and H is a Hilbert space. The one-layer convolutional kernel between ϕ and ϕ′ is defined as

K(ϕ,ϕ′) :=
∑

z∈Ω

∑

z′∈Ω

‖ϕ(z)‖H ‖ϕ′(z′)‖H e
− 1

2β2 ‖z−z′‖2

2e−
1

2σ2 ‖ϕ̃(z)−ϕ̃′(z′)‖2

H , (1)

1In the kernel literature, “feature map” denotes the mapping between data points and their representation in
a reproducing kernel Hilbert space (RKHS) [26]. Here, feature maps refer to spatial maps representing local
image characteristics at everly location, as usual in the neural network literature [22].

2



where β and σ are smoothing parameters of Gaussian kernels, and ϕ̃(z) := (1/ ‖ϕ(z)‖H)ϕ(z)
if ϕ(z) 6= 0 and ϕ̃(z) = 0 otherwise. Similarly, ϕ̃′(z′) is a normalized version of ϕ′(z′).2

It is easy to show that the kernel K is positive definite (see Appendix A). It consists of a sum of
pairwise comparisons between the image features ϕ(z) and ϕ′(z′) computed at all spatial locations z
and z′ in Ω. To be significant in the sum, a comparison needs the corresponding z and z′ to be
close in Ω, and the normalized features ϕ̃(z) and ϕ̃′(z′) to be close in the feature space H. The
parameters β and σ respectively control these two definitions of “closeness”. Indeed, when β is
large, the kernel K is invariant to the positions z and z′ but when β is small, only features placed
at the same location z = z′ are compared to each other. Therefore, the role of β is to control how
much the kernel is locally shift-invariant. Next, we will show how to go beyond one single layer,
but before that, we present concrete examples of simple input feature maps ϕ0 : Ω0 → H0.

Gradient map. Assume that H0=R
2 and that ϕ0(z) provides the two-dimensional gradient of the

image at pixel z, which is often computed with first-order differences along each dimension. Then,
the quantity ‖ϕ0(z)‖H0

is the gradient intensity, and ϕ̃0(z) is its orientation, which can be charac-

terized by a particular angle—that is, there exists θ in [0; 2π] such that ϕ̃0(z) = [cos(θ), sin(θ)]. The
resulting kernel K is exactly the kernel descriptor introduced in [2, 3] for natural image patches.

Patch map. In that setting, ϕ0 associates to a location z an image patch of size m ×m centered
at z. Then, the space H0 is simply R

m×m, and ϕ̃0(z) is a contrast-normalized version of the patch,
which is a useful transformation for visual recognition according to classical findings in computer
vision [19]. When the image is encoded with three color channels, patches are of size m×m× 3.

We now define the multilayer convolutional kernel, generalizing some ideas of [2].

Definition 3 (Multilayer Convolutional Kernel). Let us consider a set Ωk–1 ⊆ [0, 1]d and a Hilbert
space Hk–1. We build a new set Ωk and a new Hilbert space Hk as follows:

(i) choose a patch shape Pk defined as a bounded symmetric subset of [−1, 1]d, and a set of coor-
dinates Ωk such that for all location zk in Ωk, the patch {zk} + Pk is a subset of Ωk–1;3 In other
words, each coordinate zk in Ωk corresponds to a valid patch in Ωk–1 centered at zk.

(ii) define the convolutional kernel Kk on the “patch” feature maps Pk → Hk–1, by replacing
in (1): Ω by Pk, H by Hk–1, and σ, β by appropriate smoothing parameters σk, βk. We denote
by Hk the Hilbert space for which the positive definite kernel Kk is reproducing.

An image represented by a feature map ϕk–1 : Ωk–1 → Hk–1 at layer k–1 is now encoded in the k-th
layer as ϕk : Ωk → Hk, where for all zk in Ωk, ϕk(zk) is the representation in Hk of the patch
feature map z 7→ ϕk–1(zk + z) for z in Pk.

Concretely, the kernelKk between two patches of ϕk–1 and ϕ′
k–1 at respective locations zk and z′k is

∑

z∈Pk

∑

z′∈Pk

‖ϕk–1(zk + z)‖ ‖ϕ′
k–1(z

′
k + z′)‖ e−

1

2β2
k
‖z−z′‖2

2e
− 1

2σ2
k
‖ϕ̃k–1(zk+z)−ϕ̃′

k–1(z
′
k+z′)‖2

, (2)

where ‖.‖ is the Hilbertian norm of Hk–1. In Figure 1(a), we illustrate the interactions between the
sets of coordinates Ωk, patches Pk, and feature spaces Hk across layers. For two-dimensional grids,
a typical patch shape is a square, for example P := {−1/n, 0, 1/n} × {−1/n, 0, 1/n} for a 3 × 3
patch in an image of size n×n. Information encoded in the k-th layer differs from the (k–1)-th one
in two aspects: first, each point ϕk(zk) in layer k contains information about several points from
the (k–1)-th layer and can possibly represent larger patterns; second, the new feature map is more
locally shift-invariant than the previous one due to the term involving the parameter βk in (2).

The multilayer convolutional kernel slightly differs from the hierarchical kernel descriptors of [2]
but exploits similar ideas. Bo et al. [2] define indeed several ad hoc kernels for representing local
information in images, such as gradient, color, or shape. These kernels are close to the one defined
in (1) but with a few variations. Some of them do not use normalized features ϕ̃(z), and these kernels
use different weighting strategies for the summands of (1) that are specialized to the image modality,
e.g., color, or gradient, whereas we use the same weight ‖ϕ(z)‖H ‖ϕ′(z′)‖H for all kernels. The
generic formulation (1) that we propose may be useful per se, but our main contribution comes in
the next section, where we use the kernel as a new tool for learning convolutional neural networks.

2When Ω is not discrete, the notation
∑

in (1) should be replaced by the Lebesgue integral
∫

in the paper.
3For two sets A and B, the Minkowski sum A+B is defined as {a+ b : a ∈ A, b ∈ B}.

3



Ω0ϕ0(z0) ∈ H0

{z1}+ P1

ϕ1(z1) ∈ H1
Ω1

{z2}+ P2

Ω2

ϕ2(z2) ∈ H2

(a) Hierarchy of image feature maps.

Ω′
k–1

ξk–1(z)
ψk–1(zk–1)

(patch extraction)

{zk–1}+P ′
k–1

convolution
+ non-linearity

pk
ζk(zk–1)

Ωk–1

Gaussian filtering
+ downsampling
= pooling

Ω′
k

ξk(z)

(b) Zoom between layer k–1 and k of the CKN.

Figure 1: Left: concrete representation of the successive layers for the multilayer convolutional
kernel. Right: one layer of the convolutional neural network that approximates the kernel.

3 Training Invariant Convolutional Kernel Networks

Generic schemes have been proposed for approximating a non-linear kernel with a linear one, such
as the Nyström method and its variants [5, 31], or random sampling techniques in the Fourier do-
main for shift-invariant kernels [24]. In the context of convolutional multilayer kernels, such an
approximation is critical because computing the full kernel matrix on a database of images is com-
putationally infeasible, even for a moderate number of images (≈ 10 000) and moderate number of
layers. For this reason, Bo et al. [2] use the Nyström method for their hierarchical kernel descriptors.

In this section, we show that when the coordinate sets Ωk are two-dimensional regular grids, a
natural approximation for the multilayer convolutional kernel consists of a sequence of spatial con-
volutions with learned filters, pointwise non-linearities, and pooling operations, as illustrated in
Figure 1(b). More precisely, our scheme approximates the kernel map of K defined in (1) at layer k
by finite-dimensional spatial maps ξk : Ω′

k → R
pk , where Ω′

k is a set of coordinates related to Ωk,
and pk is a positive integer controlling the quality of the approximation. Consider indeed two images
represented at layer k by image feature maps ϕk and ϕ′

k, respectively. Then,

(A) the corresponding maps ξk and ξ′k are learned such that K(ϕk–1, ϕ
′
k–1) ≈ 〈ξk, ξ′k〉, where 〈., .〉

is the Euclidean inner-product acting as if ξk and ξ′k were vectors in R
|Ω′

k|pk ;

(B) the set Ω′
k is linked to Ωk by the relation Ω′

k = Ωk + P ′
k where P ′

k is a patch shape, and

the quantities ϕk(zk) in Hk admit finite-dimensional approximations ψk(zk) in R
|P′

k|pk ; as
illustrated in Figure 1(b), ψk(zk) is a patch from ξk centered at location zk with shape P ′

k;

(C) an activation map ζk : Ωk–1 7→ R
pk is computed from ξk–1 by convolution with pk filters

followed by a non-linearity. The subsequent map ξk is obtained from ζk by a pooling operation.

We call this approximation scheme a convolutional kernel network (CKN). In comparison to CNNs,
our approach enjoys similar benefits such as efficient prediction at test time, and involves the same
set of hyper-parameters: number of layers, numbers of filters pk at layer k, shape P ′

k of the filters,
sizes of the feature maps. The other parameters βk, σk can be automatically chosen, as discussed
later. Training a CKN can be argued to be as simple as training a CNN in an unsupervised man-
ner [25] since we will show that the main difference is in the cost function that is optimized.

3.1 Fast Approximation of the Gaussian Kernel

A key component of our formulation is the Gaussian kernel. We start by approximating it by a linear
operation with learned filters followed by a pointwise non-linearity. Our starting point is the next
lemma, which can be obtained after a simple calculation.

4



Lemma 1 (Linear expansion of the Gaussian Kernel). For all x and x′ in R
m, and σ > 0,

e−
1

2σ2 ‖x−x′‖2
2 =

(

2

πσ2

)
m
2
∫

w∈Rm

e−
1

σ2 ‖x−w‖2
2e−

1

σ2 ‖x′−w‖2
2dw. (3)

The lemma gives us a mapping of any x in R
m to the function w 7→

√
Ce−(1/σ2)‖x−w‖2

2 inL2(Rm),
where the kernel is linear, andC is the constant in front of the integral. To obtain a finite-dimensional
representation, we need to approximate the integral with a weighted finite sum, which is a classical
problem arising in statistics (see [29] and chapter 8 of [6]). Then, we consider two different cases.

Small dimension, m ≤ 2. When the data lives in a compact set of Rm, the integral in (3) can be
approximated by uniform sampling over a large enough set. We choose such a strategy for two types

of kernels from Eq. (1): (i) the spatial kernels e
−
(

1

2β2

)

‖z−z′‖2

2 ; (ii) the terms e−(
1

2σ2 )‖ϕ̃(z)−ϕ̃′(z′)‖2

H

when ϕ is the “gradient map” presented in Section 2. In the latter case, H = R
2 and ϕ̃(z) is the

gradient orientation. We typically sample a few orientations as explained in Section 4.

Higher dimensions. To prevent the curse of dimensionality, we learn to approximate the kernel on
training data, which is intrinsically low-dimensional. We optimize importance weights η = [ηl]

p
l=1

in R
p
+ and sampling points W = [wl]

p
l=1 in R

m×p on n training pairs (xi,yi)i=1,...,n in R
m×R

m:

min
η∈R

p
+
,W∈Rm×p

[

1

n

n
∑

i=1

(

e−
1

2σ2 ‖xi−yi‖
2
2 −

p
∑

l=1

ηle
− 1

σ2 ‖xi−wl‖
2
2e−

1

σ2 ‖yi−wl‖
2
2

)2
]

. (4)

Interestingly, we may already draw some links with neural networks. When applied to unit-norm
vectors xi and yi, problem (4) produces sampling points wl whose norm is close to one. After

learning, a new unit-norm point x in R
m is mapped to the vector [

√
ηle

−(1/σ2)‖x−wl‖
2
2 ]pl=1 in R

p,

which may be written as [f(w⊤
l x)]

p
l=1, assuming that the norm of wl is always one, where f is the

function u 7→ e(2/σ
2)(u−1) for u = w⊤

l x in [−1, 1]. Therefore, the finite-dimensional representation
of x only involves a linear operation followed by a non-linearity, as in typical neural networks. In
Figure 2, we show that the shape of f resembles the “rectified linear unit” function [30].

u

f(u)
f(u) = e(2/σ

2)(u−1)

f(u) = max(u, 0)

0 1-1

Figure 2: In dotted red, we plot the “rectified linear unit” function u 7→ max(u, 0). In blue, we plot
non-linear functions of our network for typical values of σ that we use in our experiments.

3.2 Approximating the Multilayer Convolutional Kernel

We have now all the tools in hand to build our convolutional kernel network. We start by making as-
sumptions on the input data, and then present the learning scheme and its approximation principles.

The zeroth layer. We assume that the input data is a finite-dimensional map ξ0 : Ω′
0 → R

p0 , and
that ϕ0 : Ω0 → H0 “extracts” patches from ξ0. Formally, there exists a patch shape P ′

0 such that

Ω′
0 = Ω0 + P ′

0, H0 = R
p0|P

′
0|, and for all z0 in Ω0, ϕ0(z0) is a patch of ξ0 centered at z0. Then,

property (B) described at the beginning of Section 3 is satisfied for k = 0 by choosing ψ0 = ϕ0.
The examples of input feature maps given earlier satisfy this finite-dimensional assumption: for the
gradient map, ξ0 is the gradient of the image along each direction, with p0 = 2, P ′

0 = {0} is a 1×1
patch, Ω0=Ω′

0, and ϕ0=ξ0; for the patch map, ξ0 is the input image, say with p0=3 for RGB data.

The convolutional kernel network. The zeroth layer being characterized, we present in Algo-
rithms 1 and 2 the subsequent layers and how to learn their parameters in a feedforward manner. It
is interesting to note that the input parameters of the algorithm are exactly the same as a CNN—that
is, number of layers and filters, sizes of the patches and feature maps (obtained here via the sub-
sampling factor). Ultimately, CNNs and CKNs only differ in the cost function that is optimized for
learning the filters and in the choice of non-linearities. As we show next, there exists a link between
the parameters of a CKN and those of a convolutional multilayer kernel.

5



Algorithm 1 Convolutional kernel network - learning the parameters of the k-th layer.

input ξ1k–1, ξ
2
k–1, . . . : Ω

′
k–1 → R

pk–1 (sequence of (k–1)-th maps obtained from training images);
P ′
k–1 (patch shape); pk (number of filters); n (number of training pairs);

1: extract at random n pairs (xi,yi) of patches with shape P ′
k–1 from the maps ξ1k–1, ξ

2
k–1, . . .;

2: if not provided by the user, set σk to the 0.1 quantile of the data (‖xi − yi‖2)ni=1;

3: unsupervised learning: optimize (4) to obtain the filters Wk in R
|P′

k–1|pk–1×pk and ηk in R
pk ;

output Wk, ηk, and σk (smoothing parameter);

Algorithm 2 Convolutional kernel network - computing the k-th map form the (k–1)-th one.

input ξk–1 : Ω′
k–1→R

pk–1 (input map); P ′
k–1 (patch shape); γk≥1 (subsampling factor); pk (num-

ber of filters); σk (smoothing parameter); Wk = [wkl]
pk
l=1 and ηk = [ηkl]

pk
l=1 (layer parameters);

1: convolution and non-linearity: define the activation map ζk : Ωk–1 → R
pk as

ζk : z 7→ ‖ψk–1(z)‖2
[√

ηkle
− 1

σ2
k
‖ψ̃k–1(z)−wkl‖2

2

]pk

l=1

, (5)

where ψk–1(z) is a vector representing a patch from ξk–1 centered at z with shape P ′
k–1, and the

vector ψ̃k–1(z) is an ℓ2-normalized version of ψk–1(z). This operation can be interpreted as a
spatial convolution of the map ξk–1 with the filters wkl followed by pointwise non-linearities;

2: set βk to be γk times the spacing between two pixels in Ωk–1;
3: feature pooling: Ω′

k is obtained by subsampling Ωk–1 by a factor γk and we define a new map
ξk : Ω′

k → R
pk obtained from ζk by linear pooling with Gaussian weights:

ξk : z 7→
√

2/π
∑

u∈Ωk–1

e
− 1

β2
k

‖u−z‖2

2

ζk(u). (6)

output ξk : Ω′
k → R

pk (new map);

Approximation principles. We proceed recursively to show that the kernel approximation prop-
erty (A) is satisfied; we assume that (B) holds at layer k–1, and then, we show that (A) and (B) also
hold at layer k. This is sufficient for our purpose since we have previously assumed (B) for the ze-
roth layer. Given two images feature maps ϕk–1 and ϕ′

k–1, we start by approximatingK(ϕk–1, ϕ
′
k–1)

by replacing ϕk–1(z) and ϕ′
k–1(z

′) by their finite-dimensional approximations provided by (B):

K(ϕk–1, ϕ
′
k–1) ≈

∑

z,z′∈Ωk–1

‖ψk–1(z)‖2 ‖ψ′
k–1(z

′)‖2 e
− 1

2β2
k
‖z−z′‖2

2e
− 1

2σ2
k
‖ψ̃k–1(z)−ψ̃

′
k–1(z

′)‖2

2 . (7)

Then, we use the finite-dimensional approximation of the Gaussian kernel involving σk and

K(ϕk–1, ϕ
′
k–1) ≈

∑

z,z′∈Ωk–1

ζk(z)
⊤ζ ′k(z

′)e
− 1

2β2
k
‖z−z′‖2

2 , (8)

where ζk is defined in (5) and ζ ′k is defined similarly by replacing ψ̃ by ψ̃′. Finally, we approximate
the remaining Gaussian kernel by uniform sampling on Ω′

k, following Section 3.1. After exchanging
sums and grouping appropriate terms together, we obtain the new approximation

K(ϕk–1, ϕ
′
k–1) ≈

2

π

∑

u∈Ω′
k

(

∑

z∈Ωk–1

e
− 1

β2
k

‖z−u‖2

2

ζk(z)

)⊤(
∑

z′∈Ωk–1

e
− 1

β2
k
‖z′−u‖2

2ζ ′k(z
′)

)

, (9)

where the constant 2/π comes from the multiplication of the constant 2/(πβ2
k) from (3) and the

weight β2
k of uniform sampling orresponding to the square of the distance between two pixels of Ω′

k.4

As a result, the right-hand side is exactly 〈ξk, ξ′k〉, where ξk is defined in (6), giving us property (A).
It remains to show that property (B) also holds, specifically that the quantity (2) can be approximated
by the Euclidean inner-product 〈ψk(zk), ψ′

k(z
′
k)〉 with the patches ψk(zk) and ψ′

k(z
′
k) of shape P ′

k;
we assume for that purpose that P ′

k is a subsampled version of the patch shape Pk by a factor γk.

4The choice of βk in Algorithm 2 is driven by signal processing principles. The feature pooling step can
indeed be interpreted as a downsampling operation that reduces the resolution of the map from Ωk–1 to Ωk by
using a Gaussian anti-aliasing filter, whose role is to reduce frequencies above the Nyquist limit.

6



We remark that the kernel (2) is the same as (1) applied to layer k–1 by replacing Ωk–1 by {zk}+Pk.
By doing the same substitution in (9), we immediately obtain an approximation of (2). Then, all
Gaussian terms are negligible for all u and z that are far from each other—say when ‖u−z‖2 ≥ 2βk.
Thus, we may replace the sums

∑

u∈Ω′
k

∑

z,z′∈{zk}+Pk
by

∑

u∈{zk}+P′
k

∑

z,z′∈Ωk–1
, which has the

same set of “non-negligible” terms. This yields exactly the approximation 〈ψk(zk), ψ′
k(z

′
k)〉.

Optimization. Regarding problem (4), stochastic gradient descent (SGD) may be used since a
potentially infinite amount of training data is available. However, we have preferred to use L-BFGS-
B [9] on 300 000 pairs of randomly selected training data points, and initialize W with the K-means
algorithm. L-BFGS-B is a parameter-free state-of-the-art batch method, which is not as fast as SGD
but much easier to use. We always run the L-BFGS-B algorithm for 4 000 iterations, which seems
to ensure convergence to a stationary point. Our goal is to demonstrate the preliminary performance
of a new type of convolutional network, and we leave as future work any speed improvement.

4 Experiments

We now present experiments that were performed using Matlab and an L-BFGS-B solver [9] inter-
faced by Stephen Becker. Each image is represented by the last map ξk of the CKN, which is used
in a linear SVM implemented in the software package LibLinear [16]. These representations are
centered, rescaled to have unit ℓ2-norm on average, and the regularization parameter of the SVM is
always selected on a validation set or by 5-fold cross-validation in the range 2i, i = −15 . . . , 15.

The patches P ′
k are typically small; we tried the sizes m × m with m = 3, 4, 5 for the first

layer, and m = 2, 3 for the upper ones. The number of filters pk in our experiments is in the
set {50, 100, 200, 400, 800}. The downsampling factor γk is always chosen to be 2 between two con-
secutive layers, whereas the last layer is downsampled to produce final maps ξk of a small size—say,

5×5 or 4×4. For the gradient map ϕ0, we approximate the Gaussian kernel e(1/σ
2
1)‖ϕ0(z)−ϕ

′
0(z

′)‖H0

by uniformly sampling p1 = 12 orientations, setting σ1 = 2π/p1. Finally, we also use a small off-

set ε to prevent numerical instabilities in the normalization steps ψ̃(z) = ψ(z)/max(‖ψ(z)‖2, ε).

4.1 Discovering the Structure of Natural Image Patches

Unsupervised learning was first used for discovering the underlying structure of natural image
patches by Olshausen and Field [23]. Without making any a priori assumption about the data ex-
cept a parsimony principle, the method is able to produce small prototypes that resemble Gabor
wavelets—that is, spatially localized oriented basis functions. The results were found impressive by
the scientific community and their work received substantial attention. It is also known that such
results can also be achieved with CNNs [25]. We show in this section that this is also the case for
convolutional kernel networks, even though they are not explicitly trained to reconstruct data.

Following [23], we randomly select a database of 300 000 whitened natural image patches of
size 12× 12 and learn p = 256 filters W using the formulation (4). We initialize W with Gaussian
random noise without performing the K-means step, in order to ensure that the output we obtain is
not an artifact of the initialization. In Figure 3, we display the filters associated to the top-128 largest
weights ηl. Among the 256 filters, 197 exhibit interpretable Gabor-like structures and the rest was
less interpretable. To the best of our knowledge, this is the first time that the explicit kernel map of
the Gaussian kernel for whitened natural image patches is shown to be related to Gabor wavelets.

4.2 Digit Classification on MNIST

The MNIST dataset [22] consists of 60 000 images of handwritten digits for training and 10 000
for testing. We use two types of initial maps in our networks: the “patch map”, denoted by CNK-
PM and the “gradient map”, denoted by CNK-GM. We follow the evaluation methodology of [25]

Figure 3: Filters obtained by the first layer of the convolutional kernel network on natural images.

7



Tr. CNN Scat-1 Scat-2 CKN-GM1 CKN-GM2 CKN-PM1 CKN-PM2
[32] [18] [19]

size [25] [8] [8] (12/50) (12/400) (200) (50/200)

300 7.18 4.7 5.6 4.39 4.24 5.98 4.15 NA
1K 3.21 2.3 2.6 2.60 2.05 3.23 2.76 NA
2K 2.53 1.3 1.8 1.85 1.51 1.97 2.28 NA
5K 1.52 1.03 1.4 1.41 1.21 1.41 1.56 NA
10K 0.85 0.88 1 1.17 0.88 1.18 1.10 NA
20K 0.76 0.79 0.58 0.89 0.60 0.83 0.77 NA
40K 0.65 0.74 0.53 0.68 0.51 0.64 0.58 NA

60K 0.53 0.70 0.4 0.58 0.39 0.63 0.53 0.47 0.45 0.53

Table 1: Test error in % for various approaches on the MNIST dataset without data augmentation.
The numbers in parentheses represent the size p1 and p2 of the feature maps at each layer.

for comparison when varying the training set size. We select the regularization parameter of the
SVM by 5-fold cross validation when the training size is smaller than 20 000, or otherwise, we
keep 10 0000 examples from the training set for validation. We report in Table 1 the results obtained
for four simple architectures. CKN-GM1 is the simplest one: its second layer uses 3×3 patches and
only p2 = 50 filters, resulting in a network with 5 400 parameters. Yet, it achieves an outstanding
performance of 0.58% error on the full dataset. The best performing, CKN-GM2, is similar to
CKN-GM1 but uses p2 = 400 filters. When working with raw patches, two layers (CKN-PM2)
gives better results than one layer. More details about the network architectures are provided in the
supplementary material. In general, our method achieves a state-of-the-art accuracy for this task
since lower error rates have only been reported by using data augmentation [11].

4.3 Visual Recognition on CIFAR-10 and STL-10

We now move to the more challenging datasets CIFAR-10 [20] and STL-10 [13]. We select the
best architectures on a validation set of 10 000 examples from the training set for CIFAR-10, and
by 5-fold cross-validation on STL-10. We report in Table 2 results for CKN-GM, defined in the
previous section, without exploiting color information, and CKN-PM when working on raw RGB
patches whose mean color is subtracted. The best selected models have always two layers, with 800
filters for the top layer. Since CKN-PM and CKN-GM exploit a different information, we also report
a combination of such two models, CKN-CO, by concatenating normalized image representations
together. The standard deviations for STL-10 was always below 0.7%. Our approach appears to
be competitive with the state of the art, especially on STL-10 where only one method does better
than ours, despite the fact that our models only use 2 layers and require learning few parameters.
Note that better results than those reported in Table 2 have been obtained in the literature by using
either data augmentation (around 90% on CIFAR-10 for [18, 30]), or external data (around 70% on
STL-10 for [28]). We are planning to investigate similar data manipulations in the future.

Method [12] [27] [18] [13] [4] [17] [32] CKN-GM CKN-PM CKN-CO

CIFAR-10 82.0 82.2 88.32 79.6 NA 83.96 84.87 74.84 78.30 82.18

STL-10 60.1 58.7 NA 51.5 64.5 62.3 NA 60.04 60.25 62.32

Table 2: Classification accuracy in % on CIFAR-10 and STL-10 without data augmentation.

5 Conclusion

In this paper, we have proposed a new methodology for combining kernels and convolutional neural
networks. We show that mixing the ideas of these two concepts is fruitful, since we achieve near
state-of-the-art performance on several datasets such as MNIST, CIFAR-10, and STL10, with simple
architectures and no data augmentation. Some challenges regarding our work are left open for the
future. The first one is the use of supervision to better approximate the kernel for the prediction task.
The second consists in leveraging the kernel interpretation of our convolutional neural networks to
better understand the theoretical properties of the feature spaces that these networks produce.

Acknowledgments

This work was partially supported by grants from ANR (project MACARON ANR-14-CE23-0003-
01), MSR-Inria joint centre, European Research Council (project ALLEGRO), CNRS-Mastodons
program (project GARGANTUA), and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).

8



References

[1] Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2009.

[2] L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In Proc.
CVPR, 2011.

[3] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Adv. NIPS, 2010.

[4] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In
Experimental Robotics, 2013.

[5] L. Bo and C. Sminchisescu. Efficient match kernel between sets of features for visual recognition. In Adv.
NIPS, 2009.

[6] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston. Large-Scale Kernel Machines (Neural Information
Processing). The MIT Press, 2007.

[7] J. V. Bouvrie, L. Rosasco, and T. Poggio. On invariance in hierarchical models. In Adv. NIPS, 2009.

[8] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE T. Pattern Anal., 35(8):1872–
1886, 2013.

[9] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimiza-
tion. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

[10] Y. Cho and L. K. Saul. Large-margin classification in infinite neural networks. Neural Comput., 22(10),
2010.

[11] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In Proc. CVPR, 2012.

[12] A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In Adv. NIPS, 2011.

[13] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proc. AISTATS, 2011.

[14] D. Decoste and B. Schölkopf. Training invariant support vector machines. Mach. Learn., 46(1-3):161–
190, 2002.

[15] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convo-
lutional activation feature for generic visual recognition. preprint arXiv:1310.1531, 2013.

[16] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, 2008.

[17] R. Gens and P. Domingos. Discriminative learning of sum-product networks. In Adv. NIPS, 2012.

[18] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Proc.
ICML, 2013.

[19] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for
object recognition? In Proc. ICCV, 2009.

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech. Rep., 2009.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Adv. NIPS, 2012.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
P. IEEE, 86(11):2278–2324, 1998.

[23] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583):607–609, 1996.

[24] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Adv. NIPS, 2007.

[25] M. Ranzato, F.-J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierar-
chies with applications to object recognition. In Proc. CVPR, 2007.

[26] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. 2004.

[27] K. Sohn and H. Lee. Learning invariant representations with local transformations. In Proc. ICML, 2012.

[28] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Adv. NIPS, 2013.

[29] G. Wahba. Spline models for observational data. SIAM, 1990.

[30] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural networks using
dropconnect. In Proc. ICML, 2013.

[31] C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Adv. NIPS, 2001.

[32] M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks.
In Proc. ICLR, 2013.

[33] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. ECCV, 2014.

9



A Positive Definiteness of K

To show that the kernel K defined in (1) is positive definite (p.d.), we simply use elementary rules from the
kernel literature described in Sections 2.3.2 and 3.4.1 of [26]. A linear combination of p.d. kernels with non-
negative weights is also p.d. (see Proposition 3.22 of[26]), and thus it is sufficient to show that for all z, z′ in Ω,
the following kernel on Ω → H is p.d.:

(ϕ,ϕ′) 7→
∥

∥ϕ(z)
∥

∥

H

∥

∥ϕ′(z′)
∥

∥

H
e
−

1

2σ2 ‖ϕ̃(z)−ϕ̃′(z′)‖2

H .

Specifically, it is also sufficient to show that the following kernel on H is p.d.:

(φ, φ′) 7→
∥

∥φ
∥

∥

H

∥

∥φ′
∥

∥

H
e
−

1

2σ2

∥

∥

∥

∥

φ
‖φ‖H

−
φ′

‖φ′‖H

∥

∥

∥

∥

2

H .

with the convention φ/‖φ‖H = 0 if φ = 0. This is a pointwise product of two kernels and is p.d. when
each of the two kernels is p.d. The first one is obviously p.d.: (φ, φ′) 7→ ‖φ‖H ‖φ′‖

H
. The second one is a

composition of the Gaussian kernel—which is p.d.—, with feature maps φ/‖φ‖H of a normalized linear kernel
in H. This composition is p.d. according to Proposition 3.22, item (v) of [26] since the normalization does not
remove the positive-definiteness property.

B List of Architectures Reported in the Experiments

We present in details the architectures used in the paper in Table 3.

Arch. N m1 p1 γ1 m2 p2 S ♯ param

MNIST

CKN-GM1 2 1× 1 12 2 3× 3 50 4× 4 5 400
CKN-GM2 2 1× 1 12 2 3× 3 400 3× 3 43 200
CKN-PM1 1 5× 5 200 2 - - 4× 4 5 000
CKN-PM2 2 5× 5 50 2 2× 2 200 6× 6 41 250

CIFAR-10

CKN-GM 2 1× 1 12 2 2× 2 800 4× 4 38 400
CKN-PM 2 2× 2 100 2 2× 2 800 4× 4 321 200

STL-10

CKN-GM 2 1× 1 12 2 3× 3 800 4× 4 86 400
CKN-PM 2 3× 3 50 2 3× 3 800 3× 3 361 350

Table 3: List of architectures reported in the paper. N is the number of layers; p1 and p2 represent
the number of filters are each layer; m1 and m2 represent the size of the patches P ′

1 and P ′
2 that are

of size m1 ×m1 and m2 ×m2 on their respective feature maps ζ1 and ζ2; γ1 is the subsampling
factor between layer 1 and layer 2; S is the size of the output feature map, and the last column
indicates the number of parameters that the network has to learn.

10


	Introduction
	Related Work

	Convolutional Multilayer Kernels
	Training Invariant Convolutional Kernel Networks
	Fast Approximation of the Gaussian Kernel
	Approximating the Multilayer Convolutional Kernel

	Experiments
	Discovering the Structure of Natural Image Patches
	Digit Classification on MNIST
	Visual Recognition on CIFAR-10 and STL-10

	Conclusion
	Positive Definiteness of K
	List of Architectures Reported in the Experiments

