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Abstract

This is the supplementary document for the paper on Probabilistic Differential
Dynamic Programming (PDDP). It includes derivations for the probabilistic rep-
resentation of the stochastic dynamics, the linearization of the dynamics model
and the cost function formulation.

1 Problem formulation

We consider a general unknown stochastic system described by the following differential equation

dx = f(x,u)dt+ C(x,u)dω, x(t0) = x0, dω ∼ N (0,Σω), (1)

where x ∈ Rn is the state, u ∈ Rm is the control, t is time and ω ∈ Rp is standard Brownian motion
noise. The trajectory optimization problem is defined as finding a sequence of state and controls that
minimize the expected cost

Jπ(x(t0)) = E
[
h
(
x(T )

)
+

∫ T

t0

L
(
x(t), π(x(t)), t

)
dt

]
, (2)

where h(x(T )) is the terminal cost, L(x(t), π(x(t)), t) is the instantaneous cost rate, u(t) =
π(x(t)) is the control policy. The cost Jπ(x(t0)) is defined as the expectation of the total cost
accumulated from t0 to T . For the rest of our analysis, we denote xk = x(k) in discrete-time where
k = 0, 1, ...,H is the time step, we use this subscript rule for other variables as well.

2 Probabilistic model learning

The continuous functional mapping from state-control pair x̃ = (x,u) ∈ Rn+m to state tran-
sition dx can be viewed as an inference with the goal of inferring dx given x̃. We view this
inference as a nonlinear regression problem. In this subsection, we introduce the Gaussian pro-
cesses (GP) approach to learning the dynamics model in (1). A GP is defined as a collection of
random variables, any finite number subset of which have a joint Gaussian distribution. Given a
sequence of state-control pair X̃ = {(x0,u0), . . . (xH ,uH)}, and the corresponding state transition
dX = {dx0, . . . ,dxH}, a GP is completely defined by a mean function and a covariance func-
tion. The joint distribution of the observed output and the output corresponding to a given test
state-control pair X̃∗ = (x∗,u∗) can be written as

p

(
dX
dx∗

)
∼ N

(
0,

[
K(X̃, X̃) + σnI K(X̃, x̃∗)

K(x̃∗, X̃) K(x̃∗, x̃∗)

])
. (3)
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The covariance of this multivariate Gaussian distribution is defined via a kernel matrix K(xi,xj).
In particular, in this paper we consider the Gaussian kernel

K(xi,xj) = σ2
s exp(−1

2
(xi − xj)

TW(xi − xj)) + σ2
n, (4)

with σs, σn,W the hyper-parameters of the GP. The kernel function can be interpreted as a similarity
measure of random variables. More specifically, if the training pairs X̃i and X̃j are close to each
other in the kernel space, their output dxi and dxj are highly correlated.

The posterior distribution, which is also a Gaussian distribution, can be obtained by constraining
the joint distribution to contain the output dx∗ that are consistent with the observations. Assuming
independent outputs (no correlation between each output dimension) and given test input x̃k =
[xk,uk] at time k . The one-step prediction of dynamics based on GP can be evaluated as

p(dxk|x̃k) ∼ N (dµk,dΣk), (5)

where the mean and variance are given by

dµk =E[dxk] = K(x̃k, X̃)(K(X̃, X̃) + σnI)−1dX, (6)

dΣk =Var[dxk] = K(x̃k, x̃k)−K(x̃k, X̃)(K(X̃, X̃) + σnI)−1K(X̃, x̃k)

where dµk and dΣk are predictive mean and variance of the state transition, respectively. Therefore,
the state distribution at k + 1 would be:

p(xk) ∼ N (µk,Σk), (7)

where the state mean an variance are

µk+1 = xk + dµk, Σk = dΣk. (8)

When propagating the GP-based dynamics over a trajectory of time horizonH , the input state xk be-
comes uncertain with Gaussian distribution, where k = 1, ...,H (the initial state x0 is deterministic).
Thus the distribution over state transition can be computed as:

p(dxk) =

∫ ∫
p(f(xk,uk)|xk,uk)p(xk,uk)dxkduk. (9)

Generally, the above distribution cannot be computed analytically because the nonlinear mapping of
input Gaussian distributions lead to non-Gaussian predictive distributions. However, the predictive
distribution can be approximated by a Gaussian. Thus the state distribution at t+1 is also a Gaussian

µk+1 = µk + dµk, Σk+1 = Σk + dΣk + Cov[xk,dxk] + Cov[dxk,xk]. (10)

In order to obtain the distribution over stateN (µk+1,Σk+1). Firstly, we compute the joint distribu-
tion over state-control pair p(x̃k) = p(xk,uk) as follow

p

(
xk
uk

)
∼ N

(
µk

E[uk]
,

[
Σk Cov[xk,uk]

Cov[uk,xk] Cov[uk]

])
(11)

where E[uk] and Cov[uk] are mean and covariance of the distribution over control policy p(uk).
To simplify notation, we denote the mean and covariance of the above distribution as p(x̃k) ∼
N (µ̃k, Σ̃k). Since the control policy is a linear function of the Gaussian belief augmented state in
this paper, the control is actually deterministic.

Given the input joint distribution p(x̃k), we will compute the predictive distribution of state transi-
tion p(dxk). The predictive mean can be computed using the law of iterated expectations (Fubini’s
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theorem)

dµk =

∫ ∫ ∫
f(xk,uk)p(xk,uk)dfdxkduk

=

∫ ∫
f(x̃k)p(x̃k)dfdx̃kdt

= Ef ,x̃k
[f |µ̃k, Σ̃k]

= Ex̃k

[
Ef [f(x̃k)|x̃k]|µ̃k, Σ̃k

]
dt

=

∫ (
K(x̃k, X̃)(K(X̃, X̃) + σ2

nI)−1dX
)
N
(
x̃k|µ̃k, Σ̃k

)
dx̃k

=

(
K(X̃, X̃) + σ2

nI)−1dX

)T

︸ ︷︷ ︸
Ψ

∫
K(X̃, x̃k)N

(
x̃k|µ̃k, Σ̃k

)
dx̃k︸ ︷︷ ︸

q

= ΨTqk (12)

where Ψ ∈ RN×n and qk = [qk1, . . . , qkn]T ∈ RN with each element

qki =

∫
K(X̃i, x̃k)N

(
x̃k|µ̃k, Σ̃k

)
dx̃k

= α2|Σ̃k + W| 12 exp
(
− 1

2
(X̃i − µ̃k)T(Σ̃k + Λ)−1(X̃i − µ̃k)

)
. (13)

Next, we compute the predictive covariance matrix

Cov(dxk|x̃k) =

 Var(dxk1) . . . Cov(dxkn,dxk1)
...

. . .
...

Cov(dxk1,dxkn) . . . Var(dxkn)

 (14)

where the variance terms can be obtained as

Var(dxk) =Ex̃k

[
Var(f(x̃k)|µ̃k, Σ̃k)

]
+ Var

(
Ef

[
f(x̃k)|µ̃k, Σ̃k

])
=Ex̃k

[
Var(dxk)

]
+

(
Ex̃k

[
(dxk)2

]
− Ex̃k

[
dxk

]2)
=

∫ (
K(x̃k, x̃k)−K(x̃k, X̃)(K(X̃, X̃) + σ2

nI)−1K(X̃, x̃k)
)

p(x̃k)dx̃k

+

∫ (
K(x̃k, X̃)(K(X̃, X̃) + σ2

nI)−1dX
)2

p(x̃k)dx̃k

−
((

K(X̃, X̃) + σ2
nI)−1dX

)T
∫

K(x̃k, X̃)N
(
x̃k|µ̃k, Σ̃k

)
dx̃k

)2

. (15)

The last term in the above equation can be represented by Ψ and q defined earlier, then the equation
becomes

Var(dxk) =

∫ (
K(x̃k, x̃k)−K(x̃k, X̃)(K(X̃, X̃) + σ2

nI)−1K(X̃, x̃k)
)

p(x̃k)dx̃k

+

∫
K(x̃k, X̃)ΨΨTK(X̃, x̃k)p(x̃k)dx̃k −

(
ΨTqk

)2
. (16)

Re-arrange the above expressions by pulling the terms that are independent of x̃k out of the integrals:

Var(dxk) =σ2
s − tr

(
(K(X̃, X̃) + σ2

nI)−1

∫ (
K(X̃, x̃k)K(x̃k, X̃)

)
p(x̃k)dx̃k

)
+ ΨT

(∫
K(X̃, x̃k)K(x̃k, X̃)p(x̃k)dx̃k

)
︸ ︷︷ ︸

Φk

Ψ−
(
ΨTqk

)2

=σ2
s − tr

(
(K(X̃, X̃) + σ2

nI)−1Φk

)
+ ΨTΦkΨ−

(
ΨTqk

)2
, (17)
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where the integral terms Φk can be evaluated as

Φij =

∫
K(X̃, x̃k)K(x̃k, X̃)p(x̃k)dx̃k

=
K(X̃i, µ̃k)K(X̃j , µ̃k)

|2Σ̃k(W−1
i + W−1

j ) + I| 12
exp

((1

2
(

Wj

Wi + Wj
x̃i +

Wi

Wi + Wj
x̃j)− µ̃k

)T
(
Σ̃ +

1

2
W
)−1

Σ̃kW
−1
(1

2
(

Wj

Wi + Wj
x̃i +

Wi

Wi + Wj
x̃j)− µ̃k

))
, (18)

where Wi,Wj are the kernel parameters corresponding to output dimension i and j, respectively.
The cross covariance terms can be obtained by

Cov(dxki,dxkj) = Ex̃k

[
dxkidxkj

]
− Ex̃k

[
dxki

]
Ex̃k

[
dxkj

]
(19)

Similarly, it can be found that the first term is

Ex̃k

[
dxkidxkj

]
= ΨT

i ΦkΨj , (20)

where

Ψi = K(X̃, X̃) + σ2
nI)−1dXi, Ψj = K(X̃, X̃) + σ2

nI)−1dXj . (21)

Therefore

Cov[dxki,dxkj ] = ΨT
i ΦkΨj − (ΨT

i qk)T(ΨT
j qk). (22)

The input-output cross-covariances can be obtained by

Cov[xk,dxk] = E[xkdxk]− E[xk]E[dxk] = E[xkf(xk,uk)]− µkdµk. (23)

The kernel or hyper-parameter Θ = (σn, σs,W) can be learned by maximizing the log-likelihood
of the training outputs given the inputs:

Θ∗ = argmax
Θ

{
log

(
p
(

dX|X̃,Θ
))}

. (24)

where

log

(
p
(

dX|X̃,Θ
))

=− 1

2
dXT

(
K(X̃, X̃) + σ2

nI
)−1

dX

− 1

2
log
∣∣∣K(X̃, X̃) + σ2

nI
∣∣∣− H

2
log 2π.

(25)

The optimization problem can be solved using numerical methods such as conjugate gradient.

3 Local dynamics models

In DDP related algorithms, a local model along a nominal trajectory (x̄k, ūk) , where k = 0, ...,H ,
is created based on: i) a first or second-order local approximation of the dynamics model; ii) a
second-order local approximation of the value function. In our proposed PDDP framework, we will
create a local model along a trajectory of state distribution-control pair (p(x̄k), ūk). We introduce
the Gaussian augmented state vector zxk = [µk vec(Σk)]T ∈ Rn+n×n where vec(Σk) is the vector-
ization of Σk. First, we create a local linear model of the dynamics. Based on eq.(10), the dynamics
model with the augmented state can be written as

zxk+1 = F(zxk,uk). (26)

Define the control and state variations δzxk = zxk− z̄xk and δuk = uk− ūk. In this work we consider
the first order expansion of the dynamics. More precisely we have

δzxk+1 = Fxk δzxk + Fuk δuk, (27)
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where the Jacobians Fxk and Fuk are specified as

Fxk = ∇xk
F =

 ∂µk+1

∂µk

∂µk+1

∂Σk

∂Σk+1

∂µk

Σk+1

∂Σk

 ∈ R(n+n2)×(n+n2),

Fuk = ∇uk
F =

[ ∂µk+1

∂uk

∂Σk+1

∂uk

]
∈ R(n+n2)×m.

(28)

where the partial derivatives can be evaluated as

∂µk+1

∂µk
=I +

∂ΨTqk
∂µk

=I +
∂ΨTqk
∂µ̃k

∂µ̃k
∂µk

(29)

For each output dimension, the partial derivative ∂ΨT
i qki

∂µ̃k

∂µ̃k

∂µk
can be obtain as

∂ΨT
i qki
∂µ̃k

∂µ̃k
∂µk

=

N∑
j=1

Ψij
∂qkij
∂µ̃k

∂µ̃k
∂µk

=
( N∑
j=1

Ψijqkij(x̃k − µ̃k)T(Σ̃k + Wj)
−1
)T ∂µ̃k

∂µk
. (30)

where ∂µ̃k

∂µk
can be easily obtained. Similarly, the partial derivatives of predictive mean with respect

to state covariance for each output dimension can be found as

∂µk+1

∂Σk
=
∂ΨT

i qki

∂Σ̃k

∂Σ̃k

∂Σk
=

N∑
j=1

Ψij
∂qkij

∂Σ̃k

∂Σ̃k

∂Σk

=

N∑
j=1

Ψijqkij

(
− 1

2

(
(W−1

i Σ̃k + I)−1W−1
i

)T

− 1

2

(
x̃ki − µ̃k

)T
∂(Wj + Σ̃k)−1

∂Σ̃k

(
x̃ki − µ̃k

))∂Σ̃k

∂Σk
. (31)

where ∂
˜Σk

∂Σk
can be easily obtained. The partial derivatives of covariance with respect to input mean

for each output dimension can be evaluated as

∂Σ(k+1)ij

∂µk
=

(
∂dΣkij

∂µ̃k
+
∂Cov[xki,dxkj ]

∂µ̃k
+
∂Cov[dxki,xkj ]

∂µ̃k

)
∂µ̃k
∂µk

(32)

where
∂dΣkij

∂µ̃k
= ΨT

i

(
∂Φk
∂µ̃k

− ∂qi
µ̃k

qT
j − qi

∂qj
µ̃k

)
Ψj +

(
− (K+σnI)−1 ∂Φk

∂µ̃k

)
∂Φkij
∂µ̃k

= Φkij

(
Wj

Wi + Wj
x̃i +

Wi

Wi + Wj
x̃j − µ̃k

)T(
1

W−1
i + W−1

j

+ Σ̃k

)−1

∂Cov[dxk,xk]

∂µ̃k
=

Σ̃k

Σ̃ + W

n+m∑
i=0

Ψ

((
x̃ki − µ̃k

)∂qki
∂µ̃k

+ qkiI

)
. (33)

The partial derivatives of covariance with respect to input covariance for each output dimension can
be evaluated as

∂Σ(k+1)ij

∂Σk
= I +

(
∂dΣkij

∂Σ̃
+
∂Cov[xki,dxkj ]

∂Σ̃k

+
∂Cov[dxki,xkj ]

∂Σ̃k

)
∂Σ̃k

∂Σk
. (34)
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where

∂dΣkij

∂Σ̃
= ΨT

i

(
∂Φk
∂Σk

− ∂qi
Σk

qT
j − qi

∂qj
Σk

)
Ψj +

(
− (K+σnI)−1 ∂Φk

∂Σk

)
∂Φkij

∂Σ̃k

= −1

2
Φkij

[((Wi + Wj

WiWj
Σk + I

)−1(Wi + Wj

WiWj

))T

−
( Wj

Wi + Wj
x̃i +

Wi

Wi + Wj
x̃j − µ̃k

)T( 1

W−1
i + W−1

j

+ Σk

)−1

( Wj

Wi + Wj
x̃i +

Wi

Wi + Wj
x̃j − µ̃k

)
∂Cov[dxk,xk]

∂Σ̃k

=

(
1

Σ̃k + W
+
∂((Σ̃ + W)−1)

∂Σ̃k

)
m+n∑
i=1

Ψkiqki(x̃− ti− µ̃ki)+

Σ̃k

( 1

Σ̃k + W

) n+m∑
i=1

Ψki(x̃ki − µ̃ki)
∂qki

∂Σ̃k

. (35)

We have found the expression of
∂µk+1

∂µk
,
∂µk+1

∂Σk
, ∂Σk+1

∂µk
, ∂Σk+1

∂Σk
analytically. The partial derivatives

with respective to control
∂µk+1

∂uk
, ∂Σk+1

∂uk
can be found similarly.

4 Cost function

In classic DDP/LQG and most optimal control problems, the following quadratic cost function was
used:

L(xk,uk) = (xk − xgoalk )TQ(xk − xgoalk ) + uT
kRuk, (36)

where xgoalk is the target state. In probabilistic DDP, given the distribution p(xk) ∼ N (µk,Σk). Let
σkij = [Σk]ij and qij = [Q]ij . The expectation of original quadratic cost function can be obtained
as:

E
[
L(xk,uk)

]
= E

[
(xk − xgoalk )TQ(xk − xgoalk ) + uT

kRuk

]
= E

[ n∑
i=1

n∑
j=1

qij(xki − xgoali )(xkj − xgoalj )
]

+ uT
kRuk

=

n∑
i=1

n∑
j=1

qijE
[
(xki − xgoali )(xkj − xgoalj )

]
+ uT

kRuk

=

n∑
i=1

n∑
j=1

qij

(
Cov

(
(xki − xgoali ), (xkj − xgoalj )

)
+

E
[
xki − xgoali

]
E
[
xkj − xgoalj

])
+ uT

kRuk

=

n∑
i=1

n∑
j=1

qij

(
σkij + (µki − xgoali )(µkj − xgoalj )

)
+ uT

kRuk

=

n∑
i=1

n∑
j=1

qijσtji +

n∑
i=1

n∑
j=1

qij(µki − xgoali )(µkj − xgoalj ) + uT
kRuk

=

n∑
i=1

[QΣk]ii + (µk − xgoalk )TQ(µk − xgoalk ) + uT
kRuk

= tr(QΣk) + (µk − xgoalk )TQ(µk − xgoalk ) + uT
kRuk
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Therefore,in this paper we use the cost function with the augmented state

L(zxk,uk) = tr(QΣk) + (µk − xgoalk )TQ(µk − xgoalk ) + (uk)TRuk. (37)

The partial derivatives of the above cost function with respect to (zxk,uk) can be easily obtained by

∂

∂zxk
L(zxk,uk) =

[ ∂

∂µk
L(zxk,uk)

∂

∂Σk
L(zxk,uk)

]T
,

=
[
2(µk − xgoal)TQ Q

]T
,

∂

∂uk
L(zxk,uk) = 2(uk)TR.

The cost function scales linearly with the state covariance, therefore the exploration strategy of
PDDP is balanced between the distance from the target and the variance of the state and avoids high
risk explorations.
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