
Supplementary Material: Fast Kernel Learning for
Multidimensional Pattern Extrapolation

Andrew Gordon Wilson∗
CMU

Elad Gilboa∗
WUSTL

Arye Nehorai
WUSTL

John P. Cunningham
Columbia

1 Introduction

We begin with background on Gaussian processes. We provide further detail about the eigendecom-
position of kronecker matrices, and the runtime complexity of kronecker matrix vector products. We
then provide images of the temperature forecasts. We also provide spectral images of the learned
kernels in the metal tread plate experiment, larger versions of the images in Table 1, images of the
extrapolation results on the large pore example, and images of the GPatt reconstruction for several
consecutive movie frames. We also enlarge some of the results in the main text.

2 Gaussian Processes

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint
Gaussian distribution. Using a Gaussian process, we can define a distribution over functions f(x),

f(x) ∼ GP(m(x), k(x, x′)) . (1)

The mean function m(x) and covariance kernel k(x, x′) are defined as

m(x) = E[f(x)] , (2)

k(x, x′) = cov(f(x), f(x′)) , (3)

where x and x′ are any pair of inputs in RP . Any collection of function values has a joint Gaussian
distribution,

[f(x1), . . . , f(xN )] ∼ N (µ,K) , (4)

with mean vector µi = m(xi) and N ×N covariance matrix Kij = k(xi, xj).

Assuming Gaussian noise, e.g. observations y(x) = f(x) + ε(x), ε(x) = N (0, σ2), the predictive
distribution for f(x∗) at a test input x∗, conditioned on y = (y(x1), . . . , y(xN ))> at training inputs
X = (x1, . . . , xn)>, is analytic and given by:

f(x∗)|x∗, X,y ∼ N (f̄∗,V[f∗]) (5)

f̄∗ = k>∗ (K + σ2I)−1y (6)

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2
nI)−1k∗ , (7)

where the N × 1 vector k∗ has entries (k∗)i = k(x∗, xi).

The Gaussian process f(x) can also be analytically marginalised to obtain the likelihood of the data,
conditioned only on the hyperparameters θ of the kernel:

log p(y|θ) ∝ −[

model fit︷ ︸︸ ︷
y>(Kθ + σ2I)−1y+

complexity penalty︷ ︸︸ ︷
log |Kθ + σ2I|] . (8)

∗Authors contributed equally.

1



This marginal likelihood in Eq. (8) pleasingly compartmentalises into automatically calibrated
model fit and complexity terms [1], and can be optimized to learn the kernel hyperparameters θ,
or used to integrate out θ using MCMC [2]. The problem of model selection and learning in Gaus-
sian processes is “exactly the problem of finding suitable properties for the covariance function.
Note that this gives us a model of the data, and characteristics (such as smoothness, length-scale,
etc.) which we can interpret.” [3].

The popular squared exponential (SE) kernel has the form

kSE(x, x′) = exp(−0.5||x− x′||2/`2) . (9)

GPs with SE kernels are smoothing devices, only able to learn how quickly sample functions vary
with inputs x, through the length-scale parameter `.

3 Eigendecomposition of Kronecker Matrices

Assuming a product kernel,

k(xi, xj) =

P∏
p=1

kp(xpi , x
p
j ) , (10)

and inputs x ∈ X on a multidimensional grid, X = X1×· · ·×XP ⊂ RP , then the covariance matrix
K decomposes into a Kronecker product of matrices over each input dimensionK = K1⊗· · ·⊗KP

[4]. The eigendecomposition of K into QV Q> similarly decomposes: Q = Q1 ⊗ · · · ⊗ QP and
V = V 1 ⊗ · · · ⊗ V P . Each covariance matrix Kp in the Kronecker product has entries Kp

ij =

kp(xpi , x
p
j ) and decomposes as Kp = QpV pQp>. Thus the N × N covariance matrix K can be

stored in O(PN
2
P ) and decomposed into QV Q> in O(PN

3
P ) operations, for N datapoints and P

input dimensions. 1 Moreover, the product of Kronecker matrices such as K, Q, or their inverses,
with a vector u, can be performed in O(PN

P+1
P ) operations (section 4).

Given the eigendecomposition of K as QV Q>, we can re-write (K + σ2I)−1y and log |K + σ2I|
(required for GP inference and learning as described in section 2)

(K + σ2I)−1y = (QV Q> + σ2I)−1y (11)

= Q(V + σ2I)−1Q>y , (12)

and

log |K + σ2I| = log |QV Q> + σ2I| =
N∑
i=1

log(λi + σ2) , (13)

where λi are the eigenvalues of K, which can be computed in O(PN
3
P ).

Thus we can evaluate the predictive distribution and marginal likelihood to perform exact inference
and hyperparameter learning, with O(PN

2
P ) storage and O(PN

P+1
P ) operations.

4 Matrix-vector Product for Kronecker Matrices

We first define a few operators from standard Kronecker literature. Let B be a matrix of size
p × q. The reshape(B, r, c) operator returns a r-by-c matrix (rc = pq) whose elements are
taken column-wise from B. The vec(·) operator stacks the matrix columns onto a single vector,
vec(B) = reshape(B, pq, 1), and the vec−1(·) operator is defined as vec−1(vec(B)) = B. Finally,
using the standard Kronecker property (B ⊗ C)vec(X) = vec(CXB>), we note that for any N
argument vector u ∈ RN we have

KNu =

(
P⊗
p=1

Kp
N1/P

)
u = vec

KP
N1/PU

(
P−1⊗
p=1

Kp
N1/P

)> , (14)

1The total number of datapoints N =
∏

p |Xp|, where |Xp| is the cardinality of Xp. For clarity of presenta-
tion, we assume each |Xp| has equal cardinality N1/P .

2



where U = reshape(u, N1/P , N
P−1
P ), and KN is an N ×N Kronecker matrix. With no change to

Eq. (14) we can introduce the vec−1(vec(·)) operators to get

KNu = vec

( vec−1

(
vec

( (
P−1⊗
p=1

Kp
N1/P

)(
KP
N1/PU

)> )) )> . (15)

The inner component of Eq. (15) can be written as

vec

((
P−1⊗
p=1

Kp
N1/P

)(
KP
N1/PU

)>
IN1/P

)
= IN1/P ⊗

(
P−1⊗
p=1

Kp
N1/P

)
vec

((
KP
N1/PU

)>)
.

(16)

Notice that Eq. (16) is in the same form as Eq. (14) (Kronecker matrix-vector product). By repeating
Eqs. (15-16) over all P dimensions, and noting that

(⊗P
p=1 IN1/P

)
u = u, we see that the original

matrix-vector product can be written as(
P⊗

p=1

Kp

N1/P

)
u = vec

([
K1

N1/P , . . .
[
KP−1

N1/P ,
[
KP

N1/P ,U
]]])

(17)

def
= kron mvprod

(
K1

N1/P ,K
2
N1/P , . . . ,K

P
N1/P ,u

)
(18)

where the bracket notation denotes matrix product, transpose then reshape, i.e.,[
Kp
N1/P ,U

]
= reshape

((
Kp
N1/PU

)>
, N1/P , N

P−1
P

)
. (19)

Iteratively solving the kron mvprod operator in Eq. (18) requires (PN
P+1
P ), because each of the P

bracket operations requires O(N
P+1
P ).

5 Inference with Missing Observations

In this paper, we extend Kronecker methods to account for training data which are not on a complete
grid. Our approach, as described in the main text, involves augmenting the original training data with
imaginary observations, in order to form a complete grid. Here, in the supplement, we show that the
predictive distribution of a Gaussian process is unchanged by this procedure.

The predictive mean of a Gaussian process at L test points, given N training points, is given by

µL = KLN

(
KN + σ2IN )−1

)
y , (20)

where KLN is an L×N matrix of cross covariances between the test and training points. We wish
to show that when we have M observations which are not on a grid that the desired predictive mean

µL = KLM

(
KM + σ2IM

)−1
yM = KLN (KN + DN )

−1
y , (21)

where y = [yM ,yW ]> includes imaginary observations yW , and DN is as defined in section 3 of
the main paper as

DN =

[
DM 0

0 ε−1IW

]
, (22)

where we set DM = σ2IM .

Starting with the right hand side of Eq. (21),

µL =

[
KLM

KLW

] [
KM + DM KMW

K>MW KW + ε−1IW

]−1 [
yM
yW

]
. (23)

Using the block matrix inversion theorem, we get[
A B
C E

]−1

=

[
(A−BE−1C)−1 −A−1B(I − E−1CA−1B)−1E−1

−E−1C(A−BE−1C)−1 (I − E−1CA−1B)−1E−1

]
, (24)

3



where A = KM + DM , B = KMW , C = K>MW , and E = KW + ε−1IW . If we take the limit of
E−1 = ε(εKW + IW )−1

ε→0−→ 0, and solve for the other components, Eq. (23) becomes

µL =

[
KLM

KLW

] [
(KM + DM )

−1
0

0 0

] [
yM
yW

]
= KLM (KM + DM )−1yM (25)

which is the exact GP result. In other words, performing inference given observations y will give
the same result as directly using observations yM . The proof that the predictive covariances remain
unchanged proceeds similarly.

6 Land Temperature Forecasts

Figure 1 shows 12 month ahead forecasts for land surface temperatures using GPatt. We can see that
GPatt has learned a representation of the training data and has made sensible long range extrapola-
tions. The forecasts of GP-SE, with the popular squared exponential covariance function, quickly
lose any relation with the training data.

7 Spectrum Analysis

We can gain further insight into the behavior of GPatt by looking at the spectral density learned by
the spectral mixture kernel. Figure 2 shows the log spectrum representations of the learned kernels
from Section 5.1. Smoothers, such as the popular kernels SE, RQ, and MA, concentrate their spectral
energy around the origin, differing only by their support for higher frequencies. Methods which used
the SMP kernel, such as the GPatt and FITC (with an SMP kernel), are able to learn meaningful
features in the spectrum space.

8 Enlarged Inpainting Image

9 Tread Plate, Stress Test, and Video Images

Figure 4 illustrates the images used for the stress tests. In Figure 5, we provide the results for the
large pore example. Finally, Figure 6 shows the true and predicted movie frames.

References
[1] C.E. Rasmussen and Z. Ghahramani. Occam’s razor. In Neural Information Process Systems,

2001.
[2] I. Murray and R.P. Adams. Slice sampling covariance hyperparameters in latent Gaussian mod-

els. In Advances in Neural Information Processing Systems, 2010.
[3] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for Machine Learning. The MIT

Press, 2006.
[4] Y. Saatçi. Scalable Inference for Structured Gaussian Process Models. PhD thesis, University

of Cambridge, 2011.

4



 

 

−40
−20
0
20
40

(a) GPatt

 

 

−40

−20

0

20

40

(b) GP-SE

Figure 1: In each image, the first two rows are the last 12 months of training data, and the last
two rows are 12 month forecasts. Note that this is a true extrapolation problem: all 12 months are
forecast at once (this is not a rolling forecast). a) GPatt, b) GP-SE.

5



(a) GPatt-30 (b) FITC

(c) SE (d) RQ (e) MA

Figure 2: Spectral representation of the learned kernels from Section 5.1. For methods which used
the SMP kernel (namely, a) GPatt and b) FITC) we plot the analytical log spectrum using the learned
hyperparameters. For c)Squared exponential, d) Rational quadratic, and e) Matérn-3 we plot instead
the empirical log spectrum using the Fast Fourier transform of the kernel.

Figure 3: Image inpainting with GPatt. From left to right: A mask is applied to the original image,
GPatt extrapolates the mask region in each of the three (red, blue, green) image channels, and the
results are joined to produce the restored image. Top row: Removing a stain (train: 15047 × 3).
Bottom row: Removing a rooftop to restore a natural scene (train: 32269 × 3). We do not attempt
to extrapolate the coast, which is masked during training.

6



(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail
 

 

(f) Cone

Figure 4: Images used for stress tests in Section 5.2. Figures a) through e) show the textures used
in the accuracy comparison of Table 1. Figure e) is the cone image which was used for the runtime
analysis shown in Figure 3a.

100 200 300 400 500 600 700 800

100

200

300

400

500

600

(a) Train
100 200 300 400 500 600 700 800

100

200

300

400

500

600

(b) Learn

Figure 5: GPatt on a particularly large multidimensional dataset. a) Training region (383400 points),
b) GPatt-10 reconstruction of the missing region.

7



Figure 6: Recovering 5 consecutive slices from a movie. All 5 slices are missing during training:
this is not one step ahead forecasting. (Top row: true slices take from the middle of the movie.
Bottom row: predicted slices using GPatt-20.

8


