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Abstract

We present a general framework for constructing prior distributions with struc-
tured variables. The prior is defined as the information projection of a base dis-
tribution onto distributions supported on the constraint set of interest. In cases
where this projection is intractable, we propose a family of parameterized approx-
imations indexed by subsets of the domain. We further analyze the special case
of sparse structure. While the optimal prior is intractable in general, we show
that approximate inference using convex subsets is tractable, and is equivalent to
maximizing a submodular function subject to cardinality constraints. As a re-
sult, inference using greedy forward selection provably achieves within a factor
of (1-1/e) of the optimal objective value. Our work is motivated by the predictive
modeling of high-dimensional functional neuroimaging data. For this task, we
employ the Gaussian base distribution induced by local partial correlations and
consider the design of priors to capture the domain knowledge of sparse support.
Experimental results on simulated data and high dimensional neuroimaging data
show the effectiveness of our approach in terms of support recovery and predictive
accuracy.

1 Introduction

Data in scientific and commercial disciplines are increasingly characterized by high dimensions and
relatively few samples. For such cases, a-priori knowledge gleaned from expertise and experimental
evidence are invaluable for recovering meaningful models. In particular, knowledge of restricted
degrees of freedom such as sparsity or low rank has become an important design paradigm, en-
abling the recovery of parsimonious and interpretable results, and improving storage and prediction
efficiency for high dimensional problems. In Bayesian models, such restricted degrees of freedom
can be captured by incorporating structural constraints on the design of the prior distribution. Prior
distributions for structured variables can be designed by combining conditional distributions - each
capturing portions of the problem structure, into a hierarchical model. In other cases, researchers
design special purpose prior distributions to match the application at hand. In the case of sparsity,
an example of the former approach is the spike and slab prior [1, 2], and an example of the latter
approach is the horseshoe prior [3].

We describe a framework for designing prior distributions when the a-priori information include
structural constraints. Our framework follows the maximum entropy principle [4, 5]. The distribu-
tion is chosen as one that incorporates known information, but is as difficult as possible to discrim-
inate from the base distribution with respect to relative entropy. The maximum entropy approach
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has been especially successful with domain knowledge expressed as expectation constraints. In such
cases, the solution is given by a member of the exponential family [6, 7] e.g. quadratic constraints
result in the Gaussian distribution. Our work extends this framework to the design of prior distribu-
tions when a-priori information include domain constraints.

Our main technical contributions are as follows:

• We show that under standard assumptions, the information projection of a base density to
domain constraints is given by its restriction (Section 2).

• We show the equivalence between relative entropy inference with data observation con-
straints and Bayes rule for continuous variables

• When such restriction is intractable, we propose a family of parameterized approximations
indexed by subsets of the domain (Section 2.1).

We consider approximate inference in the special case of sparse structure:

• We characterize the restriction precisely, showing that it is given by a conditional distribu-
tion (Section 3).

• We show that the approximate sparse support estimation problem is submodular. As a
result, greedy forward selection is efficient and guarantees (1- 1e ) factor optimality (Sec-
tion 3.1).

Our work is motivated by the predictive modeling of high-dimensional functional neuroimaging
data, measured by cognitive neuroscientists for analyzing the human brain. The data are repre-
sented using hundreds of thousands of variables. Yet due to real world constraints, most experimen-
tal datasets contain only a few data samples [8]. The proposed approach is applied to predictive
modeling of simulated data and high-dimensional neuroimaging data, and is compared to Bayesian
hierarchical models and non-probabilistic sparse predictive models, showing superior support re-
covery and predictive accuracy (Section 4). Due to space constraints, all proofs are provided in the
supplement.

1.1 Preliminaries

This section includes notation and a few basic definitions. Vectors are denoted by lower case x and
matrices by capital X. xi,j denotes the (i, j)th entry of the matrix X. xi,: denotes the ith row of
X and x:,j denotes the jth column. Let |X| denote the determinant of X. Sets are denoted by sans
serif e.g. S. The reals are denoted by R. [n] denotes the set of integers {1, . . . , n}, and ℘(n) denotes
the power set of [n]. Let X be either a countable set, or a complete separable metric space equipped
with the standard Borel σ-algebra of measurable set. Let P denote the set of probability densities
on X i.e. positive functions P = {p : X 7→ [0, 1] ,

∫
X
p(x) = 1}. For the remainder of this paper, we

make the following assumption:
Assumption 1. All distributions P are absolutely continuous with respect to the dominating mea-
sure ν so there exists a density p ∈ P that satisfies dP = pdν.

To simplify notation, we use use the standard dν = dx. As a consequence of Assumption 1, the
relative entropy is given in terms of the densities as:

KL(q‖p) =

∫
X

q(x) log
q(x)

p(x)
dx.

The relative entropy is strictly convex with respect to its first argument. The information projection
of a probability density p to a constraint set A is given by the solution of:

inf
q∈P

KL(q‖p) s.t. q ∈ A.

We will only consider projections where A is a closed convex set so the infimum is achieved.
The delta function, denoted by δ(·), is a generalized set function that satisfies

∫
X
δA(x)f(x)dx =∫

A
f(x)dx, and

∫
X
δA(x)dx = 1, for some some A ⊆ X. The set of domain restricted densi-

ties, denoted by FA for A ⊂ X, is the set of probability density functions supported on A i.e.
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FA = {q ∈ P | q(x) = 0 ∀ x /∈ A} ∪ {δ{x} ∀ x ∈ A} ⊂ FA ⊂ P = FX. Further, note that
FA is closed and convex for any A ⊆ X (including nonconvex A).

Restriction is a standard approach for defining distributions on subsets A ⊆ X. An important special
case we will consider is when A is a measure zero subset of X. The common conditional density is
one such example, the existence of which follows from the disintegration theorem [9]. Restrictions
of measure require extensive technical tools in the general case [10]. We will employ the following
simplifying condition for the remainder of this manuscript:
Condition 2. The sample space X is a subset of Euclidean space with ν given by the Lebesgue
measure. Alternatively, X is a countable set with ν given by the counting measure.

Let P be a probability distribution on X. Under Assumption 1 and Condition 2, the restriction of
the density p to the set A ⊂ X is given by:

q(x) =

{
p(x)∫

A
p(x)dx

x ∈ A,

0 otherwise.

2 Priors for structured variables

We assume a-priori information identifying the structure of X via the sub-domain A ⊂ X. We also
assume a pre-defined base distribution P with associated density p. Without loss of generality, let
p have support everywhere1 on X i.e. p(x) > 0 ∀ x ∈ X. Following the principle of minimum
discrimination information, we select the prior as the information projection of the base density p
to FA. Our first result identifies the equivalence between information projection subject to domain
constraints and density restriction.
Theorem 3. Under Condition 2, the information projection of the density p to the constraint set FA

is the restriction of p to the domain A.

Theorem 3 gives principled justification for the domain restriction approach to structured prior de-
sign. Examples of density restriction in the literature include the truncated Gaussian, Beta and
Gamma densities [11], and the restriction of the matrix-variate Gaussian to the manifold of low
rank matrices [12]. Various properties of the restriction, such as its shape, and tail behavior (up to
re-scaling) follow directly from the base density. Thus the properties of the resulting prior are more
amenable to analysis when the base measure is well understood. Next, we consider a corollary of
Theorem 3 that was introduced by Williams [13].
Corollary 4. Consider the product space X = W× Y. Let domain constraint be given by W× {ŷ}
for some ŷ ∈ Y. Under Condition 2, the information projection of p to FW×{ŷ} is given by p(w|ŷ)δŷ.

In the Bayesian literature, p(w) is known as the prior, p(y|w) is the likelihood and p(w|ŷ) is the
posterior density given the observation y = ŷ. Corollary 4 considers the information projection
of the joint density p(w, y) given observed data, and shows that the solution recovers the Bayesian
posterior. Williams [13] considered a generalization of Corollary 4, but did not consider projection
to data constraints2. While Corollary 4 has been widely applied in the literature e.g. [14], to the best
of our knowledge, the presented result is the first formal proof.

2.1 Approximate inference for structured variables via tractable subsets

For many structural constraints of interest, restriction requires the computation of an intractable
normalization constant. In theory, rejection sampling and Markov Chain Monte Carlo (MCMC)
inference methods [15] do not require normalized probabilities. However, as many structured sub-
domains are measure zero sets with respect to the dominating measure, randomly generated samples
generated from the base distribution are unlikely to lie in the constrained domains e.g. random
samples from a multivariate Gaussian are not sparse. Hence rejection sampling fails, and MCMC
suffers from low acceptance probabilities. As a result, inference on such structured sub-domains

1When this condition is violated, we simply redefine X as the subdomain supporting p.
2Specifically, Williams [13] noted “Relative information has been defined only for unconditional distribu-

tions, which say nothing about the relative probabilities of events of probability zero.“
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(a) Gaussian restriction

P
p

FC

pA∩C

FA

pA

(b) Sequential projections

Figure 1: (a) Gaussian density and restriction to diagonal line shown. (b) Illustration of Theorem 5;
sequence of information projections P→FA→FC and P→FA∩C are equivalent.

typically requires specialized methods e.g. [11, 12]. In the following, we propose a class of varia-
tional approximations based on an inner representation of the structured subdomain. Let {Si ∈ A}
represent a (possibly overlapping) partitioning of A into subsets. We define the domain restricted
density sets generated by these partitions as FSi

, and their union D =
⋃
FSi

. Note that by definition
each FSi

⊆ D ⊆ FA ⊆ FX. Our approach is to approximate the optimization over densities in FA by
optimizing over D - a smaller subset of tractable densities.

Approximate inference is generally most successful when the approximation accounts for observed
data. Inspired by the results of Corollary 4, we consider such a projection. Let pA(w, y) be the
information projection of the joint distribution p(x, y) to the set FA×{ŷ}. We propose approximate
inference via the following rule:

pS∗,ŷ = arg min
q∈D×F{ŷ}

KL(q(w, y)‖pA(w, y)) = arg min
S

[
min

q∈FS×{ŷ}
KL(q(w, y)‖pA(w, y))

]
. (1)

Our proposed approach may be decomposed into two steps. The inner step is solved by estimating
a parameterized set of prior densities {qS} corresponding to choices of S, and the outer step is
solved by the selection of the optimal subset S∗. The solution is given by pS∗,ŷ(w, y) = pS∗(w|ŷ)δŷ
(Corollary 4) with the associated approximate posterior given by pS∗(w|ŷ).

The following theorem considers the effect of a sequence of domain constrained information pro-
jections (see Fig. 1b), which will useful for subsequent results.
Theorem 5. Let π : [n] 7→ [n] be a permutation function and {Cπ(i) | Cπ(i) ⊂ X} represent a
sequence of sets with non empty intersection B =

⋂
Ci 6= ∅. Given a base density p, let q0 = p, and

define the sequence of information projections:

qi = arg min
q∈FCπ(i)

KL(q‖qi−1).

Under Condition 2, q∗ = qN is independent of π. Further q∗ = min
q∈FB

KL(q‖p).

We apply Theorem 5 to formulate equivalent solutions of (1) that may be simpler to solve.
Corollary 6. Let pS∗,ŷ(w, y) be the solution of (1), then the posterior distribution pS∗(w|ŷ) is given
by:

pS∗(w|ŷ) = arg min
q∈D

KL(q(w)‖pA(w|ŷ)) = arg min
q∈D

KL(q(w)‖p(w|ŷ)). (2)

Corollary 6 implies that we can estimate the approximate structured posterior directly as the in-
formation projection of the unstructured posterior distribution p(w|ŷ). Upon further examination,
Corollary 6 also suggests that the proposed approximation is most useful when there exist subsets
of A such that the restriction of the base density to each subset leads to tractable inference. Further,
the result is most accurate when one of the subsets S∗ ∈ A captures most of the posterior proba-
bility mass. When the optimal subset S∗ is known, the structured prior density associated with the
structured posterior can be computed as shown in the following corollary.
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Corollary 7. Let pS∗,ŷ(w, y) be the solution of (1). Define the density pS∗(w) as:

pS∗(w) = arg min
q∈FS∗

KL(q(w)‖pA(w)) = arg min
q∈FS∗

KL(q(w)‖p(w)). (3)

then pS∗(w) is the prior distribution corresponding to the Bayesian posterior pS∗(w|ŷ).

3 Priors for sparse structure

We now consider a special case of the proposed framework for sparse structured variables. A d
dimensional variable x ∈ X is k-sparse if d− k of its entries take a default value of ci i.e |{i | xi =
ci}| = d−k. In Euclidean space X = Rd and in most cases, ci = 0 ∀ i. Similarly, the distribution P
on the domain X is k-sparse if all random variablesX ∼ P are at most k-sparse. The support of x ∈
X is the set supp(x) = {i | xi 6= ci} ∈ ℘(d). Let S ⊂ X denote the set of variables with support s
i.e. S = {x ∈ X s.t. supp(x) = s}. We will use the notation xS = {xi | i ∈ s}, and its complement
xS′ = {xi | i ∈ s′}, where s′ = [d]\s. The domain of k sparse vectors is given by the union of all
possible d!

(d−k)!k! sparse support sets as A =
⋃

Si. While the sparse domain A is non-convex, each
subset S is a convex set, in fact given by linear subspaces with basis {ei | i ∈ s}. Further, while the
information projection of a base density p to A is generally intractable, the information projection to
its convex subsets S turn out to be computationally tractable. We investigate the application of the
proposed approximation scheme using these subsets.

Consider the information projection of an arbitrary probability measure P with density3 p to the set
D =

⋃
FSi

given by:

min
q∈D

KL(q‖p) = min
S∈{Si}

[
min
q∈FS

KL(q‖p)
]

= min
S∈{Si}

KL(pS‖p).

Applying Theorem 3, we can compute that pS = p(x)δS(x)/Z, where Z is a normalization factor:

Z =

∫
S

p(x) =

∫
X

p(xS,xS′)δS(x) =

∫
X

p(xS|xS′)p(xS′)δS(x) = p(xS′ = cS′).

Thus, the normalization factor is a marginal density at xS′ = cS′ . We may now compute the restric-
tion explicitly:

pS(x) =
p(xS|xS′)p(xS′)δS(x)

p(xS′ = cS′)
= p(xS|xS′ = cS′)δS(x). (4)

In other words, the information projection to a sparse support domain is the density of xS conditioned
on xS′ = cS′ . The resulting gap is:

KL(pS‖p) =

∫
S

pS(x) log
pS(x)

p(x)
=

∫
S

pS(x) log
p(x)

p(x)p(xS′ = cS′)
= − log p(xS′ = cS′).

Thus, for a given target sparsity k, we solve:

s∗ = arg max
|s|=k

J(s), where J(s) = log p(xS′ = cS′). (5)

3.1 Submodularity and Efficient Inference

In this section, we show that the cost function J(s) is monotone submodular, and describe the greedy
forward selection algorithm for efficient inference. Let F : ℘(d) 7→ R represent a set function. F
is normalized if F (∅) = 0. A bounded F can be normalized as F̃ (s) = F (s) − F (∅) with no
effect on optimization. F is monotonic, if for all subsets u ⊂ v ⊆ ℘(d) it holds that F (u) ≤ F (v).
F is submodular, if for all subsets u, v ⊆ m it holds that F (u ∪ v) + F (u ∩ v) ≤ F (u) + F (v).
Submodular functions have a diminishing returns property [16] i.e. the marginal gain of adding
elements decreases with the size of the set.
Theorem 8. Let J : ℘(d) 7→ R, J(s) = log p(xS′ = cS′), and define J̃(s) = J(s) − J(∅), then
J̃(s) is normalized and monotone submodular.

3Where p may represent the conditional densities as in Section 2.1. To simplify the discussion, we suppress
the dependence on ŷ.
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While constrained maximization of submodular functions is generally NP-hard, a simple greedy
forward selection heuristic has been shown to perform almost as well as the optimal in practice, and
is known to have strong theoretical guarantees.

Theorem 9 (Nemhauser et al. [16]). In the case of any normalized, monotonic submodular function
F, the set s∗ obtained by the greedy algorithm achieves at least a constant fraction

(
1− 1

e

)
of the

objective value obtained by the optimal solution i.e. F (s∗) =
(
1− 1

e

)
max
|s|≤k

F (s).

In addition, no polynomial time algorithm can provide a better approximation guarantee unless P =
NP [17]. An additional benefit of the greedy approach is that it does not require the decision of the
support size k to be made at training time. As an anytime algorithm, training can be stopped at any k
based on computational constraints, while still returning meaningful results. An interesting special
case occurs when the base density takes a product form.

Corollary 10. Let J(s) be defined as in Theorem 8 and suppose the base density is product form i.e.
p(x) =

∏d
i=1 p(xi), then J(s) is linear.

In particular, define h = {p(xi = 0) ∀ i ∈ [d]}, then the solution of (5) is given by set of dimensions
associated with the smallest k values of h.

4 Experiments

We present experimental results comparing the proposed sparse approximate inference projection to
other sparsity inducing models. We performed experiments to test the models ability to estimate the
support of the reconstructed targets and the predictive regression accuracy. The regression accuracy
was measured using the coefficient of determination R2 = 1 −

∑
(ŷ − y)2/

∑
(y − ȳ)2 where y

is the target response with sample mean ȳ and ŷ is the predicted response. R2 measures the gain in
predictive accuracy compared to a mean model and has a maximum value of 1. The support recovery
was measured using the AUC of the recovered support with respect to the true s∗.

The baseline models are: (i) regularized least squares (Ridge), (ii) least absolute shrinkage and se-
lection (Lasso) [18], (iii) automatic relevance determination (ARD) [19], (iv) Spike and Slab [1, 2].
Ridge and Lasso were optimized using implementations from the scikit-learn python package [20].
While Ridge does not return sparse weights, it was included as a baseline for regression performance.
We implemented ARD using iterative re-weighted Lasso as suggested by Wipf and Nagarajan [19].
The noise variance hyperparameter for Ridge and ARD were selected from the set 10{−4,−3,...,4}.
Lasso was evaluated using the default scikit-learn implementation where the hyperparameter is se-
lected from 100 logarithmically spaced values based on the maximum correlation between the fea-
tures and the response. For each of these models, the hyperparameter was selected in an inner 5-fold
cross validation loop. For speed and scalability, we used a publicly available implementation of
Spike and Slab [21], which uses a mean field variational approximation. In addition to the weights,
Spike and Slab estimates the probability that each dimension is non zero. As Spike and Slab does
not return sparse estimates, sparsity was estimated by thresholding this posterior at 0.5 for each di-
mension (SpikeSlab0.5 ), we also tested the full spike and slab posterior prediction for regression
performance alone (SpikeSlabFull).

The proposed projection approach is designed to be applicable to any probabilistic model. Thus, we
applied the projection approach as additional post-processing for the two Bayesian model baselines.
The first method is a projection of the standard Gaussian regression posterior (Sparse-G ) (more
details in supplement). The second is a projection of the spike and spike and slab approximate
posterior (SpikeSlabKL). We note that since the spike and slab approximate posterior uses the mean
field approximation, the posterior distribution is in product form and the projection is straightforward
using Corollary 10. Support size selection: The selection of the hyperparameter k - specifying the
sparsity, can be solved by standard model selection routines such as cross-validation. We found that
support size selection using sequential Bayes factors [22] was particularly effective, thus the support
size was selected as the first k where log p(y|Sk+1)− log p(y|Sk) < ε.
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Figure 2: Simulated data performance: support recovery (AUC ) and regression (R2 ).

4.1 Simulated Data

We generated random high dimensional feature vectors ai ∈ Rd with ai,j ∼ N (0, 1). The re-
sponse was generated as yi = w>ai + νi where νi represents independent additive noise with
νi ∼ N

(
0, σ2

)
for all i ∈ [n]. We set σ2 implicitly via the signal to noise ration (SNR) as

SNR = var(y)/σ2, where var(y) is the variance of y. In each experiment, we sampled a sparse
weight vector w by sampling k dimensions at random with from [d], then we sampled values
wi ∼ N (0, 1) and set other dimensions to zero. We performed a series of tests to investigate the
performance of the model in different scenarios. Each experiment was run 10 times with separate
training and test sets. We present the average results on the test set.

Our first experiment tested the performance of all models with limited samples. Here we set
k = 20, d = 10, 000 and an SNR of 20dB. The number of training values was varied from
n = 100, . . . , 400 with 200 test samples. Fig. 2a shows the model performance in terms of sup-
port recovery. With limited training samples, Sparse-G outperformed all the baselines including
Lasso. We also found that SpikeSlabKL consistently outperformed SpikeSlab0.5. We speculate that
the significant gap between Sparse-G and SpikeSlabKL may be partly due to the mean field assump-
tion in the underlying Spike and Slab. Fig. 2b shows the corresponding regression performance.
Again, we found that Sparse-G outperformed all other baselines, with Ridge achieving the worst
performance.

Our second experiment tested the performance of all models with high levels of noise. Here we
set k = 20, d = 10, 000 and n = 200 with 200 test samples. We varied the SNR from 40dB to
−10dB (note that σ2 increases as SNR is decreased). Fig. 2c shows the support recovery perfor-
mance of the different models. We found a performance gap between Sparse-G and Lasso, more
pronounced than in the small sample test. The SpikeSlab0.5 was the worst performing model, but
the performance was improved by SpikeSlabKL . Only Sparse-G achieved perfect support recovery
at low noise (high SNR ) levels. The regression performance is shown in Fig. 2d. While ARD and
Lasso matched Sparse-G at low noise levels (high SNR), their performance degraded much faster at
higher noise levels (low SNR).

4.2 Functional Neuroimaging Data

Functional magnetic resonance imaging (fMRI) is an important tool for non-invasive study of brain
activity. fMRI studies involve measurements of blood oxygenation (which are sensitive to the

7



Figure 3: Support selected by Sparse-G applied to fMRI data with 100,000 voxels. Slices are across
the vertical dimension. Selected voxels are in red.

amount of local neuronal activity) while the participant is presented with a stimulus or cognitive
task. Neuroimaging signals are then analyzed to identify which brain regions which exhibit a sys-
tematic response to the stimulation, and thus to infer the functional properties of those brain regions
[23]. Functional neuroimaging datasets typically consist of a relatively small number of correlated
high dimensional brain images. Hence, capturing the inherent structural properties of the imaging
data is critical for robust inference.

FMRI data were collected from 126 participants while the subjects performed a stop-signal task [24].
For each subject, contrast images were computed for “go” trials and successful “stop” trials using a
general linear model with FMRIB Software Library (FSL), and these contrast images were used for
regression against estimated stop-signal reaction times. We used the normalized Laplacian of the 3-
dimensional spatial graph of the brain image voxels to define the precision matrix. This corresponds
to the observation that nearby voxels tend to have similar functional activation. We present the 10-
fold cross validation performance of all models tested on this data. We tested all models using the
high dimensional 100,000 voxel brain image and measured average predictive R2 . The results are:
Sparse-G (0.051), Lasso (-0.271), Ridge (-0.473), ARD (-0.478). The negative test R2 for baseline
models show worse predictive performance than the test mean predictor, and indicate the difficulty
of this task. Even with the mean field variational inference, the Spike and Slab models did not
scale to this dataset. Only Sparse-G achieved a positive R2 . The support selected by Sparse-G with
all 100,000 voxels is shown in Fig. 3, sliced across the vertical dimension. The recovered voxels
show biologically plausible brain locations including the orbitofrontal cortex, dorsolateral prefrontal
cortex, putamen, anterior cingulate, and parietal cortex, which are correlated with the observed re-
sponse. Further neuroscientific interpretation and validation will be included in an extended version
of the paper.

5 Conclusion

We present a principled approach for enforcing structure in Bayesian models via structured prior se-
lection based on the maximum entropy principle. The prior is defined by the information projection
of the base measure to the set of distributions supported on the constraint domain. We focus on the
case of sparse structure. While the optimal prior is intractable in general, we show that approximate
inference using selected convex subsets is equivalent to maximizing a submodular function subject
to cardinality constraints, and propose an efficient greedy forward selection procedure which is guar-
anteed to achieve within a (1− 1

e ) factor of the global optimum. For future work, we plan to explore
applications of our approach with other structural constraints such as low rank and structured spar-
sity for matrix-variate sample spaces. We also plan to explore more complicated base distributions
on other samples spaces.

Acknowledgments: fMRI data was provided by the Consortium for Neuropsychiatric Phenomics (NIH
Roadmap for Medical Research grants UL1-DE019580, RL1MH083269, RL1DA024853, PL1MH083271).
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