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Abstract

In this paper, we study the statistical performance of robust tensor decomposition
with gross corruption. The observations are noisy realization of the superposition
of a low-rank tensorW∗ and an entrywise sparse corruption tensor V∗. Unlike
conventional noise with bounded variance in previous convex tensor decomposition
analysis, the magnitude of the gross corruption can be arbitrary large. We show
that under certain conditions, the true low-rank tensor as well as the sparse cor-
ruption tensor can be recovered simultaneously. Our theory yields nonasymptotic
Frobenius-norm estimation error bounds for each tensor separately. We show
through numerical experiments that our theory can precisely predict the scaling
behavior in practice.

1 Introduction

Tensor data analysis have witnessed increasing applications in machine learning, data mining and
computer vision. For example, an ensemble of face images can be modeled as a tensor, whose mode
corresponds to pixels, subjects, illumination and viewpoint [23]. Traditional tensor decomposition
methods such as Tucker decomposition and CANDECOMP/PARAFAC(CP) decomposition [14, 13]
aim to factorize an input tensor into a number of low-rank factors. However, they are prone to local
optima because they are solving essentially non-convex optimization problems. In order to address
this problem, [15] [20] extended the trace norm of matrices [19] to tensors, and generalized convex
matrix completion [8] [7] and matrix decomposition [6] to convex tensor completion/decomposition.
For example, the goal of tensor decomposition aims to accurately estimate a low-rank tensorW ∈
Rn1×...×nK from the noisy observation tensor Y ∈ Rn1×...×nK that is contaminated by dense
noises, i.e., Y = W∗ + E , where W∗ ∈ Rn1×...×nK is a low-rank tensor, E ∈ Rn1×...×nK is a
noise tensor whose entries are i.i.d. Gaussian noise with zero mean and bounded variance σ2, i.e.,
Ei1,...,iK ∼ N(0, σ2). [22] [21] analyzed the statistical performance of convex tensor decomposition
under different extensions of trace norm. They showed that, under certain conditions, the estimation
error scales with the rank of the true tensorW∗. Furthermore, they demonstrated that given a noisy
tensor, the true low-rank tensor can be recovered under restricted strong convexity assumption [18].
However, all these algorithms [15] [20] and theoretical results [22] [21] reply on the assumption that
the observation noise has a bounded variance σ2. Without this assumption, we are not able to identify
the rank ofW∗, and therefore the estimated low-rank tensor Ŵ could be very far from the true tensor
W∗.
On the other hand, in many practical applications such as face recognition and image/video denoising,
a portion of the observation tensor Y might be contaminated by gross error due to illumination,
occlusion or pepper/salt noise. This scenario is not covered by finite variance noise assumption,
therefore new mathematical models are demanded to address this problem. This motivates us to study
∗Equal Contribution
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convex tensor decomposition with gross corruption. It is clear that if all the entries of a tensor are
corrupted by large error, there is no hope to recover the underlying low-rank tensor. To overcome
this problem, one common assumption is that the gross corruption is sparse. Under this assumption,
together with previous low-rank assumption, we formalize the noisy linear observation model as
follows:

Y =W∗ + V∗ + E , (1)

whereW∗ ∈ Rn1×...×nK is a low-rank tensor, V∗ ∈ Rn1×...×nK is a sparse corruption tensor, where
the locations of nonzero entries are unknown and the magnitudes of the nonzero entries can be
arbitrarily large, and E ∈ Rn1×...×nK is a noise tensor whose entries are i.i.d. Gaussian noise with
zero mean and bounded variance σ2, and thus dense. Our goal is to recover the low-rank tensorW∗,
as well as the sparse corruption tensor V∗. Note that in some applications, the corruption tensor is of
independent interest and needs to be recovered.

Given the observation model in (1), and the low-rank as well as sparse assumptions onW∗ and E∗
respectively, we propose the following convex minimization to estimate the unknown low-rank tensor
W∗ and the sparse corruption tensor E∗ simultaneously:

arg min
W,V
|||Y −W − V|||2F + λM |||W|||S1

+ µM |||V|||1 , (2)

where |||·|||S1
is tensor Schatten-1 norm [22], |||·|||1 is entry-wise `1 norm of tensors, and λM and µM

are positive regularization parameters. We call this optimization Robust Tensor Decomposition, which
can been seen as a generalization of convex tensor decomposition in [15] [20] [22]. The regularization
associated with the E encourages sparsity on the corruption tensor, where parameter µM controls the
sparsity level. In this paper, we focus on the following questions: under what conditions for the size
of the tensor, the rank of the tensor, and the fraction (sparsity level) of the corruption so that: (i) (2) is
able to recoverW∗ and V∗ with small estimator error? (ii) (2) is able to recover the exact rank of
W∗ and the support of V∗? We will present nonasymptotic error bounds to answer these questions.
Experiments on synthetic datasets validate our theoretical results.

The rest of this paper is arranged as follows. Related work is discussed in Section 2. Section 3
introduces the background and notations. Section 4 presents the main results. Section 5 provides
an ADMM algorithm to solve the problem, followed by the numerical experiments in Section 6.
Section 7 concludes this work with remarks.

2 Related Work

The problem of recovering the data under gross error has gained many attentions recently in matrix
decomposition. A large body of work have been proposed and analyzed statistically. For example,
[9] considered the problem of recovering an unknown low-rank and an unknown sparse matrix, given
the sum of the two matrices. [5] proposed a similar problem, namely robust principal component
analysis (RPCA), which studies the problem of recovering the low-rank and sparse matrices by
solving a convex program. [10] studied multi-task regression which decomposes the coefficient
matrix into two matrices, and imposes different group sparse regularization on two matrices. [25]
considered more general case, where the parameter matrix could be the superposition of more than
two matrices with different structurally constraints. Our paper extends [5] from two perspective: we
extend the problem from matrices to high-order tensors, and consider the additional noise setting.
We notice that [16] extended RPCA to tensors, which aims to recover the low-rank and sparse
tensors by solving a constrained convex program. However, our formulation departs from [16] in
that we consider not only the sparse corruption, but also the dense noise. We also note that low-rank
noisy matrix completion [17] and robust matrix decomposition [1] [12] have been studied in in
the high dimensional setting as well. Our model can be seen as the high-order extension of robust
matrix decomposition. This extension is nontrivial, because the treatment of the tensor trace norm
(Schatten-1 norm) is more complicated. More importantly, for the robust matrix decomposition
problem considered [1], only the sum of error bound of two matrices (low-rank matrix and the sparse
corruption matrix) can be obtained under the assumption of restricted strongly convexity. In contrast,
under a different condition, our analysis provides error bound for each tensor component (low-rank
tensor and the sparse corruption tensor) separately, making our results more appealing in practice
and of independent theoretical interest. Since the problem in [1] is a special case of our problem, our
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technical tool can be directly applied to their problem and yields new error bounds on the low-rank
matrix as well as the sparse corruption matrix separately.

3 Notation and Background

Before proceeding, we define our notation and state assumptions that will appear in various parts of
the analysis. For more details about tensor algebra, please refer to [14].

Scalars are denoted by lower case letters (a, b, . . .), vectors by bold lower case letters (a, b, . . .),
matrices by bold upper case letters (A,B, . . .), and high-order tensors by calligraphic upper case
letters (A,B, . . .). A tensor is a higher order generalization of a vector (first order tensor) and a matrix
(second order tensor). From a multi-linear algebra view, tensor is a multi-linear mapping over a set of
vector spaces. The order of tensor A ∈ Rn1×...×n2×...×nK is K, where nk is the dimensionality of
the k-th order. Elements of A are denoted as Ai1...ik...in , 1 ≤ ik ≤ nk. We denote the number of
elements in A by N =

∏K
k=1 nk.

The mode-k vectors of a K order tensor A are the nk dimensional vectors obtained from A by
varying index ik while keeping the other indices fixed. The mode-k vectors are the column vectors
of mode-k flattening matrix A(k) ∈ Rnk×(n1...nk−1nk+1...nK) that results by mode-k flattening the
tensor A. For example, matrix column vectors are referred to as mode-1 vectors and matrix row
vectors are referred to as mode-2 vectors.

The scalar product of two tensors A,B ∈ Rn1...n2...nK , is defined as 〈A,B〉 =∑
i1
. . .
∑
iK
Ai1...iKBi1...iK = vec(A)vec(B), where vec(·) is a vectorization. The Frobenius

norm of a tensor A is |||A|||F =
√
〈A,A〉.

There are multiple ways to define tensor rank. In this paper, following [22], we define the rank of
a tensor based on the mode-k rank of a tensor. More specifically, the mode-k rank of a tensor X ,
denoted by rankk(X), is the rank of the mode-k unfolding X(k) (note that X(k) is a matrix, so its
rank is well-defined). Based on mode-k rank, we define the rank of tensor X as r(X ) = (r1, . . . , rk)
if the mode-k rank is rk for k = 1, . . . ,K. Note that the mode-k rank can be computed in polynomial
time, because it boils down to computing a matrix rank, whereas computing tensor rank [14] is NP
complete.

Similarly, we extend the trace norm (a.k.a. nuclear norm) of matrices [19] to tensors. The overlapped
Schatten-1 norm is defined as |||X |||S1

= 1
K

∑K
k=1 ‖X(k)‖S1

, where X(k) is the mode-k unfolding
of X , and ‖ · ‖S1 is the Schatten-1 norm for a matrix, ‖X‖S1

=
∑r
j=1 σj(X), where σj(X) is the

j-th largest singular value of X. The dual norm of the Schatten-1 norm is Schatten-∞ norm (a.k.a.,
spectral norm) as ‖X‖S∞ = maxj=1,...,r σj(X).

By Hölder’s inequality, we have |〈W,X〉| ≤ ‖W‖S1
‖X‖S∞ . It is easy to prove a similar result for

the overlapped Schatten-1 norm and its dual norm. We have the following Hölder-like inequality [22]:

|〈W,X〉| ≤ |||W|||S1
|||X |||S∗1 ≤ |||W|||S1

|||X |||mean , (3)

where |||X |||mean := 1
K

∑K
k=1 ‖X(k)‖S∞ .

Moreover, we define `1-norm and `∞-norm for tensors that |||X |||1 =
∑n1

i1=1 . . .
∑nK
iK=1 |Xi1,...,iK |,

|||X |||∞ = max1≤i1≤n1
. . .max1≤iK≤nK |Xi1,...,iK |. By Hölder’s inequality, we have |〈W,X〉| ≤

|||W|||1 |||X |||∞, and the following inequality relates the overlapped Schatten-1 norm with the Frobe-
nius norm,

|||X |||S1
≤

K∑
k=1

√
rk |||X |||F . (4)

Let W∗ ∈ Rn1×...×nK be the low-rank tensor that we wish to recover. We assume that W∗ is
of rank (r1, . . . , rK). Thus, for each k, we have W∗

(k) = UkSkV
>
k , where Uk ∈ Rnk×rk and

Vk ∈ Rrk×nk are orthogonal matrices, which consist of left and right singular vectors of W∗
(k),

Sk ∈ Rrk×rk is a diagonal matrix whose diagonal elements are singular values. Let ∆ ∈ Rn1×...×nK
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be an arbitrary tensor, we define the mode-k orthogonal complement ∆′′k of its mode-k unfolding
∆(k) ∈ Rnk×N̄\k with respect to the true low-rank tensorW∗ as follows

∆′′k = (Ink −UkU
>
k )∆(k)(IN̄\k −VkV

>
k ). (5)

In addition ∆′k = ∆(k) −∆′′k is the component which has overlapped row/column space with the
unfolding of the true tensor W∗

(k). Note that the decomposition ∆(k) = ∆′k + ∆′′k is defined for
each mode.

In [18], the concept of decomposibility and a large class of decomposable norms are discussed
at length. Of particular relevance to us is the decomposability of the Schatten-1 norm and `1-
norm. We have the following equality, i.e., mode-k decomposibility of the Schatten-1 norm that
‖W∗

(k) +∆′′k‖S1
= ‖W∗

(k)‖S1
+‖∆′′k‖S1

, k = 1, . . . ,K. To note that the decomposibility is defined
on each mode. It is also easy to check the decomposibility of the `1-norm.

Let V∗ ∈ Rn1×...×nK be the gross corruption tensor that we wish to recover. We assume the the
gross corruption is sparse, in that the cardinality s = |supp(V∗)| of its support, S = supp(V∗) ={

(i1, i2, . . . , iK) ∈ [n1] × . . . × [nK ]|V∗i1,...,iK 6= 0
}
. This assumption leads to the inequality

between the `1 norm and the Forbenius norm that |||V∗|||1 ≤
√
s |||V∗|||F . Moreover, we have

|||V∗|||1 = |||V∗S |||1. For any D ∈ Rn1×...×nK , we have |||D|||1 = |||DS |||1 + |||DSc |||1 .

4 Main Results

To get a deep theoretical insight into the recovery property of robust tensor decomposition, we will
now present a set of estimation error bounds. Unlike the analysis in [1], where only the summation
of the estimation errors on the low-rank matrix and gross corruption matrix are analyzed, we aim
at obtaining the estimation error bounds on each tensor (the low-rank tensor and corrupted tensor)
separately. All the proofs can be found in the longer version of this paper.

Instead of considering the observation model in 1, we consider the following more general observation
model

yi = 〈W∗,Xi〉+ 〈V∗,Xi〉+ εi, i = 1, . . . ,M, (6)

where Xi can be seen as an observation operator, and εi’s are i.i.d. zero mean Gaussian noise with
variance σ2. Our goal is to estimate an unknown rank (r1, . . . , rk) of tensor W∗ ∈ Rn1×...×nK ,
as well as the unknown support of tensor V∗, from observations yi, i = 1, . . . ,M . We propose
the following convex minimization to estimate the unknown low-rank tensor W∗ and the sparse
corruption tensor V∗ simultaneously, with composite regularizers onW and V as follows:

(Ŵ, V̂) = arg min
W,V

1

2M
‖y − X(W + V)‖22 + λM |||W|||S1

+ µM |||V|||1 , (7)

where y = (y1, . . . , yM )> is the collection of observations, X(W) is the linear observation model
that X(W) = [〈W,X1〉, . . . , 〈W,XM 〉]>. Note that (2) is a special case of (7), where the linear
operator the identity tensor, we have yi as observation of each element in the summation of tensors
W∗ + V∗.
We also define y∗ = (y∗1 , . . . , y

∗
M )>, where y∗i = 〈W∗ + V∗,Xi〉, is the true evaluation. Due to the

noise of observation model, we have y = y∗ + ε. In addition, we define the adjoint operator of X as
X∗ : RM → Rn1×...×nK that X∗(ε) =

∑M
i=1 εiXi.

4.1 Deterministic Bounds

This section is devoted to obtain the deterministic bound of the residual low-rank tensor ∆ = Ŵ−W∗
and residual corruption tensor D = V̂ − V∗ separately, which makes our analysis unique.

We begin with a key technical lemma on residual tensors ∆ = Ŵ −W∗ and D = V̂ − V∗, obtained
from the convex problem in (7).

Lemma 1. Let Ŵ and V̂ be the solution of minimization problem (7) with λM ≥ 2 |||X∗(ε)|||mean/M ,
µM ≥ 2 |||X∗(ε)|||∞/M , we have
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1. rank(∆′k) ≤ 2rk.

2. There exist β1 ≥ 3 and β2 ≥ 3, such that
∑K
k=1 ‖∆′′k‖S1

≤ β1

∑K
k=1 ‖∆′k‖S1

and
|||DSc |||1 ≤ β2 |||DS |||1.

The lemma can be obtained by utilizing the optimality of Ŵ and V̂ , as well as the decomposibility of
Schatten-1 norm and `1-norm of tensors.

Also, we obtain the key property of the optimal solution of (7), presented in the following theorem.

Theorem 1. Let Ŵ and V̂ be the solution of minimization problem (7) with λM ≥
2 |||X∗(ε)|||mean/M , µM ≥ 2 |||X∗(ε)|||∞/M , we have

1

2M
‖X(∆ +D)‖22 ≤

3λM
2K

K∑
k=1

‖∆′k‖S1
+

3µM
2
|||DS |||1 . (8)

Theorem 1 provides a deterministic prediction error bound for model (7). This is a very general
result, and can be applied to any linear operator X, including the robust tensor decomposition case
that we are particularly interested in this paper. It also covers, for example, tensor regression, tensor
compressive sensing, to mention a few.

Furthermore, we impose an assumption on the linear operator and the residual low-rank tensor and
residue sparse corruption tensor, which generalized the restricted eigenvalue assumption [2] [10].

Assumption 1. Defining Ω = {(∆,D)|
∑K
k=1 ‖∆′′k‖S1

≤ β1

∑K
k=1 ‖∆′k‖S1

, |||DSc |||1 ≤
β2 |||DS |||1}, we assume there exist positive scalars κ1, κ2 that

κ1 = min
∆,D∈Ω

‖X(∆ +D)‖2√
M |||∆|||F

> 0, κ2 = min
∆,D∈Ω

‖X(∆ +D)‖2√
M |||D|||F

> 0.

Note that Assumption 1 is also related to restricted strong convexity assumption, which is proposed
in [18] to analyze the statistical properties of general M-estimators in the high dimensional setting.

Combing the results in Theorem 1 and Assumption 1, we have the following theorem, which
summarizes our main result.
Theorem 2. Let Ŵ, V̂ be an optimal solution of (7), and take the regularization parameters λM ≥
2 |||X∗(ε)|||mean/M , µM ≥ 2 |||X∗(ε)|||∞/M . Then the following results hold:∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
≤ 3

κ1

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)
, (9)

∣∣∣∣∣∣∣∣∣V̂ − V∗∣∣∣∣∣∣∣∣∣
F
≤ 3

κ2

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)
. (10)

Theorem 2 provides us with the error bounds of each tensor separately. Specifically, these bounds not
only measure how well our decomposition model can approximate the observation model defined
in (6), but also measure how well the decomposition of the true low-rank tensor and gross corruption
tensor is. When s = 0, our theoretical results reduce to that proposed in [22], which is a special case
of our problem, i.e., noisy low-rank tensor decomposition without corruption.

On the other hand, the results obtained in Theorem 2 are very appealing both practically and
theoretically. From the perspective of applications, this result is quite useful as it helps us to better
understand the behavior of each tensor separately. From the theoretical point of view, this result is
novel, and is incomparable with previous results [1][17] or simple generalization of previous results.

Though Theorem 2 has provided estimation error bounds of Ŵ and V̂ , it is unclear whether the rank
ofW∗ and the support of V∗ can be exactly recovered. We show that under some assumptions about
the true tensors, both of them can be exactly recovered.
Corollary 1. Under the same conditions of Theorem 2, if the following condition holds:

σrk(W∗
(k)) >

6(1 + β1)
∑K
k=1

√
2rk

κ1MK

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)
, (11)
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where σrk(W∗
(k)) is the rk-th largest singular value of W∗

(k), then

r̂k =

{
arg max

r
σr(Ŵ(k)) >

3(1 + β1)
∑K
k=1

√
2rk

κ1MK

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)}
recovers the rank of W∗

(k) for all k.

Furthermore, if the following condition holds:

min
i1,...,iK

|V∗i1,...,iK | >
6(1 + β2)

√
s

κ2M

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)
, (12)

then

Ŝ =

{
(i1, i2, . . . , iK) : V̂i1,...,iK >

3(1 + β2)
√
s

κ2M

(
1

K

K∑
k=1

λM
√

2rk
κ1

+
µM
√
s

κ2

)}
recovers the true support of V∗.

Corollary 1, basically states that, under the assumption that the singular values of the low-rank tensor
W∗, and the entry values of corruption tensor V∗ are above the noise level (e.g., (11) and (12)), we
can recover the rank and the support successfully.

4.2 Noisy Tensor Decomposition

Now we are going back to study robust tensor decomposition with corruption in (2), which is a special
case of (7), where the linear operator is identity tensor. As the linear operator X is a vectorization such
that M = N , and ‖X(∆ +D)‖2 = |||∆ +D|||F . In addition, it is easy to show that Assumption 1
holds with κ1 = κ2 = O(1/

√
N). It remains to bound |||X∗(ε)|||mean and |||X∗(ε)|||∞, as shown in

the following lemma [1] [24].
Lemma 2. Suppose that X : Rn1×···×nK → RN is a vectorization of a tensor. Then we have with
probability at least 1− 2 exp(−C(nk + N̄\k))− 1/N that

|||X∗(ε)|||mean ≤
σ

K

K∑
k=1

(
√
nk +

√
N̄\k

)
,

|||X∗(ε)|||∞ ≤ 4σ
√

logN,

where C is a universal constant.

With Theorem 2 and Lemma 2, we immediately have the following estimation error bounds for robust
tensor decomposition.
Theorem 3. Suppose that X : Rn1×···×nK → RN is a vectorization of a tensor. Then for the

regularization constants λN ≥ 2σ
∑K
k=1

(√
nk +

√
N̄\k

)
/(NK), µN > 8σ

√
logN/N , with

probability at least 1− 2 exp(−C(nk + N̄\k))− 1/N , any solution of (2) have the following error
bound: ∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
≤ 6

κ1

(
1

K

K∑
k=1

σ
∑K
k=1

(√
nk +

√
N̄\k

)√
2rk

κ1NK
+

4σ
√
s logN

κ2N

)
,

∣∣∣∣∣∣∣∣∣V̂ − V∗∣∣∣∣∣∣∣∣∣
F
≤ 6

κ2

(
1

K

K∑
k=1

σ
∑K
k=1

(√
nk +

√
N̄\k

)√
2rk

κ1NK
+

4σ
√
s logN

κ2N

)
.

In the special case that n1 = . . . = nK = n and r1 = . . . = rK = r, we have
∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
=

O
(
σ
√
rnK−1 + σ

√
Ks log n

)
and

∣∣∣∣∣∣∣∣∣V̂ − V∗∣∣∣∣∣∣∣∣∣
F

= O
(
σ
√
rnK−1 + σ

√
Ks log n

)
, which matches

the error bound of robust matrix decomposition [1] when K = 2.

Note that the high probability support and rank recovery guarantee for the special case of tensor
decomposition follows immediately from Corollary 1. Due to the space limit, we omit the result here.
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5 Algorithm

In this section, we present an algorithm to solve (2). Since (2) is a special case of (7), we consider
the more general problem (7). It is easy to show that (7) is equivalent to the following problem with
auxiliary variables Ψ,Φ:

min
W,V,Y,Z

1

2M
‖y − x>(w + v)‖22 +

λM
K

K∑
k=1

|||Ψk|||S1
+
µM
K

K∑
k=1

|||Φk|||1 ,

subject to Pkw = ψk,Pkv = φk,

where x,w,v,ψk,φk are the vectorizations of
∑M
i=1 Xi,W,V,Ψk,Φk respectively, and Pk is the

transformation matrix that change the order of rows and columns so that Pkw = ψk.

The augmented Lagrangian (AL) function of the above minimization problem with respect to the
primal variables (Wt,Vt) is given as follows:

Lη(W,V, {Ψk}Kk=1, {Φk}Kk=1, {αk}Kk=1, {βk}Kk=1)

=
1

2
‖y − x>(w + v)‖22 +

λMM

K

K∑
k=1

|||Ψk|||S1
+
µMM

K

K∑
k=1

|||Φk|||1

+η

(∑
k

(α>k (Pkw −ψk) +
1

2
‖Pkw −ψk‖22) +

∑
k

(β>k (Pkv − φk) +
1

2
‖Pkv − φk‖22)

)
,

where αt,βt are Lagrangian multiplier vectors, and η > 0 is a penalty parameter.

We then apply the algorithm of Alternating Direction Method of Multipliers (ADMM)
[3, 20] to solve the above optimization problem. Starting from initial points
(w0,v0, {Ψ0

k}Kk=1, {Φ0
k}Kk=1, {α0

k}Kk=1, {β0
k}Kk=1), ADMM performs the following updates

iteratively:

wt+1 =

(
(x>y − x>xvt) + η

K∑
k=1

P>k (ψtk −αtk)

)
/ (1 + ηK) ,

vt+1 =

(
(x>y − x>xwt+1) + η

K∑
k=1

P>k (φtk − βtk)

)
/ (1 + ηK) ,

Ψt+1
k = proxtrλM

ηK
(Pkw

t+1 +αtk), Φt+1
k = prox`1µM

ηK

(Pkv
t+1 + βtk) k = 1, . . . ,K,

αt+1
k = αt+1

k + (Pkw
t+1 −ψt+1

k ) βt+1
k = βt+1

k + (Pkv
t+1 − φt+1

k ) k = 1, . . . ,K,

where proxtrγ (·) is the soft-thresholding operator for trace norm, and prox`1γ (·) is the soft-thresholding
operator for `1 norm [4, 11]. The stopping criterion is that all the partial (sub)gradients are (near)
zero, under which condition we obtain the saddle point of the augmented Lagrangian function. Since
(7) is strictly convex, the saddle point is the global optima for the primal problem.

6 Experiments

In this section, we conduct numerical experiments to confirm our analysis in previous sections. The
experiments are conducted under the setting of robust noisy tensor decomposition.

We follow the procedure described in [22] for the experimental part. We randomly generate low-rank
tensors of dimensions n(1) = (50, 50, 20) ( results are shown in Figure 1(a, b, c)) and n(2) =
(100, 100, 50)( results are shown in Figure 1(d, e, f)) for various rank (r1, r2, ..., rk). Given a specific
rank, we first generated the ”core tensor” with elements r1 × . . . × rK from the standard normal
distribution, and then multiplied each mode of the core tensor with an orthonormal factor randomly
drawn from the Haar measure. For the gross corruption, we randomly generated the sparsity of
the corruption matrix s, and then randomly selected s elements in which we put values randomly
generated from uniform distribution. The additive independent Gaussian noise with variance σ2
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Figure 1: Results of robust noisy tensor decomposition with corruption, under different sizes.

was added to the observations of elements. We use the alternating direction method of multipliers
(ADMM) to solve the minimization problem (2). The whole experiments were repeated 50 times and
the averaged results are reported.

The results are shown in Figure 1, where Nr =
∑K
k=1

√
rk/K, and Ns =

√
s. In Figure 1(a, d), we first fix

Nr at different values, and then draw the value of
∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
/N against Ns. Similarly, in Figure 1(b,

e), we first fix Ns at different values, and then draw
∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
/N against Nr. In Figure 1(c, f), we

study the values of κ1 and κ2 at various settings. We can see that
∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣

F
/N scales linearly

with both Ns and Nr. Similar scalings of
∣∣∣∣∣∣∣∣∣V̂ − V∗∣∣∣∣∣∣∣∣∣

F
/N can be observed, hence we omit them due

to space limitation. We can also observe from Figure 1(c, f) that, under various settings, κ1 ≈ κ2,
this finding is consistent with the fact that

∣∣∣∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣∣∣∣
F
/N ≈

∣∣∣∣∣∣∣∣∣V̂ − V∗∣∣∣∣∣∣∣∣∣
F
/N. All these results are

consistent with each other, validating our theoretical analysis.

7 Conclusions

In this paper, we analyzed the statistical performance of robust noisy tensor decomposition with
corruption. Our goal is to recover a pair of tensors, based on observing a noisy contaminated version
of their sum. It is based on solving a convex optimization with composite regularizations of Schatten-1
norm and `1 norm defined on tensors. We provided a general nonasymptotic estimator error bounds on
the underly low-rank tensor and sparse corruption tensor. Furthermore, the error bound we obtained
in this paper is new, and non-comparable with previous theoretical analysis.
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