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1 Affinity Propagation Outlier Clustering

The extension to affinity propagation [1], based on the binary variable model [2], solves the integer
program of Section 2 by representing it as a factor graph, shown in Figure 1. This factor graph is
solved using belief propagation and is based on the following energy function:

max
∑
ij

Sij(xij) +
∑
j

Ej(x:j) +
∑
i

Ii(xi:, oi:) +
∑
k

Pk(o:k), (1)

where

Sij(xij) =

{
−ci if i = j

−dij otherwise
(2)

Ii(xi:, oi:) =

{
0 if

∑
j xij +

∑
k oik = 1

−∞ otherwise
(3)

Ej(x:j) =

{
0 if xjj = maxi cij
−∞ otherwise

(4)

Pk(o:k) =

{
0 if

∑
i oik = 1

−∞ otherwise
(5)

with xi: = xi1, . . . , xiN . Since we use the max-sum algorithm we maximise the energy function
and use negative distances. The three constraints can be interpreted as follows:

1. 1-of-N Constraint (Ii). Each data point has to choose exactly one exemplar or be declared
as an outlier.

2. Exemplar Consistency Constraint (Ej). For point i to select point j as its exemplar, point j
must declare itself an exemplar.

3. Select ` Outliers Constraint (Pk). For every outlier selection exactly one point is assigned.

These constraints are enforced by associating an infinite cost with invalid configurations,thus result-
ing in an obviously suboptimal solution.

The energy function is optimised with the max-sum algorithm [3], which allows the recovery of the
maximum a posteriori (MAP) assignments of the xij and oik variables. The algorithm works by
exchanging messages between nodes in the factor graph. In their most general form these messages
are defined as follows:

µv→f (xv) =
∑

f∗∈ne(v)\f

µf∗→v(xv), (6)

µf→v(xv) = max
x1,...,xM

[
f(xv, x1, . . . , xM ) +

∑
v∗∈ne(f)\v

µv∗→f (xv∗)
]
, (7)
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Figure 1: (a) Messages exchanged by the APOC graphical model. xij represents the clustering
choice whereas oik represents the outlier choice. (b) Graphical model of APOC. The left part is
responsible for the clustering of the data, while the right part is responsible for the outlier selection.
These two parts interact with each other via the I factor nodes.

Algorithm 1: apoc(S, `)
foreach i, j ∈ {1, . . . , N} do

αij ← 0;
ρij ← 0;

end
foreach i ∈ {1, . . . , N}, k ∈ {1, . . . , `} do

λik ← 0;
ωik ← median(S);

end
repeat

update ρ according to Eq. (8);
update α according to Eq. (9);
update λ according to Eq. (10);
update ω according to Eq. (11);

until convergence;
O ← extract outliers;
E ← extract exemplars;
A← find exemplar assignments;

where µv→f (x) is the message sent from node v to factor f , µf→v(xv) is the message from factor
f sent to node v, ne() is the set of neighbours of the given factor or node and xv is the value of node
v.

The messages exchanged by APOC are shown in Figure 1a. We can see that each node xij is
connected to three factors: Sij , Ii and Ej whereas outlier nodes oik are connected to only two, Ii
and Pk. Messages ρij , βij , τik and ξik are sent from nodes to factors and derived using Eq. (6). The
other five messages sij , αij , ηij , λik and ωik are derived with Eq. (7) since they are sent from a factor
to a node. Since only binary variables are involved it is sufficient to compute the difference between
the two variable settings. Combining these messages we obtain the final set of update equations as:

ρij = sij +min

[
−max

t 6=j
(αit + sit),−max

t
(ωit)

]
(8)

αij =

{∑
t6=j max(0, ρtj) i = j

min
[
0, ρjj +

∑
t/∈{i,j} max(0, ρtj)

]
i 6= j

(9)

λik = min

[
−max

t
(αit + sit),−max

t 6=k
(ωti)

]
(10)

ωik = −max
t6=i

(λtk) (11)
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The above equations show how to update the messages, however, we still need to explain how to
initialise the messages, determine convergence and extract the MAP solution. First, it is important
to set the diagonal entries of S properly. Typically using Sii = θ ∗ median(S) is a good choice,
with θ ∈ [1, 30]. The messages αij , ρij and λik are initialised to 0 and ωik to the median of S. Once
the messages are initialised we update them in turn with damping until we achieve convergence.
Convergence is achieved when the energy of the solution is not changing drastically over a few
iterations. The outliers are determined as the ` points with the largest values of maxk(λik + ωik).
From the remaining points the exemplars are then selected as the points for which (αii + ρii) > 0
is true. All other points i are assigned to the exemplar e satisfying arg maxe(αie + ρie). This
entire process is shown in Algorithm 1, where we first initialise the messages, then update them
until convergence and finally extract the MAP solution. The pseudo code in Algorithm 1 provides a
conceptual overview of the steps performed during clustering.
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