
Computing Nash Equilibria in Generalized
Interdependent Security Games: Supplementary

Material

Hau Chan Luis E. Ortiz
Department of Computer Science, Stony Brook University
{hauchan,leortiz}@cs.stonybrook.edu

A Uniform-transfer α-IDS games: lemmas

Under the uniform-transfer α-IDS games, the overall safety function, given a joint mixed-strategy
x ∈ [0, 1]n, is s(x) =

∏n
i=1[1− (1− xi)δi]. Now, we can determine the best response of a SC (or

SS) player exactly based solely on the value of ∆sc
i (1− (1−ai)δi) (or ∆ss

i (1− (1−ai)δi)) relative
to s(x).

In the following, we assume, without loss of generality, that for all players i, Ri > 0, δi > 0,
pi > 0, and αi > 0. Given a joint mixed-strategy x, we partition the players by type w.r.t. x: let
I ≡ I(x) ≡ {i | xi = 1}, N ≡ N(x) ≡ {i | xi = 0}, and P ≡ P (x) ≡ {i | 0 < xi < 1} be
the set of players that fully invest in protection, do not invest in protection, and partially invest in
protection, respectively.

A.1 Uniform-transfer SC α-IDS games

Lemma 1 (Ordering Lemma) Suppose x is a NE of a uniform-transfer SC α-IDS game. Then for
any i ∈ I (investing players), any j ∈ P (partially investing players), and any k ∈ N (not investing
players), then

∆sc
i ≤ ∆sc

j

∆sc
i ≤ (1− δk)∆sc

k < ∆sc
k

(1− δj)∆sc
j ≤ (1− δk)∆sc

k

Proof The inequalities follow immediately by using the overall safety function to compare the play-
ers in I , P , and N . ut

The following Lemma specifies the strategies of the players in the partially investing set.

Lemma 2 (Partial Investment Lemma) Suppose x is a NE of a uniform-transfer SC α-IDS game.
For any j ∈ P ,

1. If |P | = 1, then xj ∈ 1
δ ( 1

∆sc
j
V − (1− δj))

2. if |P | > 1, then xj = 1
δ ( 1

∆sc
j
V ∗ − (1− δj))

where V = [maxi∈I ∆sc
i ,mink∈N (1− δk)∆sc

k ] and V ∗ =
( ∏

j∈P ∆sc
j∏

k∈N (1−δk)

) 1
|P |−1

.

Proof Suppose that |P | = 1. By the best-response condition ∆sc
j =

∏
l∈N (1− δl). Moreover

∀ i ∈ I , ∆sc
i ≤ (1− (1− xj)δj)

∏
l∈N (1− δl)
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and

∀ k ∈ N , (1− δk)∆sc
k ≥ (1− (1− xj)δj)

∏
l∈N (1− δl).

If we solve for xj , we can obtain the values that xj can take at an equilibrium.

Suppose that |P | > 1. By the best-response condition

∆sc
j =

∏
p∈P−{j}(1− (1− xp)δp)

∏
l∈N (1− δl) ∀j ∈ P .

Furthermore, for j ∈ P ,∏
k∈P−j ∆sc

k = (1− (1− xj)δj)|P |−1(
∏
p∈P−j(1− (1− xp)δp))|P |−2(

∏
l∈N (1− δl))|P |−1

It follows that ∏
k∈P−j ∆sc

k

(
∏
p∈P−j(1− (1− xp)δp))|P |−2(

∏
l∈N (1− δl))|P |−1

= (1− (1− xj)δj)|P |−1

∏
k∈P ∆sc

k

(
∏
p∈P−j(1− (1− xp)δp))|P |−1(

∏
l∈N (1− δl))|P |

= (1− (1− xj)δj)|P |−1

(

∏
k∈P ∆sc

k

(
∏
p∈P−j(1− (1− xp)δp))|P |−1(

∏
l∈N (1− δl))|P |

)
1

|P |−1 = (1− (1− xj)δj)

(

∏
k∈P ∆sc

k∏
l∈N (1− δl)

)
1

|P |−1
1

(
∏
p∈P−j(1− (1− xp)δp))

∏
l∈N (1− δl)

= (1− (1− xj)δj)

(

∏
k∈P ∆sc

k∏
l∈N (1− δl)

)
1

|P |−1
1

∆sc
j

= (1− (1− xj)δj)

The result follows from solving for xj . ut

A.2 Uniform-transfer SS α-IDS games

Lemma 3 (Partial Investment Lemma) Suppose x is a NE of a uniform-transfer SS α-IDS game.
For any j ∈ P ,

1. If |P | = 1, then xj ∈ 1
δ ( 1

∆ss
j
V − (1− δj))

2. if |P | > 1, then use Lemma 2 part 2.

where V = [maxk∈N (1− δk)∆ss
k ,mini∈I ∆ss

i ].

Proof The proof is similar to the one in Lemma 2. ut

B Pseudocode for computing all NE in uniform-transfer α-IDS games

This section contains the pseudocode of the algorithms described in the main body of the paper.
In particular, Algorithm 1 and Algorithm 2 are algorithms to compute all NE in uniform-transfer
SC α-IDS games and uniform-transfer SS α-IDS games, respectively. The subroutine TestNash of
Algorithm 1 is outlined in Algorithm 3. The subroutine TestNash of Algorithm 2 can be constructed
similarly from Algorithm 3 where it will use Lemma 3.

The running time of Algorithm 1 and Algorithm 2 is O(n3
sc) and O(n3

ss), respectively, where the
TestNash subroutine takes O(n), and line 7 of the algorithms runs in O(n(1 + 2 + ...+n) = O(n3)
times for n = nsc or n = nss.
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Algorithm 1: Compute all Nash equilibria of SC α-IDS games
Input : An instance of n-players SC α-IDS Game
Output: S - The set of all Nash equilibria of the input game

1 I ← {1, ..., n}, P ← {}, N ← {}
2 S ← TestNash(I, P,N)
3 Order (i1, i2, ..., in) such that ∆sc

i1
≥ ... ≥ ∆sc

in
4 foreach k = 1, ..., n do
5 P ← P ∪ {ik}, I ← I − {ik}, N ← {}, S ← S

⋃
TestNash(I, P,N)

6 Let P ′ ← P and order (j1, ..., jk) such that (1− δj1)∆sc
j1
≥ ... ≥ (1− δjk)∆sc

jk

7 foreach m = 1, ..., k do
8 N ← N ∪ {jm}, P ′ ← P ′ − {jm} S ← S

⋃
TestNash(I, P ′, N)

9 end foreach
10 end foreach
11 return S

Algorithm 2: Compute All Nash Equilibrium of SS consistent with Ordering 1
Input : An instance of n-players SS α-IDS Game
Output: S - A set of all Nash Equilibrium that is consistent with Ordering 1

1 I ← {}, P ← {}, N ← {1, ..., n}
2 S ← TestNash(I, P,N, S)
3 Order (i1, i2, ..., in) such that (1− δi1)∆ss

i1
≥ ... ≥ (1− δin)∆ss

in
4 foreach k = 1, ..., n do
5 P ← P ∪ {ik}, N ← N − {ik}, I ← {}, S ← TestNash(I, P,N, S)
6 Let P ′ ← P and order (j1, ..., jk) such that ∆ss

j1
≥ ... ≥ ∆ss

jk

7 foreach m = 1, ..., k do
8 I ← I ∪ {jm}, P ′ ← P ′ − {jm} S ← TestNash(I, P ′, N, S)
9 end foreach

10 end foreach
11 return S

Algorithm 3: TestNash subroutine
Input : A partition of the players into I, P, and N
Output: S - The set of all Nash equilibria consistent with the input partition

1 ∀i ∈ I , xi ← 0, ∀k ∈ N , xk ← 0
2 if |P | = 1 and j ∈ P (Lemma 2 Part 1) then
3 Let U ′ = U ∩ (0, 1)
4 if ∆sc

j =
∏
k∈N (1− δk) and U ′ 6= ∅ then

5 S ← {y | yj ∈ U ′, y−j = x−j}
6 end if
7 else Lemma 2 Part 2
8 ∀j ∈ P , compute xj
9 if x is an MSNE of the input game then

10 S ← {x}
11 end if
12 end if
13 return S

C Computing all MSNE of arbitrary α-IDS games

C.1 Proof sketch of Theorem 6

In the following, we will show that determining whether there exists a PSNE consistent with a
partial-assignment of the actions to some players is NP-complete, even if the transfer probability
takes only two values: δi ∈ {0, q} for q ∈ (0, 1).

3



Figure 1: 3-SAT-induced α-IDS game graph
More specifically, this section contains proof to show that the pure-Nash extension problem for
n-player SC α-IDS and n-player SS α-IDS games are NP-complete.

The pure-Nash-extension problem [1] for binary-action n-player games that takes as input a descrip-
tion of the game and a partial assignment a ∈ {0, 1, ∗}n. We want to know whether there is a
complete assignment b ∈ {0, 1}n consistent with a.

Theorem 1 (Theorem 6 of the Main Paper) The pure-Nash extension problem for n-player SC α-
IDS games is NP-complete.

Proof (Sketch) We reduce from Monotone 1 in 3-SAT [2]. The big idea is to consider a bipartite
graph structure (Figure C.2) between the clauses and the variables (all direct edges from variables
to the corresponding clause players with transfer probability q > 0). We introduce two players (ai
and bi) for each clause i. Player ai invests if at least one of its variable players invest. Player bi
invests if at least two of its variable players invest. For clause players ai and bi, we find Rj > 0 and
αj > 1− pj for j ∈ {ai, bi} such that (1− q)2 > ∆sc

ai > (1− q)3 and (1− q) > ∆sc
bi
> (1− q)2,

respectively. The variable players would be indifferent between invest and not invest. For each
variable player i, we just need to make sure that ∆sc

i = 1 (or Ri = pi). Finally, we give partial
assignments to the clauses player where ai invests and bi not invest to guarantee that exactly one
invests and solution to Monotone 1 in 3-SAT. ut

C.2 Proof sketch of Theorem 7

Theorem 2 (Theorem 7 of the Main Paper) The pure-Nash extension problem for n-player SS α-IDS
games is NP-complete.

Proof (Sketch) This is similar to the proof of Theorem 6 except the best-response of the players and
using the game graph as in Figure C.2. For each clause i, we introduce two clauses players ai and
bi. Player ai invests if at least two of its variable players do not invest. Player bi invests if at least
three (or all three) of its variable players do not invest. Mainly, find Rj > 0 and αj < 1 − pj for
j ∈ {ai, bi} such that (1 − q) > ∆ss

ai > (1 − q)2 and (1 − q)2 > ∆ss
bi
> (1 − q)3. The variable

players would be indifferent between invest and not invest. We give partial assignment to the clauses
player where ai invests and bi not invest to guarantee that exactly one invests. ut

D On real-world graph dataset used for the experiments

Table 1 shows the exact number of nodes and edges for each of the graphs from the real-world
datasets we used for our experiments.
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Table 1: Exact number of nodes and edges for different real-world graphs

Graph Nodes Edges
Karate Club 34 78

Les Miserables 77 254
College Football 115 613

Power Grid 4941 6594
Wiki Vote 7115 103689

Email Enron 36692 367662
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