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A Uniform-transfer o-IDS games: lemmas

Under the uniform-transfer a-IDS games, the overall safety function, given a joint mixed-strategy
x € [0,1]",is s(x) =[]\, [1 — (1 — z;)d;]. Now, we can determine the best response of a SC (or
SS) player exactly based solely on the value of A(1— (1 —a;)d;) (or A?*(1—(1—a;)d;)) relative
to s(x).

In the following, we assume, without loss of generality, that for all players i, R; > 0, §; > 0,
p; > 0, and «; > 0. Given a joint mixed-strategy x, we partition the players by type w.r.t. x: let
I=Ix)={i|z;=1}, N=Nx)={i|x; =0}, andP=Px)={i | 0 < z; < 1} be
the set of players that fully invest in protection, do not invest in protection, and partially invest in
protection, respectively.

A.1 Uniform-transfer SC o-IDS games
Lemma 1 (Ordering Lemma) Suppose x is a NE of a uniform-transfer SC a-IDS game. Then for

any i € I (investing players), any j € P (partially investing players), and any k € N (not investing
players), then

Afc S A;C
ASC < (1= 6,) AL < Ase
(1—=0;)A5 < (1 —0)ASS

Proof The inequalities follow immediately by using the overall safety function to compare the play-
ersin I, P,and N. O

The following Lemma specifies the strategies of the players in the partially investing set.

Lemma 2 (Partial Investment Lemma) Suppose x is a NE of a uniform-transfer SC a-IDS game.
Forany j € P,

L If|P| =1, thenx; € §(5=V — (1—-6;))

2. ifIP| > 1 then &; = 3(Z=V" = (1)
J

sc 1
where V = [max;er A, mingen (1 — 0)Aj¢] and V* = (%) e

Proof Suppose that | P| = 1. By the best-response condition Aj¢ =[], (1 — ;). Moreover

Viel, Aj < (1—(1—;)0;) [[1en(1—01)



and
VkeN, (1 — 51€)AZC > (1 — (1 — Qij)éj) HleN(l — 6l>-

If we solve for x;, we can obtain the values that z; can take at an equilibrium.

Suppose that | P| > 1. By the best-response condition
Aic = HpGP—{j}(l - (1 - xp)ép) HleN(l - 51) VjeP.
Furthermore, for j € P,

hep—; A% = (1= 1= 27)8) 17 (T pepy (1 = (1= 2p)0)) 172 (e (1 = a0))1 71

It follows that

(Mpepy(1 = (1= gﬁgif—zc@em —syyPrT = (= (@ e)s)
(Mpep—;(1— (1~ gfi];)ﬁc—l(ﬂlejv(l T G G LD
Mo a-a- Efgsﬁcwnma ) = (1= (= 2)8)
<nf£’“585§>>1’“ (Myer (- (- T oy —ay ~ (0 o))
(M) Pl Algc = (11— (1-2))5)
The result follows from solving for ;. -

A.2 Uniform-transfer SS «-IDS games

Lemma 3 (Partial Investment Lemma) Suppose x is a NE of a uniform-transfer SS a-IDS game.
Forany j € P,

1 If|[P| =1, thenz; € $(2=V — (1 —6;))
J
2. if |P| > 1, then use Lemma2|part 2.
where V = [maxgen (1 — ;) A%, min;ey AZ®].

Proof The proof is similar to the one in Lemma |2} O

B Pseudocode for computing all NE in uniform-transfer o-IDS games

This section contains the pseudocode of the algorithms described in the main body of the paper.
In particular, Algorithm [I| and Algorithm [2| are algorithms to compute all NE in uniform-transfer
SC a-IDS games and uniform-transfer SS a-IDS games, respectively. The subroutine TestNash of
Algorithm([T]is outlined in Algorithm[3] The subroutine TestNash of Algorithm[2]can be constructed
similarly from Algorithm 3] where it will use Lemma 3]

The running time of Algorithm (1] and Algorithm [2]is O(n3,.) and O(n?,), respectively, where the
TestNash subroutine takes O(n), and line 7 of the algorithms runs in O(n(1+2+...+n) = O(n?)
times for n = ng. or n = ng,.



NN R W N =

<

10
11

NI N 7 T TV SR

-
-

Algorithm 1: Compute all Nash equilibria of SC «-IDS games

Input : An instance of n-players SC a-IDS Game

Output: S - The set of all Nash equilibria of the input game

I—{1,.,n}, P+« {},N«<{}

S < TestNash(I, P, N)

Order (71,142, ..., i) such that A7¢ > ... > AZ°

foreach k =1, ...,ndo
P+ PU{ig}h I+ I—{ix}, N+ {}, S+ S|JTestNash(I, P,N)
Let P' - P and order (j1, ..., ji) such that (1 — 6;, ) A3 > ... > (1 — d;,)A3¢
foreachm =1, ...,k do

N+~ NU{jm}, P < P' —{jm} S < S TestNash(I, P’', N)

end foreach

end foreach

return S

Algorithm 2: Compute All Nash Equilibrium of SS consistent with Ordering|[I]

Input : An instance of n-players SS a-IDS Game
Output: S - A set of all Nash Equilibrium that is consistent with Ordering|[]
I+ {},P+<{},N«<{l,..,n}
S < TestNash(/, P, N, S)
Order (71,12, ..., 15 ) such that (1 — &;, )AF* > ... > (1 — 0;,)AF°
foreach k =1,...,n do
P+ PU{ix}, N < N —{ig}, I < {}, S < TestNash(I, P, N, S)
Let P’ < P and order (jy, ..., jx) such that A% > > A%
foreachm =1, ...,k do
I+ ITU{jm}, P < P —{jm} S < TestNash(I, P’ N, S)
end foreach
end foreach
return S

Algorithm 3: TestNash subroutine

Input : A partition of the players into I, P, and N
Output: S - The set of all Nash equilibria consistent with the input partition

Viel,z;+ 0,Vke N,z <0
if[Pl=1andje P (LemmaPart 1) then
LetU' =UnN(0,1)
if A% = [[,cn(1—0x) and U’ # () then
S {yly; €Uy ;=x_;}
end if
else Lemma 2] Part 2
Vj € P, compute x;
if x is an MSNE of the input game then
S« {x}
end if
end if
return S

C Computing all MSNE of arbitrary o-IDS games

C.1 Proof sketch of Theorem

In the following, we will show that determining whether there exists a PSNE consistent with a
partial-assignment of the actions to some players is NP-complete, even if the transfer probability
takes only two values: d; € {0, ¢} for ¢ € (0, 1).



Clause i Clause j

Figure 1: 3-SAT-induced «-IDS game graph
More specifically, this section contains proof to show that the pure-Nash extension problem for
n-player SC a-IDS and n-player SS a-IDS games are NP-complete.

The pure-Nash-extension problem [1] for binary-action n-player games that takes as input a descrip-
tion of the game and a partial assignment a € {0,1,*}™. We want to know whether there is a
complete assignment b € {0, 1}" consistent with a.

Theorem 1 (Theorem [6] of the Main Paper) The pure-Nash extension problem for n-player SC a-
IDS games is NP-complete.

Proof (Sketch) We reduce from Monotone 1 in 3-SAT [2]. The big idea is to consider a bipartite
graph structure (Figure [C.2)) between the clauses and the variables (all direct edges from variables
to the corresponding clause players with transfer probability ¢ > 0). We introduce two players (a;
and b;) for each clause 7. Player a; invests if at least one of its variable players invest. Player b;
invests if at least two of its variable players invest. For clause players a; and b;, we find ; > 0 and
aj > 1 —pjfor j € {a;,b;} such that (1 — q)* > A3 > (1 —¢)* and (1 — ¢q) > A > (1 —q)?,
respectively. The variable players would be indifferent between invest and not invest. For each
variable player ¢, we just need to make sure that A7 = 1 (or R; = p;). Finally, we give partial
assignments to the clauses player where a; invests and b; not invest to guarantee that exactly one
invests and solution to Monotone 1 in 3-SAT. a

C.2 Proof sketch of Theorem[7]

Theorem 2 (Theorem[/|of the Main Paper) The pure-Nash extension problem for n-player SS o-IDS
games is NP-complete.

Proof (Sketch) This is similar to the proof of Theorem|6|except the best-response of the players and
using the game graph as in Figure For each clause 7, we introduce two clauses players a,; and
b;. Player a; invests if at least two of its variable players do not invest. Player b; invests if at least
three (or all three) of its variable players do not invest. Mainly, find R; > 0 and a; < 1 — p; for
j € {as,b;} such that (1 — ¢) > A3 > (1 —¢)* and (1 — ¢)* > Aj* > (1 — ¢). The variable
players would be indifferent between invest and not invest. We give partial assignment to the clauses
player where a; invests and b; not invest to guarantee that exactly one invests. O

D On real-world graph dataset used for the experiments

Table [T] shows the exact number of nodes and edges for each of the graphs from the real-world
datasets we used for our experiments.



Table 1: Exact number of nodes and edges for different real-world graphs

Graph Nodes | Edges
Karate Club 34 78
Les Miserables 77 254

College Football 115 613

Power Grid 4941 6594
Wiki Vote 7115 | 103689
Email Enron 36692 | 367662
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