
Supplementary Information for Fast and Robust Least Squares
Estimation in Corrupted Linear Models

Here we collect supplementary technical details, discussion and empirical results which support the
results presented in the main text.

SI.1 Software

We have made available a software package available for Python which implements

• IWS-LS,

• aIWS-LS and

• aRWS-LS,

along with the methods we compare against

• SRHT-LS and

• ULURU.

The software is available at http://people.inf.ethz.ch/kgabriel/software.html.

SI.2 Approximate Influence Weighted Algorithm

Here we present a detailed description of the approximate influence weighted subsampling
(aIWS-LS) algorithm. Steps 2, 3 and 4 are required for the approximate leverage computation.
Step 3 could be replaced with the QR decomposition.

Algorithm 3 Approximate influence weighted subsampling (aIWS-LS).
Input: Data: Z, y

1: Solve

b�SRHT = argmin� k⇧
1

· y � ⇧
1

· Z�k

2

2: SVD: (U,⌃,V) = ⇧
1

· Z {Compute basis for randomized leverage approximation.}
3: R�1

= V⌃�1

4: ˜U = ZR�1

· ⇧
2

5: for i = 1 . . . n do
6: ˜li = k

˜Uik

7: ẽi = yi � zib�SRHT

8: ˜di = ẽ2i
˜li/(1 �

˜li)
2

9: end for
10: Sample rows (

˜Z,

˜y) of (Z, y) proportional to

1

˜d
i

11: Solve

b�aIWS = argmin� k

˜y �

˜Z�k

2

Output: b�aIWS

SI.3 Leverage and Influence

Here we provide detailed derivations of leverage and influence terms as well as the full statement and
proofs of finite sample bounds under the sub-Gaussian design and corrupted design models which
are abbreviated in the main text as Lemmas 5, 6, 7, and 8.

Here we provide a full derivation of the leave-one-out estimator of b� which appears in less detail
in [2].
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Proposition 3 (Derivation of b��i ). Defining ei = ŷi � yi and ⌃ = X>X

b��i =
�

⌃ � x>
i xi

��1

�

X>y � x>
i yi
�

=

✓

⌃�1

+

⌃�1xix
>
i ⌃

�1

1 � li

◆

�

X>y � x>
i yi
�

=

b� � ⌃�1x>
i

✓

yi +
xi⌃

�1Xy � xi⌃
�1x>

i yi
1 � li

◆

=

b� � ⌃�1x>
i

✓

yi +
ŷi � liyi
1 � li

◆

=

b� � ⌃�1x>
i

✓

yi +
ei

1 � li
�

yi(1 � li)

1 � li

◆

=

b� �

⌃�1x>
i ei

1 � li

Where the first equality comes from a straightforward application of the Sherman Morrison formula.

Here we provide a derivation of the leave-one-out estimator in the corrupted model where the point
we removed is corrupted.

Proposition 4 (Derivation of b��m). By proposition 3. Defining

em = ŷm � ym = (xm +wm)

b� � ym and

lm = (xm +wm)⌃�1

(xm +wm)

>

where ⌃ = Z>Z, we have that

b��m =

b� �

⌃�1

(xm +wm)

>
em

1 � lm
.

SI.3.1 Results for Sub-Gaussian random design

Lemma 5 (Leverage). The leverage of a non-corrupted point is bounded by

li  �2

x · O
�

(p/
p

n)2
�

(9)

where the exact form of the O
�

(p/
p

n)2
�

term is given in the supplementary material.

Lemma 6 (Influence). Defining E := k

b�OLS � �k, the influence of a non-corrupted point is

di  Ci

�

�x�✏ + �2

xE
�

. (10)

The Ci term is proportional to log p
p

pk⌃�1

k/(1 � li).

Proof of Lemma 5. Lemma 5 states

li  �2

x ·

✓

p+ 2 log p+ 2

p

p log p
p

n � C
p

p �

p

log p

◆

2

.

From the Eigen-decomposition, ⌃ = V⇤V>. Define A = ⇤�1/2V such that A>A = ⌃�1. We
have

li = xi⌃
�1x>

i

= kAx>
i k

2

Since x and w are sub-Gaussian random vectors so the above quadratic form is bounded by Lemma
14, setting the parameter t = log p. We combine this with the following inequalities

q

tr

�

⌃�2

�

= k⌃�1

kF 

p

pk⌃�1

k =

p

p�
1

(A)

2
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and
tr

�

⌃�1

�

= kAk

2

F  (

p

pkAk)

2

= p�
1

(A)

2

which relate the Frobenius norm with the spectral norm. We also make use of the relationship
�n(Z)

�1

= �
1

(A) where Z = X+W to obtain

kAxk

2

 �2

x�n(Z)
�2

⇣

p+ 2 log p+ 2

p

p log p
⌘

which holds with high probability.

In order for this bound to not be vacuous in our application, it must be smaller than 1. In order
to ensure this, we need bound �n(Z)

�1 using Lemma 15 and setting ⌧ =

p

c
0

log p to obtain the
following which holds with high probability

kAxk

2

 �2

x

✓

p+ 2 log p+ 2

p

p log p
p

n � C
p

p � ⌧

◆

2

 �2

x

✓

p+ 2 log p+ 2

p

p log p
p

n � C
p

p �

p

log p

◆

2

.

Proof of Lemma 6. Defining ⌃ = Z>Z , Lemma 6 states

k

b��i �

b�k 

k⌃�1

k

1 � li

⇣

�x�✏ + 2�2

xk� �

b�k

⌘

p

p log p.

Using Proposition 3 we have

k

b��i �

b�k =

1

1 � li
k⌃�1x>

i eik

=

1

1 � li
k⌃�1x>

i

⇣

✏+ xi

⇣

� �

b�
⌘⌘

k



1

1 � li
k⌃�1

kkx>
i ✏+ x>

i xi

⇣

� �

b�
⌘

k



1

1 � li
k⌃�1

k

⇣

kx>
i ✏k + kx>

i xi(� �

b�)k
⌘

.

Using Corollary 12 to bound kx>
i ✏k and kx>

i xi(� �

b�)k (since for these terms n = 1 and so
Lemma 11 does not immediately apply) completes the proof.

SI.3.2 Results for corrupted observations

Lemma 7 (Leverage of corrupted point). The leverage of a corrupted point is bounded by
lm  (�2

x + �2

w) · O
�

(p/
p

n)2
�

. (11)
Remark 4 (Comparison of leverage). Comparing this with Eq. (9), when n is large, the dominant
term is O((p/

p

n)2) which implies that the difference in leverage between a corrupted and non-
corrupted point – particularly when the magnitude of corruptions is not large – is small. This
suggests that it may not be possible to distinguish between the corrupted and non-corrupted points
by only comparing leverage scores.

Lemma 8 (Influence of corrupted point). Defining E := k

b�OLS � �k, the influence of a corrupted
point is

dm Cm(�x�w + �2

w)k�k + (�2

x + 2�x�w + �2

w)E

+ (�x + �w)�✏. (12)
Remark 5 (Comparison of influence). Here, Cm differs from Ci in Lemma 6 only in its dependence
on the leverage of a corrupted instead of non-corrupted point and so for large n, Ci ⇡ Cm. It can be
seen that the influence of the corrupted point includes a bias term similar to the one which appears
in Eq. (8). This suggests that the relative difference between the influence of a non-corrupted
and corrupted point will be larger than the respective relative difference in leverage. All of the
information relating to the proportion of corrupted points is contained within E.
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Proof of Lemma 7. Lemma 7 states

lm  (�2

x + �2

w) ·

✓

p+ 2 log p+ 2

p

p log p
p

n � C
p

p �

p

log p

◆

2

.

The proof follows from rewriting lm = kA(xm +wm)

>
k

2 and following the same steps as the
proof of Lemma 5 above.

Proof of Lemma 8. Lemma 8 states

k

b��m �

b�k 

k⌃�1

k

1 � lm

✓

2(�x�w + �2

w)k�k + 2(�2

x + �x�w + �2

w) · k� �

b�k + 2(�x + �w)�✏

◆

·

p

p log p.

From Proposition 4 and following the same argument as Lemma 6 we have

k

b��m �

b�k =

1

1 � lm
k⌃�1

(xm +wm)

>emk



1

1 � lm
k⌃�1

(xm +wm)

>
✓

(xm +wm)(� �

b�) +wm� + ✏

◆

k



1

1 � lm
k⌃�1

k

✓

kx>
mwm�k + kw>

mwm�k + kx>
m✏k + kw>

m✏k

+ k

�

x>
mxm +w>

mwm + 2x>
mwm

�

(� �

b�)k

◆

.

Applying the triangle inequality followed by Corollary 12 and noting that (�x�w + 2�2

w) 

2(�x�w + �2

w) completes the proof.

SI.4 Estimation error in sub-Gaussian model

Using the definition of influence above, we can state the following theorem characterising the error
of the influence weighted subsampling estimator in the sub-Gaussian design setting.

Theorem 9 (Sub-gaussian design influence weighted subsampling). Defining E = k

b�OLS � �k for
n & �2

x

�min(⌃⇥x

)

p log p we have

k

b�IWS � �k . 1

�
·

�✏

�
min

(⌃x)(�✏ + 2�xE)

·

r

1

rn

where 0  �  �
min

(⌃

⇥x) and ⌃

⇥x is the covariance of the influence weighted subsampled data
and r = nsubs/n.
Remark 6. Theorem 9 states that in the non-corrupted sub-Gaussian model, the influence weighted
subsampling estimator is consistent. Furthermore, if we set the sampling proportion, r � O (1/p),
the error scales as O

⇣

p

p/n
⌘

. Therefore, similar to ULURU there is no dependence on the subsam-
pling proportion.

SI.5 Proof of main theorems

In this section we provide proofs of our main theorems which describe the properties of the influence
weighted subsampling estimator in the sub-Gaussian random design case, the OLS estimator in the
corrupted setting and finally our influence weighted subsampling estimator in the corrupted setting.

In order to prove our results we require the following lemma
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Lemma 10 (A general bound on k

b� � �k from [5]). Suppose the following strong convexity condi-
tion holds: �

min

(

b⌃) � � > 0. Then the estimation error satisfies

k

b� � �k . 1

�
k�̂ �

b⌃�k.

Where �̂, b⌃ are estimators for E
⇥

X>y
⇤

and E
⇥

X>X
⇤

respectively

To obtain the results for our method in the non-corrupted and corrupted setting we can simply plug
in our specific estimates for �̂ and b⌃.

Proof of Theorem 9. Through subsampling according to influence, we solve the problem

b�IWS = argmin

�
k⇥y � ⇥X�k

2

where ⇥ =

q

n
n
subs

SD. S is a subsampling matrix, D is a diagonal matrix whose entries are
p

Pi/n =

p

c/din where c is a constant which ensures
Pn

i=1

Pi = 1.

D2

ii /

✓

k⌃�1

k

1 � li

⇣

�x�✏ + 2�2

xk� �

b�k

⌘

p

p log p

◆�1

. (13)

Setting �̂ = (⇥X)

>y, b⌃ = (⇥X)

>
(⇥X), by Lemma 10 the error of the influence weighted

subsampling estimator is given by
1

�
k�̂ �

b⌃�k =k(⇥X)

>
(⇥y) � (⇥X)

>
(⇥X)�k

=

1

�
k(⇥X)

>
(⇥✏) + (⇥X)

>
(⇥X)� � (⇥X)

>
(⇥X)�k

=

1

�
k(⇥X)

>
(⇥✏)k (14)

Now, by Lemma 11 we have

kX>✏k  �x�✏

r

p log p

n

and so defining E = k� �

b�k,

k(⇥X)

>
⇥✏k k

1

rn

rn
X

i=1

pik · k(SX)

>S✏k

k

1

rn

rn
X

i=1

(1 � li)k
�x�✏

p

p log p/rn

k⌃�1

k (�x�✏ + 2�2

xE)

p

p log p



�x�✏

p

p log p/rn

k⌃�1

k (�x�✏ + 2�2

xE)

p

p log p



�✏

p

1/rn

�
min

(⌃x)(�✏ + 2�xE)

(15)

where the third inequaltiy uses the fact that
Pn

i=1

(1 � li)  n.

Define ⌃

⇥x = E
⇥

(⇥X)

>
(⇥X)

⇤

. Now, when n & (�2
x

)p log p
�min(⌃⇥x

)

using Lemma 13 with � =

�
min

(⌃

⇥x) we have w.h.p. �
1

((⇥X)

>
(⇥X) � ⌃

⇥x) 

1

54

�
min

(⌃

⇥x). It follows that

�
min

((⇥X)

>
(⇥X)) = inf

kvk=1

v> �
⌃

⇥x + (⇥X)

>
(⇥X) � ⌃

⇥x)
�

v

� �
min

(⌃

⇥x) � �
1

((⇥X)

>
(⇥X) � ⌃

⇥x))

�

1

2

�
min

(⌃

⇥x). (16)
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Using (15) and (15) in Eq. (14) completes the proof.

Remark 7 (Scaling by ⇡). In the following, with some abuse of notation we will write UW as W.
Now,

kWk := kUWk

 ⇡kWk.

Proof of Theorem 1. Setting �̂ = Z>y, b⌃ = Z>Z we have

k�̂ �

b⌃�k = k(X+W)

>y � (X+W)

>
(X+W)�k

= kX>
(X� + ✏) +W>

(X� + ✏) � X>X� � W>W� � X>W� � W>X�k

= kX>✏+W>✏ � X>W� � W>W�k

 kX>✏k + kW>✏k + kX>W�k + kW>W�k.

From Lemma 11 and Remark 7 we have w.h.p.

kX>✏k  �x�✏

r

p log p

n
(17)

kW>✏k  ⇡�w�✏

r

p log p

n
(18)

kX>W�k  ⇡�x�wk�k

r

p log p

n
(19)

kW>W�k = k

�

W>W + �2

wIp � �2

wIp
�

�k

 k

�

W>W � �2

wIp
�

�k + �2

wk�k

 ⇡�2

w

 

C

r

p log p

n
+

p

p

!

k�k. (20)

Now, when n & (�2
x

�2
w

)p log p
�min(⌃x

)

using Lemma 13 with � = �
min

(⌃x) we have w.h.p. �
1

(Z>Z �

(⌃x + ⌃w)) 

1

54

�
min

(⌃x). It follows that

�
min

(Z>Z) = inf

kvk=1

v> �
⌃x + ⌃w + Z>Z � (⌃x + ⌃w)

�

v

� �
min

(⌃x) + �
min

(⌃w) � �
1

(Z>Z � (⌃x + ⌃w))

�

1

2

�
min

(⌃x) + ⇡�
min

(⌃w).

Using Lemma 10 with Eqs. (17-20) and the above bound for � = �
min

(Z>Z) completes the
proof.

Proof of Theorem 2. when n & (�2
x

�2
w

)p log p
�min(⌃⇥x

)

using Lemma 13 with � = �
min

(⌃

⇥x) we have
w.h.p. �

1

((⇥Z)>(⇥Z) � ⌃

⇥x) 

1

54

�
min

(⌃

⇥x). It follows that

�
min

((⇥Z)>(⇥Z)) = inf

kvk=1

v> �
⌃

⇥x + (⇥Z)>(⇥Z) � ⌃

⇥x)
�

v

� �
min

(⌃

⇥x) � �
1

((⇥Z)>(⇥Z) � ⌃

⇥x))

�

1

2

�
min

(⌃

⇥x).
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From the bound in Lemma 10 we have
k�̂ �

b⌃�k  k(⇥X)

>
(⇥✏)k + k(⇥W)

>
(⇥✏)k

+ k(⇥X)

>
(⇥W)�k + k(⇥W)

>
(⇥W)�k.

We now aim to show that the relative contribution of the corrupted points is decreased under the
influence weighted subsampling scheme. To show this, we first multiply both corrupted and non-
corrupted points by

k⌃�1

k

⇣

�x�✏ + 2�2

xk� �

b�k

⌘

log p
p

p.

This is equivalent to multiplying the non-corrupted points by the subsampling matrix S and scaling
and subsampling the corrupted points by the following term ⇥M =

q

n
n
subs

SDM where DM has
squared diagonal entries proportional to

D2

M /

1

n
·

�✏�x + 2�2

xE

2(�2

w + �w�x)k�k + 2(�2

w + �w�x + �2

x)E + 2(�w + �x)�✏
.

Now we have
k�̂ �

b⌃�k . k(SX)

>
(S✏)k + k(⇥MW)

>
(⇥M ✏)k

+ k(⇥MX)

>
(⇥MW)�k + k(⇥MW)

>
(⇥MW)�k.

Applying Lemma 11 we have w.h.p.

k(SX)

>
(S✏)k . �x�✏

r

p log p

rn
(21)

k(⇥MW)

>
(⇥M ✏)k .

⇡ · (�✏ + 2E)⇡�w�✏

q

p log p
rn

2(�2

w + �w�x)k�k + 2(�2

w + �w�x + �2

x)E + 2(�w + �x)�✏
(22)

k(⇥MX)

>
(⇥MW)�k .

⇡ · (�✏ + 2E)�x�wk�k

q

p log p
rn

2(�2

w + �w�x)k�k + 2(�2

w + �w�x + �2

x)E + 2(�w + �x)�✏
(23)

k(⇥MW)

>
(⇥MW)�k .

⇡ · (�✏ + 2E)�2

w

✓

C
q

p log p
rn +

p

p

◆

k�k

2(�2

w + �w�x)k�k + 2(�2

w + �w + 1)E + 2(�w + 1)�✏
. (24)

We observe that each of the quantities in Eqs. (22 - 24) are scaled by a term proportional to
⇡ · (�✏�x + 2�2

xE)

2(�2

w + �w�x)k�k + 2(�2

w + �w�x + �2

x)E + 2(�w + �x)�✏
. (25)

Taking the limit of large E of the above (see remark 8) and setting �x = 1 we get

⇡⇤
= lim

E!1
=

⇡

(�2

w + �w)
.

Replacing the scaling factor in Eq. (25) with ⇡⇤ completes the proof.

Remark 8 (Taking limkb�OLS��k!1). Intuitively, when E = k

b�OLS � �k is small, this suggests that
the effect of the corruptions is negligible and the full (or subsampled) least squares solution is close
to optimal. Alternatively, when E is large, the corruptions have a large effect on the estimate and
so influence subsampling should work well. Note that here the size of E is dependent on �w and ⇡.
If we send E ! 1 by allowing many points to be corrupted, the relative performance of IWS-LS
compared with OLS worsens. However if we allow �w to be large, the relative performance of our
method improves.
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SI.6 Supporting concentration inequalities

Here we collect results which are useful in the statements and proofs of our main theorems. Aside
from Corrolary 12 which is a simple modification of Lemma 11, we defer the proofs to their original
papers.

Lemma 11 (Originally Lemma 25 from [4]). Suppose X 2 Rn⇥k and W 2 Rn⇥m are zero-mean
sub-Gaussian matrices with parameters ( 1n⌃x,

1

n�
2

x), (
1

n⌃w,
1

n�
2

w) respectively. Then for any fixed
vectors v

1

, v
2

, we have

P
⇥

|v>
1

�

W>X � E[W>X]

�

v
2

| � tkv
1

kkv
2

k

⇤

 3 exp

✓

�cnmin

⇢

t2

�2

x�
2

w

,
t

�x�w

�◆

(26)

in particular if n & log p we have w.h.p.

|v>
1

�

W>X � E[W>X]

�

v
2

|  �x�wkv
1

kkv
2

k

r

log p

n
Setting v

1

to be the first standard basis vector, and using a union bound over j = 1, . . . , p, we have
w.h.p.

k

�

W>X � E[W>X]

�

vk1  �x�wkvk

r

log p

n
holds with probability 1� c

1

exp(�c
2

log p) where c
1

, c
2

are positive constants which are indepen-
dent of �x,�w, n and p.

Corollary 12 (Modification of Lemma 11 for n = 1). Suppose X 2 Rn⇥k and W 2 Rn⇥m are
zero-mean sub-Gaussian matrices with parameters (

1

n⌃x,
1

n�
2

x), (
1

n⌃w,
1

n�
2

w) respectively. Then
for any fixed vector v

1

and n = 1 we have w.h.p.
k

�

W>X � E[W>X]

�

vk1  �x�wkvk log p.

Proof. Setting t = c
0

�x�w log p, n = 1 and v as the first standard basis vector in Inequality (26) in
Lemma 11 and applying a union bound over j = 1, . . . , p yields the result.

Lemma 13 (Originally Lemma 11 from [5]). If X and W are zero-mean sub-Gaussian matrices
then

P
"

sup

kv1k=kv2k=1

|v>
1

�

W>X � E[W>X]

�

v
2

| � t

#

 2 exp

✓

�cnmin(

t2

�2

x�
2

w

,
t

�x�w
) + 6(k +m)

◆

In particular, for each � > 0, if n & max

n

�2
x

�2
w

�2 , 1
o

(k +m) log p, then w.h.p.

sup

v1,v2

|v>
1

�

W>X � E[W>X]

�

v
2

| 

1

54

�kv
1

kkv
2

k.

Lemma 14 (Quadratic forms of sub-Gaussian random variables. Theorem 2.1 from [11]). Let A 2

Rn⇥n be a matrix, and let ⌃ := A>A. x is a mean-zero random vector such that, for some � � 0,
E
⇥

exp(↵>x)
⇤

 exp(k↵k

2�2/2)

for all ↵ 2 Rn. For all t > 0

P


kAxk

2 >�2

✓

tr (⌃) + 2

q

tr

�

⌃2

�

t + 2k⌃kt

◆�

 e�t.

Lemma 15 (Extremal singular values of a matrix with i.i.d. sub-Gaussian rows. Theorem 5.39
of [18]). Let A be an n⇥ p matrix whose rows Ai are independent sub-Gaussian isotropic random
vectors in Rp. Then for every ⌧ � 0, with probability at least 1 � 2 exp(�c⌧2) we have

p

n � C
p

p � ⌧  �n(A)  �
1

(A) 

p

n+ C
p

p+ ⌧

where C and c are constants which depend only on the sub-Gaussian norm of the rows of A.

17



SI.6.1 Discussion

In this section we provide some additional discussion about the bias and variance of our influence
weighted subsampling estimator compared with known results from [5]. We first reproduce the
following Lemma

Lemma 16 (Originally Corollary 4 from [5]). If ⌃w is known and n & (1+�2
w

)

2

�min(⌃x

)p log p . Then w.h.p.,

plugging the estimator built using b⌃ = Z>Z � ⌃w and �̂ = Z>y into Lemma 10, satisfies

k

b� � �k . (�2

w + �w)k�k + �✏

p

1 + �2

w

�
min

(⌃x)

r

p log p

n
. (27)

When only an upper bound ¯

⌃w ⌫ ⌃w is known then

k

b� � �k .

h

(�2

w + �w)k�k + �✏

p

1 + �2

w

i

�
min

(⌃x) � �
max

(

¯

⌃w � ⌃w)

r

p log p

n
+

�
max

(

¯

⌃w � ⌃w)k�k

�
min

(⌃x) � �
max

(

¯

⌃w � ⌃w)
. (28)

We can compare these two statements with our result from Theorem 1. Eq. (27) is similar to the
bound we have from Theorem 1 up to the bias term assuming ⇡ = 1 (i.e. all of the points are
corrupted). Since we do not use knowledge of ⌃w we can compare our result with Eq. (28) which
has a bias term which is related to the uncertainty in the estimate of ⌃w which in our case is �2

w.
It is clear from Lemma 16 that the only way to remove this bias completely is to use additional
information about the covariance of the corruptions.
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SI.7 Additional results

In this section we provide additional empirical results.

Non-corrupted data. We first compare performance in three different leverage regimes taken
from [13]: uniform leverage scores (multivariate Gaussian), slightly non-uniform (multivariate-t
with 3 degrees of freedom, T-3), highly non-uniform (multivariate-t with 1 degree of freedom, T-1).
Full details of the data simulating process can be found in [13].

Figures 3 and 4 show the estimation error and the RMSE respectively for the simulated datasets
described in [13]. The results for the T-3 data are similar to the Gaussian data. The slightly heavier
tails of the multivariate t distribution with 3 degrees of freedom cause the leverage scores to be
less uniform which degrades the performance of uniform subsampling relative to SRHT-LS and
IWS-LS. Figure 4 shows that the RMSE performance is similar to that of the statistical estimation
error.
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Figure 3: Comparison of mean estimation error and standard deviation on a selection of non-
corrupted datasets.

Corrupted data. Figures 5 and 6 show the estimation error and RMSE respectively for the cor-
rupted simulated datasets. In all settings influence based methods outperform all other approxima-
tion methods. For 5% corruptions for a small number of samples ULURU outperforms the other
subsampling methods. However, as the number of samples increases, influence based methods start
to outperform OLS. For > 3000 subsamples, the bias correction step of ULURU causes it to diverge
from OLS and ultimately perform worse than uniform.

For 10% corruptions, aIWS-LS and aRWS-LS converge quickly to IWS-LS. As the number of
corruptions increase further, the relative performance of IWS-LS with respect to OLS decreases
slightly as suggested by Remark 8.
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Figure 4: Comparison of root mean squared prediction error (RMSE) and standard deviation on a
selection of non-corrupted datasets.
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For 30% corruptions, the approximate influence algorithms achieve almost exactly the same perfor-
mance as IWS-LS. Even for a small number of samples all of the influence methods far outperform
OLS. As the proportion of corruptions increases further, the rate at which the approximate influ-
ence algorithms approach IWS-LS slows and the relative difference between IWS-LS and OLS
decreases slightly. In all cases, influence based methods achieve lower-variance estimates. Here,
ULURU converges quickly to the OLS solution but is not able to overcome the bias introduced by
the corrupted datapoints.
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(b) 10% Corruptions
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Figure 5: Comparison of mean estimation error and standard deviation on a selection of corrupted
datasets.
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Figure 6: Comparison of test RMSE and standard deviation on a selection of corrupted datasets.
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Larger Scale Experiments Corrupted data. We now present results on larger scale simulated
data. We used the same experimental setup as in §7 but we increase the size of the data to n =

100, 000 and p = 500.

Figures 7 and 8 show the estimation error and RMSE respectively. In this setting, computing
IWS-LS is too slow (due to the exact leverage computation) so we omit the results but we no-
tice that aIWS-LS and aRWS-LS quickly improve over the full least squares solution and the other
randomized approximations. The general trend in this setting is the same as with the smaller ex-
periments, however for 5% corruptions the improvement of aIWS-LS and aRWS-LS over OLS
happens with a much smaller subsampling ratio than with smaller datasets.

(a) 5% Corruptions (b) 10% Corruptions

(c) 30% Corruptions

Figure 7: Comparison of mean estimation error and standard deviation on a selection of corrupted
datasets.
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(a) 5% Corruptions (b) 10% Corruptions

(c) 30% Corruptions

Figure 8: Comparison of test RMSE and standard deviation on a selection of corrupted datasets.
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