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1 Proofs

Proof of Equation (5):
Let us first show the result for the randomized block selection rule. We will do so by proving that
limr→∞ ‖x̂r − xr‖ = 0, with probability one. To show this, we start by bounding the decrease in
the objective value in the consecutive steps of the algorithm:

h(xr+1) = f(xr+1) +
∑
i

gi(x
r+1
i ) = f(xr+1) +

∑
i/∈Sr

gi(x
r
i ) +

∑
i∈Sr

gi (x
r
i + γr(x̂ri − xri ))

≤ f(xr+1) +
∑
i

gi(x
r
i ) + γr

∑
i∈Sr

(gi(x̂
r
i )− gi(xri ))

≤ f(xr) + γr〈∇f(xr), x̂r − xr〉Sr +
(γr)2L∇F

2
‖x̂r − xr‖2Sr +

∑
i

gi(x
r
i ) + γr

∑
i∈Sr

(gi(x̂
r
i )− gi(xri ))

= h(xr) +
(γr)2L∇f

2
‖x̂r − xr‖2Sr + γr

(
〈∇f(xr), x̂r − xr〉Sr +

∑
i∈Sr

(gi(x̂
r
i )− gi(xri ))

)
, (1)

where the first inequality is due to convexity of g(·); the second inequality is due to the Lipschitz
continuity of ∇f(·); and we have also used the notation 〈a, b〉S ,

∑
i∈S〈ai, bi〉 and ‖a‖2S ,

〈a, a〉S . In order to get a standard form sufficient decrease bound, we need to bound the last term in
(1). Noticing that h̃i is strongly convex, the definition of x̂ri leads to

h̃i(x
r
i , x

r) ≥ h̃i(x̂
r
i , x

r) +
τ

2
‖x̂ri − xri ‖2, ∀i ∈ Sr.

Substituting the definition of h̃i and multiplying both sides by minus one give

−f̃i(xri , xr)− gi(xri ) ≤ −f̃i(x̂ri , xr)− gi(x̂ri )−
τ

2
‖x̂ri − xri ‖2.

Linearizing the smooth part, the gradient consistency assumption leads to

〈∇xif(x
r), x̂ri − xri 〉+ gi(x̂

r
i )− gi(xri ) ≤ −

τ

2
‖x̂ri − xri ‖2.

Summing up the above inequality over all i ∈ Sr, we obtain

〈∇xf(x
r), x̂r − xr〉Sr +

∑
i∈Sr

(gi(x̂
r
i )− gi(xri )) ≤ −

τ

2
‖x̂r − xr‖2Sr , (2)
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where x̂r , (x̂ri )
n
i=1. Combining (1) and (2) leads to

h(xr+1) ≤ h(xr) + γr(−τ + γrL∇f )

2
‖x̂r − xr‖2Sr .

Proof of Lemma 3:

Let us first prove the cost-to-go bound for the randomized case. It can be observed that the condi-
tional expected cost-to-go can be bounded by

E
[
h(xr+1)− h(x∗) | xr

] (i)

≤ h(xr)− h(x∗) = f(xr)− f(x∗) + g(xr)− g(x∗)
(ii)

≤ 〈∇f(xr), xr − x̂r〉+ 〈∇f(xr), x̂r − x∗〉+ Lg‖xr − x̂r‖+ g(x̂r)− g(x∗)
(iii)

≤ (Lg +Q)‖x̂r − xr‖+
n∑
i=1

〈∇xif(x
r)−∇xi f̃i(x̂i, x

r) +∇xi f̃i(x̂i, x
r), x̂ri − x∗i 〉+ g(x̂r)− g(x∗)

≤ (Lg +Q)‖x̂r − xr‖+
n∑
i=1

〈∇xi
f(xr)−∇xi

f̃i(x̂i, x
r), x̂ri − x∗i 〉 (3)

where (i) is due to the Sufficient Descent Lemma; the inequality (ii) is due to the convexity of
f(·) and Lipschitz continuity of g(·); the third inequality is by the bounded level set assumption.
Furthermore, the last inequality is obtained by exploiting the first order optimality condition of the
point x̂ri , i.e., 〈∇xi

f̃i(x̂
r
i , x

r), x̂ri − x∗i 〉+ gi(x̂
r
i )− gi(x∗i ) ≤ 0. In addition to the above inequality,

on can easily deduce

(
n∑
i=1

〈∇xi
f(xr)−∇xi

f̃i(x̂
r
i , x

r), x̂ri − x∗i 〉

)2

=

(
n∑
i=1

〈∇xi
f̃i(x

r
i , x

r)−∇xi
f̃i(x̂

r
i , x

r), x̂ri − x∗i 〉

)2

≤ n
n∑
i=1

L2
i ‖xri − x̂ri ‖2 · ‖x̂ri − x∗i ‖2 ≤ nL2R2‖xr − x̂r‖2. (4)

Combining (3) and (4) will conclude the proof for the randomized case.

For the cyclic case, we can simply bound the cost-to-go estimate by

h(xm(r+1))− h(x∗) = f(xm(r+1))− f(x∗) + g(xm(r+1))− g(x∗)
≤ 〈∇f(xm(r+1)), xm(r+1) − x∗〉+ g(xm(r+1))− g(x∗) (5)

=

m−1∑
`=0

∑
i∈T`

〈∇if(xm(r+1)), x
m(r+1)
i − x∗i 〉+ gi(x

m(r+1))− gi(x∗)

≤
m−1∑
`=0

∑
i∈T`

〈∇if(xm(r+1))−∇if̃i(x̂mr+`i , xmr+`), x
m(r+1)
i − x∗i 〉 (6)

+

m−1∑
`=0

∑
i∈T`

〈∇if̃i(x̂mr+`i , xmr+`), x
m(r+1)
i − x̂mr+`i 〉 (7)

+

m−1∑
`=0

∑
i∈T`

〈∇if̃i(x̂mr+`i , xmr+`), x̂mr+`i − x∗i 〉+ gi(x̂
mr+`
i )− gi(x∗i ) (8)

+

m−1∑
`=0

∑
i∈T`

gi(x
m(r+1)
i )− gi(x̂mr+`i ), (9)

where (5) is due to convexity of the function f(•). First notice that (8) is nonpositive due to the
definition of x̂mr+`i and the optimality condition for it. Now we bound the terms (6), (7), and (9)
separately. Let us first start by bounding the terms in (6):
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(
m−1∑
`=0

∑
i∈T`

〈∇if(xm(r+1))−∇if̃i(x̂mr+`i , xmr+`), x
m(r+1)
i − x∗i 〉

)2

≤ n
m−1∑
`=0

∑
i∈T`

R2‖∇if(xm(r+1))−∇if̃i(x̂mr+`i , xmr+`)‖2

= nR2
m−1∑
`=0

∑
i∈T`

‖∇if̃i(xm(r+1)
i , xm(r+1))−∇if̃i(x̂mr+`i , xmr+`)‖2

≤ 2nR2
m−1∑
`=0

∑
i∈T`

(
‖∇if̃i(xm(r+1)

i , xm(r+1))−∇if̃i(xm(r+1)
i , xmr+`)‖2

+‖∇if̃i(xm(r+1)
i , xmr+`)−∇if̃i(x̂mr+`i , xmr+`)‖2

)
≤ 2nR2

m−1∑
`=0

∑
i∈T`

(
L̃2‖xm(r+1) − xmr+`‖2 + L2

i ‖x
m(r+1)
i − x̂mr+`i ‖2

)
≤ 2nR2

(
nL̃2‖xm(r+1) − xmr‖2 + L2 (1− γ)2

γ2
‖xm(r+1) − xmr‖2

)
= 2nR2

(
nL̃2 +

L2(1− γ)2

γ2

)
‖xm(r+1) − xmr‖2. (10)

Now, we can bound (7) by(
m−1∑
`=0

∑
i∈T`

〈∇if̃i(x̂mr+`i , xmr+`), x
m(r+1)
i − x̂mr+`i 〉

)2

≤ n
m−1∑
`=0

∑
i∈T`

(
〈∇if̃i(x̂mr+`, xmr+`), xm(r+1)

i − x̂mr+`i 〉
)2

≤ n
m−1∑
`=0

∑
i∈T`

Q̂2‖xm(r+1)
i − x̂mr+`i ‖2

= nQ̂2
∑
i

(1− γ)2

γ2
‖xm(r+1)

i − xmri ‖2

= nQ̂2 (1− γ)2

γ2
‖xm(r+1) − xmr‖2. (11)

Finally, we can bound (9) by(
m−1∑
`=0

∑
i∈T`

gi(x
m(r+1)
i )− gi(x̂mr+`i )

)2

≤ n
m−1∑
`=0

∑
i∈T`

(
gi(x

m(r+1)
i )− gi(x̂mr+`i )

)2
≤ n

m−1∑
`=0

∑
i∈T`

L2
g‖x

m(r+1)
i − x̂mr+`‖2

= nL2
g

∑
i

(1− γ)2

γ2
‖xm(r+1)

i − xmri ‖2

= nL2
g

(1− γ)2

γ2
‖xm(r+1) − xmr‖2. (12)

Plugging (10), (11), (12) in (6), (7), (9) implies the desired cost-to-go bound.
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2 Additional Numerical Experiments

In this section, we present two additional numerical experiments. Similar to the main body of the
manuscript, we consider LASSO problem and the data is generated as explained before. Here we
only consider the large size experiment, i.e., A ∈ R10,000×100,000. In the first simulation, we see the
effect of changing the parameters of the algorithm. As discussed in the paper, too large or too small
step-size could result in slower convergence speed.
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Figure 1: Performance of the algorithm with different choices of α and γ

As we saw in the main body of the manuscript, the overall convergence time of the algorithm does
not always improve as the number of processors increases. This fact is due to the communication
overhead among the processing nodes. In Figure 2, we only plot the computation time and ignore
the communication time. As can be seen in this plot, the computation time spent on the nodes always
decreases by utilizing more processors.
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Figure 2: Computation time of the algorithm for different number of processors
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