
A Delay Pattern Examples

g1 g2 g3 g4 g5 g6
g1 1 2 3
g2 2 2 3
g3 3 3 3
g4 4 5 6
g5 5 5 6
g6 6 6 6

g1 g2 g3 g4 g5 g6
g1 1 1 1
g2 1 2 2
g3 1 2 3
g4 4 4 4
g5 4 5 5
g6 4 5 6

(A) Minibatches of size 3

Read 1,2,3 Update 1 F1 = {2, 3}
Update 2 F2 = {3}
Update 3 F3 = {}

Read 4,5,6 Update 4 F4 = {5, 6}
Update 5 F5 = {6}
Update 6 F6 = {}

g1 g2 g3 g4 g5 g6
g1 1 2
g2 2 2 3
g3 3 3 4
g4 4 4 5
g5 5 5 6
g6 6 6

g1 g2 g3 g4 g5 g6
g1 1 1
g2 1 2 2
g3 2 3 3
g4 3 4 4
g5 4 5 5
g6 5 6

(B) Fixed delay of 1

Read 1, 2 Update 1 F1 = {2}
Read 3 Update 2 F2 = {3}
Read 4 Update 3 F3 = {4}
Read 5 Update 4 F4 = {5}
Read 6 Update 5 F5 = {6}

Update 6 F6 = {}

g1 g2 g3 g4 g5 g6
g1 1 2 3
g2 2 2 3 4
g3 3 3 3 4 5
g4 4 4 4 5 6
g5 5 5 5 6
g6 6 6 6

g1 g2 g3 g4 g5 g6
g1 1 1 1
g2 1 2 2 2
g3 1 2 3 3 3
g4 2 3 4 4 4
g5 3 4 5 5
g6 4 5 6

(C) Fixed delay of 2

Read 1,2,3 Update 1 F1 = {2, 3}
Read 4 Update 2 F2 = {3, 4}
Read 5 Update 3 F3 = {4, 5}
Read 6 Update 4 F4 = {5, 6}

Update 5 F5 = {6}
Update 6 F6 = {}

g1 g2 g3 g4 g5 g6
g1 1 3
g2 2 3 5
g3 3 3 3 5
g4 4 5
g5 5 5 5 5 6
g6 6 6

g1 g2 g3 g4 g5 g6
g1 1 1
g2 2 2 2
g3 1 2 3 3
g4 4 4
g5 2 3 4 5 5
g6 5 6

(D) Arbitrary order

Read 1, 3 Update 1 F1 = {3}
Read 2, 5 Update 2 F2 = {3, 5}

Update 3 F3 = {5}
Read 4 Update 4 F4 = {5}
Read 6 Update 5 F5 = {6}

Update 6 F6 = {}

Figure 3: Each row corresponds to a different delay pattern: batches of size 3, a constant delay of 2, a
constant delay of 3, and an arbitrary delay pattern. Each pattern is shown as symmetric matrix, where
cell (i, j) with i > j is gray if update j is outstanding when update i is applied. The left column
emphasizes the backward gradient sums associated with each update: In particular, letting Bt be the
set of cells (i, j) labeled t, we have gt(gt + 2gbckt) =

∑
(i,j)∈Bt

gigj . Similarly, for the right-hand
matrices, letting Ft be the set of cells (i, j) labeled t, we have gt(gt + 2gfwd

t) =
∑

(i,j)∈Bt
gigj .

These quantities play a pivotal role in our algorithms and analysis.

B Comparing Regret Bounds for Sparse Learning with Delays

In this section, we compare regret bounds for a variety of algorithms under both a fully-adversarial
assumption, and a stochastic sparsity assumption like the one used by Duchi et al. [11]. For simplic-
ity, consider a single dimension, T rounds, and gradients gt ∈ {−1, 0, 1}. When appropriate, we
consider a feasible set [−R,R]; we neglect the potential difference between R and R̃ when compar-
ing to our regret bounds, i.e., we assume R = R̃. In the fully adversarial model we assume exactly

10

g1 g2 g3 g4 g5 g6
g1 1 1 1
g2 1 2 2 2
g3 1 2 3 3 3
g4 2 3 4 4 4
g5 3 4 5 5
g6 4 5 6

Read 1,2,3 r(1) = r(2) = r(3) = 1 Update 1 F1 = {2, 3}
Read 4 r(4) = 2 Update 2 F2 = {3, 4}
Read 5 r(5) = 3 Update 3 F3 = {4, 5}
Read 6 r(6) = 4 Update 4 F4 = {5, 6}

Update 5 F5 = {6}
Update 6 F6 = {}

Consider the difference x5 − x̂5, where we have:

x5 = −β3g1 − β4g2 − β4g3 − β4g4 AdaptiveRevision

x̂5 = −β3g1 − β4g2 − β5g3 − β6g4 HypBack

Figure 4: An example the difference between HypBack (which plays x̂5) and
AdaptiveRevision (which plays x5), in terms of the common learning rates βt.

(1 − p)T of the gradients are 0, but the adversary chooses the gradients arbitrarily subject to this
constraint. Under the stochastic sparsity assumption, each gt is exactly 0 with probability 1 − p
(chosen independently for each t); if gt is not zero, the adversary chooses it arbitrarily (WLOG from
{−1, 1}).

Synchronized minibatches We consider a mini-batch delay pattern with batches of size m. Of
course, enforcing such a delay pattern requires synchronization: one of the key questions addressed
here is whether similar bounds are possible with arbitrary delay patterns (with a maximum delay of
m, say). We index batches by j, and let bj be the sum of the m gradients in batch j. We assume m
divides T so J ≡ T/m is the total number of batches.

Without delays and given dense gradients (p = 1), standard online gradient descent with an appro-

priate adaptive learning rate can achieve a bound of R
√∑T

t=1 g
2
t (we generally ignore constants in

this section).

Thus, in the adversarial delayed case, but with a minibatch delay pattern, we can run J steps of online

gradient descent on the combined gradients bj , for a bound of R
√∑J

j=1 b
2
j ≤ R

√
m2J =

√
mT

(when p = 1). This is the best we can do in the worst case. If only a p fraction of the gt are non-zero,
then we get a bound of

√
mpT , as the adversary can simply put all the non-zero gradients in the first

pT rounds.

If, instead, the non-zero rounds are chosen randomly with probability p, but the adversary still
controls what the gradient is (given that it is nonzero), he can still ensures all non-zero gradients
in the same batch are in the same direction. Then bj has binomial distribution (with an adversary-
controlled sign), and so

E[b2j] = Var[bj] + Mean[bj]2 = mp(1− p) + (mp)2 = mp(1 +mp− p).

Again, starting from the bound R
√∑

j b
2
j , taking expectations and applying Jensen’s inequality, we

have

E

√√√√ J∑
j=1

b2j

 ≤
√√√√√E

 J∑
j=1

b2j

 ≤√Jmp(1 +mp− p) =
√
(1 + p(m− 1))pT .

Note that 1 + p(m− 1) ≤ m, and so we have a strictly sharper bound than the
√
mpT result when

p < 1. Replacing m− 1 with m does not weaken the bound in practice, and so we have

Regret ≤
√
(1 + pm)pT . (10)

To see the improvement over the fully adversarial case, suppose p = 1/100 and m = 100. Then
against an adversary we have regret

√
T , but with stochastic sparsity we have regret less than√

T/50.

11

Subsampling data Suppose we have m machines. We should be able to just train on a 1/m
fraction of the data on a single machine sequentially, and our regret will simply be about m times
the regret this machine sees. This gives us m

√
T/m =

√
mT in the dense case. So in the worst

case we get the same bound by subsampling that we got by doing minibatches of size m (where
we looked at m times as much data and did m times as much work!). Intuitively, this is because
we don’t account for any reduction in the variance of the gradient estimate due to increasing the
minibatch size (because in a worst-case world that may not happen). Similarly, we get the same√
mpT bound when data is sparse but the adversary controls the sparsity.

However, in the stochastic sparsity model, the subsampling approach still gets a bound of only of√
mpT , so now minibatching has an advantage, obtaining the better bound of (10).

AdaptiveRevision The AdaptiveRevision algorithm achieves a bound like
√
mpT in

the fully-adversarial case, and a bound like (10) if we run the algorithm on a problem with stochastic
sparsity, without knowing the delay pattern or sparsity in advance. Recall we have bounds of the
form √√√√ T∑

t=1

gt(gt + gfwd
t) =

√
Gfwd

1:t .

First, in the fully-adversarial setting, again we can assume all the non-zeros occur in the first pT
rounds. On these rounds each gt is bounded by 1 and gfwd

t is bounded by m, and so we immediately
have a bound of

√
mpT .

Now we consider a stochastic sparsity pattern. Under the assumptions of this section, note E[g2t] = p
and E[|gfwd

t |] ≤ mp, and so, taking advantage of independence,

E[gt(gt + gfwd
t)] ≤ E[g2t] + E[|gt|]E[|gfwd

t |] = p+mp2.

Thus, taking expectations, we have

E

√∑
t

Gfwd
1:t

 ≤
√√√√E

[∑
t

Gfwd
1:t

]
≤
√
(1 +mp)pT ,

matching the performance of the synchronized mini-batch algorithm, (10). Note, however, we
achieve this bound asynchronously, for arbitrary delay patterns, and without needing to know m
or p in advance.

AsyncDA and AsyncAdaGrad We now compare these results to those of Duchi et al. [11]. Under
our assumptions, we have (using their notation for the moment) ‖x∗‖2 = 1, Mj = 1, and M = 1,
and consider a single coordinate j. Then, with m = 1, their lower bound matches the

√
pT result

above, and this is achieved by (synchronous) OGD or Dual Averaging (their Eq. 5) and by by
AdaGrad (their Eq. 6). Their results for AsyncDA and AsyncAdaGrad apply in the stochastic
sparsity model.

For AsyncDA, note that in our simple case M2 = E[g2t] ≤ p · 1+(1−p) · 0 = p and Mj = 1. Then,
their Theorem 3 becomes

E[Regret] ≤ 1

2η
+
η

2
Tp+ ηTmp2.

With an optimal learning rate η = 1/
√
T + 2mp2T chosen with knowledge of both m and p, this

gives regret
√
(1 + 2pm)pT , which matches (10). On the other hand, generally p cannot be known

in advance in an online setting, so using η = 1/
√
T + 2mT gives only O

(
(1 + p2)

√
mT

)
. This

bound is significantly worse as p→ 0.

For AsyncAdaGrad, their Theorem 5 becomes

E[Regret] ≤ 1

η

√
m+ Tp+ η

√
Tp(1 + pm).

With a learning rate scale factor of η = 1√
1+mp

(again, dependent on both m and p), this gives a

bond that is O
(√

(1 + pm)(m+ pT)
)
, which matches (10) when we ignore terms independent of

12

T (noting
√
m+ pT ≤

√
m +

√
pT). Without knowledge of p (say, taking η = 1√

1+m
), we arrive

at bound like O
(
(1 + p)

√
mpT

)
; without knowledge of m or p, we arrive at a bound no better than

O
(
(1 + pm)

√
Tp
)

(e.g., taking η = 1).

C Complete Analysis and Proofs

Several results will depend on the following basic result:

Lemma 4. Under the above definitions, we have

A. t ∈ Fr(t) ⇐⇒ t 6= r(t)

B. o(t) ≥ t
C. s ≤ t⇒ o(s) ≤ o(t)
D. o(r(t)) ≥ t

E. t ∈ Bs ⇐⇒ s ∈ Ft
F. InOrder implies s1 ≤ s2 ⇒ r(s1) ≤

r(s2)

G. If delay is bounded bym, then o(t) ≤ t+m.

It is worth remarking that our choice of indices ensures gbckt is a sum of consecutively-indexed
updates, while this need not be the case for gfwd

t . However, the InOrder property in fact implies
Gfwd is sum of consecutively indexed gradients.

Proof. Most of these are immediate consequences of the definitions. For claim (C), first note if
s = t, we are done. Suppose s < t, and consider two cases. First, suppose o(s) ≤ t, then
o(s) ≤ o(t) using (B), and we are done. For the second case, suppose o(s) > t. Then since
s < t, we have o(s) ∈ Ft, implying o(t) ≥ o(s). For (D), if r(t) = t, we are done by (B). If
r(t) < t, then t ∈ Fr(t) (A), and so o(r(t)) ≥ t. For (E), suppose t ∈ Bs = {r(s), . . . , s − 1},
so r(s) ≤ t < s, and so t ∈ Fs. For the other direction, if s ∈ Ft, we have r(s) ≤ t < s, which
implies t ∈ {r(s), . . . , s− 1} = Bs. Claim (F) is the contrapositive of the definition of InOrder.
For (G), if o(t) = t, we are done. Otherwise, let s = o(t) with s ∈ Ft, and so r(s) ≤ t < s. Then,
o(t)− t = s− t ≤ s− r(s) ≤ m.

C.1 Proof of Lemma 2

The analysis will use the following result:

Lemma 5. Assume delays are bounded by m and |gt| ≤ L. Then, given InOrder delays, for all t,

Gfwd
1:t −m2L2 ≤ Gbck

1:o(t) ≤ G
fwd
1:t +m2L2.

Proof. Note

Gbck
1:o(t) =

o(t)∑
u=1

g2u + 2

o(t)∑
u=1

gu
∑
s∈Bu

gs.

Considering the last term,

o(t)∑
u=1

gu
∑
s∈Bu

gs =

o(t)∑
u=1

o(t)∑
s=1

I(s ∈ Bu)gugs

=

o(t)∑
s=1

o(t)∑
u=1

I(u ∈ Fs)gugs Lemma 4(E).

=

t∑
s=1

∑
u∈Fs

gugs +

o(t)∑
s=t+1

o(t)∑
u=s+1

I(u ∈ Fs)gugs.

For the first part of the sum, observe that since s ≤ t we have u ∈ Fs ⇒ 1 ≤ u ≤ o(t); in the
second part of the sum, we can start indexing at u = s + 1 since u ∈ Fs ⇒ u > s. Plugging back

13

in, and dividing the sum over g2u between the two terms,

Gbck
1:o(t) = Gfwd

1:t +

o(t)∑
s=t+1

g2s + 2

o(t)∑
u=s+1

I(u ∈ Fs)gugs

 .

The result follows by observing there are at most m2 terms of the form g2s or gugs in the right-hand
sum, and each of these is bounded by L2.

Proof of Lemma 2. Applying Lemma 1, we have

Regret ≤ 2R2
T

η̂T
+

1

2

T∑
t=1

η̂tG
fwd
t

where the learning rates η̂t are given by (8). Lemma 5 implies G̃bck
1:o(t) +m2L2 ≥ G̃fwd

1:t , which in
turn implies η̂t ≤ ηt. Thus,

1

2

T∑
t=1

η̂tG
fwd
t ≤ 1

2

T∑
t=1

ηtG
fwd
t ≤ α

√
G̃fwd

1:T ,

where we have again used Corollary 10. However, we could have

G̃bck
1:T > G̃fwd

1:T

(even though Gbck
1:T = Gfwd

1:T), but we can still bound the second term as

2R2
T

η̂T
=

2R2
T

α

√
G̃bck

1:T +G0 ≤
√
2R̃

√
G̃bck

1:T +m2L2 ≤
√
2R̃

√
G̃fwd

1:T + 2m2L2,

using Lemma 5, α =
√
2R̃, and G0 = m2L2. Recalling

√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and then

combining these results completes the proof.

C.2 Lemma 6

Lemma 6. Under the InOrder assumption, Algorithm 1 plays the points specified by (9).

The proof is a straightforward is straightforward induction making use of the following simpler
expression for the points played by AdaptiveRevision:
Lemma 7. Under the InOrder assumption, an equivalent expression for (9) (for t ≥ 2) is

xt = −
r(t)−1∑
s=1

βo(s)gs −
t−1∑
s=r(t)

βt−1gs.

Proof. Starting from (9), it is sufficient to show the ηts take on the claimed values. First, consider
an s < r(t). Note r(o(s)) ≤ s since o(s) ∈ Fs ∪ {s}. Thus r(o(s)) ≤ s < r(t), and so under
InOrder, we have o(s) < t, which implies o(s) ≤ t− 1, and so ηts = βo(s).

Now suppose s ≥ r(t). Then o(s) ≥ o(r(t)) and then o(r(t)) ≥ t, using Lemma 4, parts (C) and
(D), and so min(t− 1, o(s)) = t− 1, and so ηts = βt−1.

C.3 Lemma 8

Let x̂t be points played by HypBack, as in (8), and let xt be the points played by
AdaptiveRevision. Then, we need to bound

∑T
t=1 gt(xr(t) − x̂r(t)), the difference in the

loss incurred by AdaptiveRevision and HypBack. Figure 4 gives an example. The following
lemma provides the needed guarantee. Note the gap is independent of the number of rounds T :
Lemma 8. When InOrder holds, the maximum delay is m, and we take G0 = m2L2, we have∑T
t=1 gt(xr(t) − x̂r(t)) ≤ 2αLm.

14

Proof. We begin by bounding

xt − x̂t =
t−1∑
s=r(t)

−gs
(
ηts − η̂s) =

∑
s∈Bt

−gs
(
βt−1 − βo(s)),

where we have used Lemma 7 and (8). For 1 ≤ s ≤ t and d ≥ 0 define

δ(s, t) ≡ βs − βt and δ′(t, d) ≡ βt − βt+d.

Note δ and δ′ are both decreasing in the first argument, and increasing in the second argument. When
r(t) = 1 (for example, when t = 1), we have Br(t) = ∅, and so xr(t) − x̂r(t) = 0; to handle this
notationally, we let δ(0, t′) = 0 and δ′(0, d) = 0 for any t′ and d. Then, we have

T∑
t=1

gt(xr(t) − x̂r(t))

= −
T∑
t=1

gt
∑

s∈Br(t)

gsδ(r(t)− 1, o(s))

≤ L2
T∑
t=1

∑
s∈Br(t)

δ(r(t)− 1, o(s))

≤ L2
T∑
t=1

mδ(r(t)− 1, o(r(t)− 1))

where the last inequality uses Lemma 4(C) to show maxs∈Br(t)
o(s) ≤ o(r(t) − 1), since

max
(
Br(t)

)
= r(t)− 1, and then notes |Br(t)| ≤ m. Continuing the inequality,

≤ mL2
T∑
t=1

δ(r(t)− 1, r(t)− 1 +m) Lemma 4(G)

= mL2
T∑
t=2

δ′(r(t)− 1,m) Defn., δ′(0,m) = 0

≤ mL2
T∑
t=2

δ′(max(1, t−m− 1),m) Since r(t) ≥ t−m.

We can bound the first m terms by m(mL2) α
mL = αLm since δ′(1,m) ≤ β1 ≤ α

mL . Now,
re-indexing the remaining terms, we have

mL2
T−m−1∑
t=1

δ′(t,m) = mL2
T−m∑
t=1

(βt − βt+m) ≤ mL2
m∑
t=1

βt ≤ αmL,

where we have used the fact that this sum telescopes with an offset of m terms, and we have again
used βt ≤ β1 ≤ α

mL .

D Technical Lemmas

We have the following slightly stronger version of the standard lemma (e.g., Auer et al. [21, Lemma
3.5]) used to analyze AdaGrad-style algorithms:

Lemma 9. For any real numbers x1, x2, . . . , xT such that x1:t > 0 for t ∈ {1, . . . , T},
T∑
t=1

xt√
x1:t
≤ 2
√
x1:T .

15

Proof. For y ≥ 0,
√
y is concave with derivative 1

2
√
y , so by concavity for z ≥ 0,

√
z ≤ √y + 1

2
√
y
(z − y).

For a, b with a ≥ 0 and a+ b ≥ 0, we can take y = a+ b and z = a, and so

2
√
a+

b√
a+ b

≤ 2
√
a+ b. (11)

The proof proceeds by induction; the base case of T = 1 holds trivially, since
√
x1 ≤ 2

√
x1. Now,

suppose the theorem holds for some t ≥ 1. Then,

t+1∑
s=1

xs√
x1:s

=

t∑
s=1

xs√
x1:s

+
xt+1√
x1:t+1

≤ 2
√
x1:t +

xt+1√
x1:t+1

By the IH

≤ 2
√
x1:t+1 Using (11).

Using this, we can prove:
Corollary 10. For any x1, x2, . . . , xT ∈ R, with x1 > 0, we have

T∑
t=1

xt√
maxs≤t x1:s

≤ 2
√

max
t≤T

x1:t .

Proof. Define zt inductively with z1 = x1 > 0 such that z1:t = maxs≤t x1:t. Thus, z1:t is non-
decreasing in t so each zt ≥ 0. Thus, we can apply Lemma 9 to the sequence of zt’s, which gives

T∑
t=1

zt√
z1:t
≤ 2
√
z1:T .

To complete the proof, we argue by induction with the induction hypothesis

T∑
t=1

zt√
z1:t
−

T∑
t=1

xt√
z1:t
≥ z1:T − x1:T√

z1:T
.

Observe the right-hand-side is non-negative by definition, so showing this is sufficient. The base
case is trivial since x1 = z1. Suppose the IH holds for T . Then, we are adding

D =
zT+1√
z1:(T+1)

− xT+1√
z1:(T+1)

to the left-hand side. Further, since z1:T ≤ z1:T+1, we have

z1:T − x1:T√
z1:T

≥ z1:T − x1:T√
z1:(T+1)

. (12)

Thus,

T+1∑
t=1

zt√
z1:t
−
T+1∑
t=1

xt√
z1:t
≥ z1:T − x1:T√

z1:T
+

zT+1√
z1:(T+1)

− xT+1√
z1:(T+1)

(IH)

≥ z1:T+1 − x1:T+1√
z1:T+1

. Using (12)

16

