
Appendices
In the first section, we present additional empirical results. The rest of this appendix contains proofs
of the theoretical results in the main text.

A Additional experiment results

In this section we provide more experimental results.

A.1 Clustering with general labels

In this subsection, we evaluate graph clustering performance on a generic graph model with 5 labels.
We use n = 200 with 4 equal-size clusters. In each experiment, two distributions µ and ν are
randomly chosen as the in-cluster and the cross-cluster distributions. Then, 100 random graphs are
generated using this (µ, ν) pair and each clustering outcome is checked against the corresponding
ground truth. This is repeated 500 times to get a large variety of (µ, ν) pairs. Based on Theorem 2,
the KL-divergence between µ and ν is the key deciding factor for the successful recovery of the
underlying true clusters. The results are shown in Figure 4. We use the sum ofD(µ||ν) andD(ν||µ)
as the predictor (the horizontal axis is cut off after 2 since beyond this range all success rates are
essentially 1). The results indeed support the theoretical prediction.
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Figure 4: Clustering with 5 labels

A.2 Clustering sparse/dense graphs with partial observations

Here, we repeat the experiments described in Section 5 for a smaller n = 200 and show the analogue
of Figs. 1 and 2 in Figs. 5 and 6. Clustering is more difficult for smaller n and therefore we increase
the observation rate from 0.5 to 0.8 (to show a more interesting region). Qualitatively the results are
very similar. As predicted, the dense case is more challenging, and the “no partial” approach does
not perform well in this case.

We next examine the effect of varying cluster sizes on the performance, with a fixed total number
of nodes. Figures 7 and 8 show clustering results with various cluster sizes (K), for n = 400. We
choose a particular p and q that shows an interesting region. As expected, the success rates improve
when K grows. Qualitatively the results remain similar for other p and q.
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Figure 5: Clustering sparse graph
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Figure 6: Clustering dense graph
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Figure 7: Clustering sparse graph
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Figure 8: Clustering dense graph

A.3 Time-varying graphs
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Figure 9: Independent snapshots
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Figure 10: Markov label sequence

We next test clustering performance on time-varying graphs. Figure 9 shows results for clustering
based on multiple independent snapshots of labeled graphs. Each graph is generated according to
the planted partition model with partial observation and a fixed error rate. We tested a wide range
of error rates and the horizontal axis tracks the corresponding KL divergence between µ and ν.
Figure 9 shows the results for 200 nodes with 8 equal-size clusters. As predicted by Corollary 4, the
clustering performance improves with the number of snapshots (T ).

Figure 10 shows results for Markov label sequence. Here, we test a very simple model with two
labels {interaction, no-interaction}. For within-cluster pairs, the probability of interaction is greater
(0.5 + ε) in the next time-step if there is no interaction in the current time-step, and vice versa.
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For inter-cluster pairs, the probability of interaction/no-interaction is completely random. This is
the case where both the marginal and the stationary distributions for µ and ν are identical in every
time-step, and therefore at least two consecutive observations are needed for informative clustering.
The figure shows results for 200 nodes with 8 equal-size clusters, with the horizontal axis tracking
the average KL-divergence between the conditional distributions (by varying ε). As predicted by
Corollary 5, the performance improves with T .

A.4 Reality Mining dataset

In this subsection we show additional results on the Reality Mining dataset. Figure 11 shows the
analogue of Fig. 3 but only for a period of 5 weeks (i.e. 5 snapshots). In this case, we see that
all three models have worse in/cross-cluster accuracy. In particular, the independent model actually
performs better than simply using the aggregate graph.
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Figure 11: Reality Mining dataset, shorter period

In the above experiment, although the in-cluster and off-cluster distributions are estimated from
only a tiny fraction of the data, the “training” data is still part of the test data. We now test a second
scheme. In this scheme, a small number of subjects are randomly chosen in each trial and the inter-
action data between these chosen set and the other subjects are used for parameter estimation. These
subjects are then removed from the total set, and graph clustering is performed on the remaining
subjects. Figure 12 shows the results for both 5-week and 14-week. Qualitatively, the results are
similar to those from Figs. 3 and 11.
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Figure 12: Reality Mining dataset, scheme 2

12



B A general theorem and high confidence observations

In this section, we state and prove a general theorem which implies the main Theorem 1 in the main
text. A benefit of considering such a general theorem is that we can cover the case where some of
the observations are highly certain, or are given as hard constraints. Naturally, the weights assigned
to these observations would have arbitrarily large magnitudes.

Let
Sb = {l ∈ L : |w(l)| ≥ b}

and sµ,b =
∑
l∈Sb µ(l).

Let

w̃b(l) =

{
w(l) if l /∈ Sb,

0 otherwise

The following theorem, which generalizes Theorem 1, gives the sufficient conditions for successful
recovery:

Theorem 6. Suppose there exists b such that all entries with |Wij | ≥ b are consistent, i.e.:

Wij(2Y
∗
ij − 1) > 0 (13)

and K is the minimum cluster size. Let b′ = maxl |w̃b(l)|. If the following holds:

−Eνw̃b ≥ c
b′β log n+

√
Kβ log n

√
Varνw̃b

K
(14)

and at least one of the following holds:

1.

Eµw̃b > c
b′β log n+

√
nβ log n

√
max(Varµw̃b,Varνw̃b)

K
(15)

2.

sµ,b +
Eµw̃b
b

> cmax

(
β log n

K
, sµ,b(1− sµ,b),

nmax(Varµw̃b,Varνw̃b)

Kb2

)
(16)

then with probability at least 1− n−β Y ∗ is the unique solution to (2).

It is easy to see that if w is bounded, then we can choose b such that Sb is an empty set. In this
case, condition (16) can be ignored and we have Theorem 1. On the other hand, if there exist hard
constraints with b→∞, then (16) reduces to

sµ,b > c
β log n

K
.

This is significant since in this case, the overall condition for successful recovery only depends
logarithmically on n.

B.1 Proof of Theorem 6

We now prove the generalized Theorem 6.

B.1.1 Preliminaries

Let Ω = {(i, j) : Lij ∈ Sb} and R = {(i, j) : Y ∗ij = 1}. Let PΩ be the projection operator on
matrices such that

(PΩZ)ij =

{
Zij if (i, j) ∈ Ω,
0 otherwise.

PR, PΩ∩R etc are defined similarly.
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Let UΣU> be the reduced SVD of Y ∗. Let Ci be the cluster in which node i belongs and Ki = |Ci|.
Note that

(UU>)ij =

{
1
Ki

if Ci = Cj
0 otherwise.

(17)

Define the projection operators

PTZ := UU>Z + ZUU> − UU>ZUU> (18)

and
PT⊥Z := Z − PTZ.

For any matrix X such that ‖X‖ ≤ λ, UU> + 1
λPT⊥X is a subgradient of ‖ · ‖∗ at Y ∗. For any

feasible Y , we therefore have

‖Y ∗‖∗ ≥ ‖Y ‖∗ ≥ ‖Y ∗‖∗ + 〈UU> +
1

λ
PT⊥X,Y − Y ∗〉

which gives
〈X,Y ∗ − Y 〉 ≥ 〈PTX − λUU>, Y ∗ − Y 〉. (19)

We need the following lemmas:
Lemma 1. For any matrix Z, we have

(PTZ)ij =
1

Ki

∑
k∈Ci

Zkj +
1

Kj

∑
l∈Cj

Zil −
1

KiKj

∑
k∈Ci

∑
l∈Cj

Zkl.

Proof. The lemma is immediate by the definition (18) of PT and the expression (17) of UU>.

Lemma 2. With probability at least 1− n−β the followings hold:

‖PΩUU
> − E[PΩUU

>]‖ ≤ λ1 (20)

and for all i, j

|(PT (PΩUU
> − E[PΩUU

>]))ij | ≤
{

λ1

Ki
if Ci = Cj

0 otherwise
(21)

where

λ1 = c1
β log n+

√
Ksµ(1− sµ)β log n

K
.

Proof. For (20), consider PΩUU
> − E[PΩUU

>] as the sum of independent, zero-mean random
matrices:

PΩUU
> − E[PΩUU

>] =
∑

i<j,Ci=Cj

Xi,j

where

Xi,j = PΩ

(
1

Ki
(eie

>
j + eje

>
i )

)
− EPΩ

(
1

Ki
(eie

>
j + eje

>
i )

)
and ei denotes the i-th vector of the standard basis. Note that

‖Xi,j‖ ≤
1

K
∀i, j

and ∥∥∥∥∥∥
∑

i<j,Ci=Cj

EX2
i,j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

i<j,Ci=Cj

sµ(1− sµ)

K2
i

(eie
>
i + eje

>
j )

∥∥∥∥∥∥ ≤ sµ(1− sµ)

K

By applying matrix Bernstein inequality, we obtain (20).

For (21), let Z = PΩUU
> − E[PΩUU

>] be a zero-mean random matrix. For each i, note that

Ẑi =
1

Ki

∑
k∈Ci

Zik
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is the average of Ki independent zero-mean random variables with |Zik| ≤ 1
Ki

and

Var(Zik) =
sµ(1− sµ)

K2
i

.

By standard Bernstein’s inequality, we have that |Ẑi| ≤ λ1

Ki
for each i. By Lemma 1 and a union

bound over all i, we obtain (21).

Lemma 3. With probability at least 1− n−β the followings hold:

‖PΩc∩RW − E[PΩc∩RW ]‖ ≤ λ2 (22)
and for all i, j

|(PT (PΩc∩RW − E[PΩc∩RW ]))ij | ≤
{

λ2

Ki
if Ci = Cj

0 otherwise
(23)

where

λ2 = c2

(
b′β log n+

√
nVarµ(w̃b)β log n

)
.

Proof. It follows the same arguments as in the proof of Lemma 2.

Lemma 4. With probability at least 1− n−β the followings hold:

‖PΩc∩RcW − E[PΩc∩RcW ]‖ ≤ λ3 (24)
and for all i, j

|(PT (PΩc∩RcW − E[PΩc∩RcW ]))ij | ≤
{
λ4 if Ci 6= Cj
0 otherwise (25)

where
λ3 = c3

(
b′β log n+

√
nVarν(w̃b)β log n

)
and

λ4 = c4
b′β log n+

√
KVarν(w̃b)β log n

K
.

Proof. It follows the same arguments as in the proof of Lemma 2.

B.1.2 Proof of the theorem

We are now ready to complete the proof of Theorem 6. We show that with probability at least
1− n−β the following holds for all feasible Y 6= Y ∗:

〈W,Y ∗ − Y 〉 > 0

which implies that Y ∗ is the unique solution of program (2).

We decompose 〈W,Y ∗ − Y 〉 as follows:
〈W,Y ∗−Y 〉 = 〈PΩ∩RW,Y

∗−Y 〉+〈PΩ∩RcW,Y
∗−Y 〉+〈PΩc∩RW,Y

∗−Y 〉+〈PΩc∩RcW,Y
∗−Y 〉.

(26)

By (13), we have that
〈PΩ∩RW,Y

∗ − Y 〉 ≥ 0.

It follows that
〈PΩ∩RW,Y

∗ − Y 〉 ≥ bK〈PΩUU
>, Y ∗ − Y 〉

= bK
(
〈E[PΩUU

>], Y ∗ − Y 〉+ 〈PΩUU
> − E[PΩUU

>], Y ∗ − Y 〉
)

= bK
(
〈sµUU>, Y ∗ − Y 〉+ 〈PΩUU

> − E[PΩUU
>], Y ∗ − Y 〉

)
(a)

≥ bK
(
〈sµUU>, Y ∗ − Y 〉+ 〈PT (PΩUU

> − E[PΩUU
>])− λ1UU

>, Y ∗ − Y 〉
)

(b)

≥ bK
(
〈sµUU>, Y ∗ − Y 〉+ 〈−2λ1UU

>, Y ∗ − Y 〉
)

= bK(sµ − 2λ1)〈UU>, Y ∗ − Y 〉

15



where we apply (19) and (20) in (a) and (21) in (b). We conclude that

〈PΩ∩RW,Y
∗ − Y 〉 ≥ max {0, bK(sµ − 2λ1)} 〈UU>, Y ∗ − Y 〉 (27)

Consider the 2nd RHS term of (26). By (13), we have that

〈PΩ∩RcW,Y
∗ − Y 〉 ≥ 0. (28)

Now, consider the 3rd RHS term of (26),

〈PΩc∩RW,Y
∗ − Y 〉 = 〈E[PΩc∩RW ], Y ∗ − Y 〉+ 〈PΩc∩RW − E[PΩc∩RW ], Y ∗ − Y 〉

= 〈(Eµw̃b)Y ∗, Y ∗ − Y 〉+ 〈PΩc∩RW − E[PΩc∩RW ], Y ∗ − Y 〉
(a)

≥ 〈(Eµw̃b)Y ∗, Y ∗ − Y 〉+ 〈PT (PΩc∩RW − E[PΩc∩RW ])− λ2UU
>, Y ∗ − Y 〉

(b)

≥ 〈(Eµw̃b)Y ∗, Y ∗ − Y 〉 − 〈2λ2UU
>, Y ∗ − Y 〉

≥ (KEµw̃b − 2λ2)〈UU>, Y ∗ − Y 〉 (29)

where we use (19) and (22) in (a) and (23) in (b).

Finally, consider the last RHS term of (26),

〈PΩc∩RcW,Y
∗ − Y 〉 = 〈E[PΩc∩RcW ], Y ∗ − Y 〉+ 〈PΩc∩RcW − E[PΩc∩RcW ], Y ∗ − Y 〉

= (−Eνw̃b)〈1− Y ∗, Y 〉+ 〈PΩc∩RcW − E[PΩc∩RcW ], Y ∗ − Y 〉
(a)

≥ (−Eνw̃b)〈1− Y ∗, Y 〉+ 〈PT (PΩc∩RcW − E[PΩc∩RcW ])− λ3UU
>, Y ∗ − Y 〉

(b)

≥ (−Eνw̃b − λ4)〈1− Y ∗, Y 〉 − 〈λ3UU
>, Y ∗ − Y 〉 (30)

where we use (19) and (24) in (a) and (25) in (b).

Putting together (27), (28), (29) and (30) we have that

〈W,Y ∗ − Y 〉 ≥(max {0, bK(sµ − 2λ1)}+KEµw̃b − 2λ2 − λ3)〈UU>, Y ∗ − Y 〉+
(−Eνw̃b − λ4)〈1− Y ∗, Y 〉

=bK

(
max (0, sµ − 2λ1) +

Eµw̃b − 2λ2+λ3

K

b

)
〈UU>, Y ∗ − Y 〉+

(−Eνw̃b − λ4)〈1− Y ∗, Y 〉. (31)

We see that condition (14) ensures that −Eνw̃b − λ4 ≥ 0. Condition (15) ensures that

Eµw̃b −
2λ2 + λ3

K
> 0

while condition (16) ensures that

sµ − 2λ1 +
Eµw̃b − 2λ2+λ3

K

b
> 0

and either one is sufficient.

C Proofs of Theorems 1–2 and Corollary 1

In this section we prove the main theoretical results in the main text: Theorems 1 for using arbitrary
weights, and Theorem 2 and Corollary 1 for using MLE weights.

C.1 Proof of Theorem 1

Theorem 1 is a special case of Theorem 6 by setting b to∞ and β = 10.

16



C.2 Proof of Theorem 2

Throughout the remainder of this section, w always means wMLE. The proof is done using several
lemmas. The first lemma, proved in subsection C.2.1 to follow, bounds the log-likelihood ratio.

Lemma 5. Suppose that
∣∣log µ

ν

∣∣ ≤ b. Then, for any l ∈ L,∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ ≤ (b+ 2)

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ .
The second lemma, proved in section C.2.2 to follow, controls the variance terms.

Lemma 6. Suppose that | log µ
ν | ≤ b and D(ν||µ) ≤ ζD(µ||ν), then

Varνw ≤ 3(b+ 2)D(ν||µ) (32)

and
max(Varµw,Varνw) ≤ (ζ + 1)(b+ 2)D(µ||ν). (33)

The last lemma is a classical result in information theory that bounds the KL divergences D(µ||ν)
and D(ν||µ) with the triangle discrimination between µ and ν.

Lemma 7 ([24]). The following holds for any distributions µ and ν:

min{D(µ||ν), D(ν||µ)} ≥ 1

2

∑
l∈L

(µ(l)− ν(l))2

µ(l) + ν(l)
.

We are now ready to prove Theorem 2. To this end we shall verify that the conditions (3) and (4) in
Theorem 1 holds under the assumption of Theorem 2. Note that

−Eνw = −
∑
l

ν(l) log
µ(l)

ν(l)
= D(ν||µ).

Combining (5) with (32) yields (3). Turning to (4), we note that Eµw = D(µ||ν). Combining (6)
with (33) gives (4). Finally, the last sentence in the statement of Theorem 2 is immediate from the
following more general result, which is useful later in the proof of Theorem 3.

Lemma 8. Suppose that
∣∣log µ

ν

∣∣ ≤ b, then we have

D(ν||µ) +D(µ||ν) ≤ (b+ 2)
∑
l

(ν(l)− µ(l))2

ν(l) + µ(l)

and
1

2b+ 3
≤ D(ν||µ)

D(µ||ν)
≤ 2b+ 3.

Proof. We have

D(ν||µ)

D(µ||ν)
+ 1 =

D(ν||µ) +D(µ||ν)

D(µ||ν)

=

∑
l(ν(l)− µ(l)) log ν(l)

µ(l)

D(µ||ν)

(a)

≤
(b+ 2)

∑
l

(ν(l)−µ(l))2

ν(l)+µ(l)

D(µ||ν)
.

where we apply Lemma 5 in (a). This proves the first equation in the lemma. Bounding the last
RHS using Lemma 7, we prove the second inequality in the second equation in the lemma. The first
inequality in the second equation follows from switching the roles of µ and ν.
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C.2.1 Proof of Lemma 5

Proof. Consider the function log 1−p
p for p ∈ [ 1

eb+1
, 0.5]. By its convexity in this range we can

linearly upper-bound it and show that log 1−p
p ≤ b

(
eb+1
eb−1

)
(1 − 2p). Now take p = ν

µ+ν , we then
have∣∣∣log

µ

ν

∣∣∣ =

∣∣∣∣log
1− p
p

∣∣∣∣ ≤ b(eb + 1

eb − 1

)
|1− 2p| = b

(
eb + 1

eb − 1

) ∣∣∣∣µ− νµ+ ν

∣∣∣∣ ≤ (b+ 2)

∣∣∣∣µ− νµ+ ν

∣∣∣∣ .

C.2.2 Proof of Lemma 6

Proof. Using Lemma 5, we have

Varνw ≤ Eνw2

=
∑
l

ν(l)

(
log

µ(l)

ν(l)

)2

≤ (b+ 2)
∑
l

ν(l)

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣
(a)

≤ 3(b+ 2)
∑
l

ν(l) log
ν(l)

µ(l)

= 3(b+ 2)D(ν||µ).

For (a), we have

3
∑
l

ν(l) log
ν(l)

µ(l)
−
∑
l

ν(l)

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ = 2
∑
l

ν(l)
2µ(l) + ν(l)

µ(l) + ν(l)
log

ν(l)

µ(l)

(b)

≥ 2
∑
l

ν(l)
2µ(l) + ν(l)

µ(l) + ν(l)

(1− µ(l)
ν(l) )(5 + µ(l)

ν(l) )

2 + 4µ(l)
ν(l)

=
∑
l

(ν(l)− µ(l))(5ν(l) + µ(l))

(µ(l) + ν(l))

= −4 + 8
∑
l

µ(l)2

µ(l) + ν(l)

(c)

≥ 0

where we use Pade’s bound for logarithm in (b). In (c) note that
∑
l

µ(l)2

µ(l)+ν(l) ≥
1
2 .

For (33), again by using Lemma 5,

max(Varµw,Varνw) ≤ Eµw2 + Eνw2

=
∑
l

(µ(l) + ν(l))

(
log

µ(l)

ν(l)

)2

≤ (b+ 2)
∑
l

(µ(l) + ν(l))

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣
= (b+ 2)(D(µ||ν) +D(ν||µ))

≤ (ζ + 1)(b+ 2)D(µ||ν).
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C.3 Proof of Corollary 1

The corollary follows immediately from Theorem 2 by lower bounding the LHS of (5) and (6) using
Lemma 7.

D Proof of Theorem 3

In this section we prove the converse result in Theorem 3. We use a standard technique based on
converting the problem to multiple hypothesis testing; in particular, we shall apply Theorem 2.5
of [27]. Set M = n and let θ0 = Y ∗. For k = 1, . . . , M2 , let θk be the adjacency matrix of a new
clustering by swapping the 1st member of cluster 1 with the k-th member of cluster 2. Likewise, for
k = M

2 + 1, . . . ,M , θk is obtained by swapping the 2nd member of cluster 1 with the k-th member
of cluster 2. Let L0, L1, . . . , LM be the random label matrices generated by the corresponding
clustering.

Since the label of each entry is generated independently, we have:

D(Lj ||L0) =
∑
i<j

D(Lkij ||L0
ij)

(a)
= (n− 2)D(µ||ν) + (n− 2)D(ν||µ)

(b)

≤ (n− 2)(b+ 2)
∑
l

(ν(l)− µ(l))2

ν(l) + µ(l)

(c)

≤ (c′ + 2)c log n;

here in (a) we use the fact that due to the membership swap, exactly n − 2 intra-cluster pairs in θ0

become inter-cluster pairs in θj and vise-versa, (b) follows from the first equation in Lemma 8, and
(c) holds due to (8) and the assumption that b is bounded by a universal constant.

The result then follows from taking c sufficiently small and applying Theorem 2.5 of [27].

E Proof of Theorem 4

In this section we prove the monotonicity property in Theorem 4. Let E = {l ∈ L : µ̄(l) ≥ ν̄(l)}
and Ec = L \ E. Since (µ, ν) is strictly more divergent than (µ̄, ν̄), we have that for all l ∈ E,
µ(l) ≥ µ̄(l) ≥ ν̄(l) ≥ ν(l) and for all l ∈ Ec, ν(l) ≥ ν̄(l) > µ̄(l) ≥ µ(l).

We generate the label matrix L from (µ, ν) using the following two-stage process:

1. First, generate a matrix L̄ from (µ̄, ν̄). Set L← L̄.

2. • For each (i, j) where Y ∗ij = 0, ifLij ∈ E, then with probability 1− ν(Lij)
ν̄(Lij)

, setLij ← l

where l is drawn from the set Ec with distribution ν(l)−ν̄(l)∑
l′∈Ec ν(l′)−ν̄(l′) . Let Ω− be the

set of all such entries, i.e. where Lij has switched from E to Ec.

• For each (i, j) where Y ∗ij = 1, if Lij ∈ Ec, then with probability 1 − µ(Lij)
µ̄(Lij)

, set

Lij ← l where l is drawn from the set E with distribution µ(l)−µ̄(l)∑
l′∈E µ(l′)−µ̄(l′) . Let Ω+

be the set of all such entries, i.e. where Lij has switched from Ec to E.

It is straightforward to verify that the resulting distribution of L is identical to that generated by
(µ, ν).

Let Ŷ be the optimal solution to (2) with L̄ as input. Let W̄ be the corresponding MLE weights.
Since (µ̄, ν̄) satisfies the condition of Theorem 2, we have that with probability at least 1 − n−β ,
Ŷ = Y ∗ and for any feasible solution Y 6= Y ∗, we have

〈W̄ , Y ∗〉 > 〈W̄ , Y 〉.
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Now, consider program (2) with L as the input, using the corresponding MLE weights W based on
(µ̄, ν̄). We have that for any feasible Y 6= Y ∗,

〈W,Y ∗〉 − 〈W̄ , Y ∗〉 =
∑

(i,j)∈Ω+

(Wij − W̄ij)Y
∗
ij

≥
∑

(i,j)∈Ω+

(Wij − W̄ij)Yij

≥
∑

(i,j)∈Ω−

(Wij − W̄ij)Yij +
∑

(i,j)∈Ω+

(Wij − W̄ij)Yij

= 〈W,Y 〉 − 〈W̄ , Y 〉
⇒ 〈W,Y ∗〉 − 〈W,Y 〉 ≥ 〈W̄ , Y ∗〉 − 〈W̄ , Y 〉 > 0.

F Proof of Theorem 5

In this section we prove Theorem 5, which provides guarantees for using inaccurate weights. We
apply Theorem 1. To avoid confusion we use b′ and c′ to denote the constants b and c in Theorem 1.

For (3), from the RHS, we have

c′
b′ log n+

√
K log n

√
Varνw

K

(a)

≤ c′b′(1− γ)2

cλ2(b+ 2)
D(ν||µ) +

√
3c′2λ2(b+ 2)D(ν||µ)

log n

K

≤ c′(1− γ)2

cλ
D(ν||µ) +

√
3c′2(1− γ)2

c
D(ν||µ)2

(b)

≤ (1− γ)D(ν||µ)

(c)

≤ D(ν||µ)−∆ν

= −Eνw

where for (a), we use Varνw ≤ λ2Varνw
MLE due to the condition |w| ≤ λ| log µ

ν | and apply (32).
For (b) we choose an appropriately large c. For (c) we use the condition |∆ν | ≤ γD(ν||µ).

The same arguments can be used to prove (4) where (33) is used instead of (32).

G Proof of Corollary 2

In this section we prove Corollary 2 for clustering Gaussian graphs. The only difficulty in ap-
plying Theorem 2 directly is the boundedness condition |wMLE(Lij)| ≤ b. To overcome this
we use a standard truncation trick. Define a truncated version L̄ of the matrix L by L̄ij =
Lij · 1{Lij=? or |Lij−uij |≤c′

√
logn}, where 1 is the indicator function and c′ > 0 is a universal con-

stant that is sufficiently large. By a standard tail bound on Gaussian variables and the union bound,
we know that with probability at least 1 − n−10, L̄ij = Lij for all i, j. Therefore, any result for
L̄ also holds for L with that probability. Now with L̄ we have a new labeled problem defined on
L = [u − c′

√
log n, ū + c′

√
log n] ∪ {?}. We use the weight w(L̄ij) = L̄ij − ū+u

2 if L̄ij 6=?

and w(L̄ij) = 0 otherwise, which is bounded almost surely. Applying Theorem 1 gives the desired
result.
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H Proof of Corollary 5

In this section we prove Corollary 5 for clustering with Markov snapshots. The MLE weight in this
case is given by:

wMLE(L̄ij) =
1

T
log

µ̄(L
(1)
ij )µ(L

(2)
ij |L

(1)
ij ) . . . µ(L

(T )
ij |L

(T−1)
ij )

ν̄(L
(1)
ij )ν(L

(2)
ij |L

(1)
ij ) . . . ν(L

(T )
ij |L

(T−1)
ij )

=
1

T
log

µ̄(L
(1)
ij )

ν̄(L
(1)
ij )

+
1

T

T∑
t=2

log
µ(L

(t)
ij |L

(t−1)
ij )

ν(L
(t)
ij |L

(t−1)
ij )

.

In the sequel, we will focus on an in-cluster pair i, j with label distribution µ and drop the subscript
ij in Lij . The same analysis holds for all i, j.

It is convenient to think of an auxiliary Markov chain X1, . . . XT where each state is characterized
by a label pair Xt = (L(t−1), L(t)) for t > 1, and X1 = L(1). We define the function f on Xt such
that

f(L) = log
µ̄(L)

ν̄(L)
and f(L,L′) = log

µ(L′|L)

ν(L′|L)
.

We therefore have

wMLE =
1

T

T∑
t=1

f(Xt).

It is straightforward to show that

Eµ(f(X1)) = D(µ̄||ν̄) and Eµ(f(Xt)) = Eµ̄Dl(µ||ν) (t > 1)

therefore

Eµ(wMLE) =
1

T
D(µ̄||ν̄) +

(
1− 1

T

)
Eµ̄Dl(µ||ν). (34)

The rest of the proof concerns with bounding Varµ(wMLE). Following the proof of Lemma 6, the
variance of f(Xt) can be bounded by

Varµ(f(X1)) ≤ 3(b+ 2)D(µ̄||ν̄) and Varµ(f(Xt)) ≤ 3(b+ 2)Eµ̄Dl(µ||ν) (t > 1).

We now bound the covariance Cov(f(Xt), f(Xt+τ+1)) for t ≥ 2, τ ≥ 0,

Cov(f(Xt), f(Xt+τ+1))

=Eµ
[
log

µ(L(t)|L(t−1))

ν(L(t)|L(t−1))
log

µ(L(t+τ+1)|L(t+τ))

ν(L(t+τ+1)|L(t+τ))

]
− Eµ̄Dl(µ||ν)2

=
∑
L(t−1)

µ̄(L(t−1))
∑
L(t)

µ(L(t)|L(t−1)) log
µ(L(t)|L(t−1))

ν(L(t)|L(t−1))

∑
L(t+τ)

Pr(L(t+τ)|L(t))DL(t+τ)(µ||ν)

− Eµ̄Dl(µ||ν)2

(a)

≤
∑
L(t−1)

µ̄(L(t−1))
∑
L(t)

µ(L(t)|L(t−1))

∣∣∣∣log
µ(L(t)|L(t−1))

ν(L(t)|L(t−1))

∣∣∣∣ ∑
L(t+τ)

κγτDL(t+τ)(µ||ν)

≤ κγτ

minl µ̄(l)
bEµ̄Dl(µ||ν)

where in (a) we use the geometric ergodicity of µ in the sense that

|Pr(L(t+τ)|L(t))− µ̄(L(t+τ))| ≤ κγτ .

The same bound also applies to the case t = 1. Note that the covariance bound is independent of t
and only dependent on τ .
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We proceed to bound Var(wMLE) as follows

Var(wMLE) =
1

T 2

T∑
t=1

Var(f(Xt)) +
2

T 2

T−1∑
t=1

T∑
t′=t+1

Cov(f(Xt), f(Xt′))

≤ 1

T 2

T∑
t=1

Var(f(Xt)) +
2

T

T−2∑
τ=0

T − 1− τ
T

κγτ

minl µ̄(l)
bEµ̄Dl(µ||ν)

≤ 3(b+ 2)

T

(
1

T
D(µ̄||ν̄) +

T − 1

T
Eµ̄Dl(µ||ν)

)
+

2κ

(1− γ) minl µ̄(l)
b
Eµ̄Dl(µ||ν)

T

≤ c (b+ 2)λ

T

(
1

T
D(µ̄||ν̄) +

T − 1

T
Eµ̄Dl(µ||ν)

)
(35)

With (34) and (35) we can now finish the proof by applying Theorem 1.

I Example Markov chain with explicit bound on λ

The snapshots in a Markov label sequence are not independent and therefore given T snapshots we
do not expect a T -fold increase in the information as in the independent case. In the condition given
by Corollary 5, this penalty is characterized by an extra constant λ. To give a sense of what values
it may take, we now derive an explicit bound for a simple class of 2-label sequences.

Suppose the transition matrix for µ is given by the following for 0 < p0, p1 < 1:[
1− p0 p0

p1 1− p1

]
.

We can assume that p0 is the probability that an edge “flips” into a non-edge and p1 is the probability
that a non-edge flips into an edge.

Let ρ = 1−p0−p1. By eigen-decomposition we can show that the transition matrix after t transitions
is: [

p1
p0+p1

(
1 + p0

p1
ρt
)

p0
p0+p1

(1− ρt)
p1

p0+p1
(1− ρt) p0

p0+p1
(1 + p1

p0
ρt)

]
and the stationary distribution is given by

µ̄ =

[
p1

p0 + p1

p0

p0 + p1

]
.

It is easy to see that this satisfies the geometric ergodicity condition

|Pr(L(1+t)|L(1))− µ̄(L(1+t))| ≤ κγt

with κ = 1 and γ = |ρ|. We therefore have

λ =
p0 + p1

(1− |ρ|) min{p0, p1}
.

For fixed µ̄, the value of λ determines how much new information is contained in a new snapshot.
For example, suppose p1 = p0, so µ̄ = [ 1

2 ,
1
2 ] is fixed. The value of λ is very large when the

flipping probabilities p0 and p1 are both close to zero (or close to one). In this case the next snapshot
is almost either the same or the inverse of the current snapshot, hence providing very little extra
information. In the other extreme, if p0 = p1 = 1

2 , then λ = 2 is small. In this case the snapshots
are independent and thus the next snapshot provides fresh information.

22


	Introduction
	Related work

	Problem setup and algorithms
	Theoretical results
	Optimal weights
	Monotonicity
	Using inaccurate weights

	Consequences and applications
	Clustering a Gaussian matrix with partial observations
	Planted Partition with non-uniform edge densities
	Clustering time-varying multiple-snapshot graphs
	Markov sequence of snapshots

	Empirical results
	Additional experiment results
	Clustering with general labels
	Clustering sparse/dense graphs with partial observations
	Time-varying graphs
	Reality Mining dataset

	A general theorem and high confidence observations
	Proof of Theorem 6
	Preliminaries
	Proof of the theorem


	Proofs of Theorems 1–2 and Corollary 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Corollary 1

	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Corollary 2
	Proof of Corollary 5
	Example Markov chain with explicit bound on 

