
Mathematical Arguments

Proof of Lemma 1

We prove here the equivalence of propagation dynamics DTIC(P), CTIC(F ,∞) and RN(P),
provided that for any (i, j) ∈ E ,

∫∞
0
fij(t)dt = Hij . More specifically, we prove the following

lemma, that will be useful in the subsequent proofs. In the following, we will denote by Xi the state
of node i at the end of the infection process, i.e Xi = 1 if the infection has reached node i, and
Xi = 0 otherwise.

Lemma 5. Let G = (V, E) be a given directed network and A ⊂ V a set of influencers. For any
i /∈ A, we denote byQi the collection of directed paths (without loops) in G from A to node i. Then,
under the infection processes DTIC(P), CTIC(F ,∞) and RN(P), we have ∀i /∈ A,

Xi = 1−
∏
q∈Qi

(1−
∏

(j,l)∈q

Ejl), (1)

where the (Ejl)jl are independant Bernoulli random variables Ejl ∼ B(pjl) for infection pro-
cesses DTIC(P) and RN(P), and Ejl ∼ B

(
1 − exp(−

∫∞
0
fjl(t)dt)

)
for infection process

CTIC(F ,∞).

Proof. First, note that, for RN(P), the random variables 1{(j,l)∈E′} and,for DTIC(P), the indica-
tor function of the events that node j succeeds in infecting node l if j is infected during the process
and l is still healthy at that time are independant Bernoulli variables Ejl ∼ B(pjl) and can all be
drawn at t = 0. Moreover, by definition of the infection processes, a node i ∈ V is reached by the
contagion if and only if there exists a path from A to i, such that each of its edges transmitted the
contagion. We thus have for DTIC(P) and RN(P):

Xi = 1−
∏
q∈Qi

(1−
∏

(j,l)∈q

Ejl). (2)

For CTIC(F ,∞), the variables drawn at the beginning of the infection process are the (possibly
infinite) times τjl such that node j will infect node l at time tj + τjl if node j has been infected at
time tj , and node l has not been infected by another node before time tj + τjl. By definition, these
independent random variables have the following survival function:

P (τjl < t) = 1− exp

(
−
∫ t

0

fjl(s)ds

)
(3)

Therefore, we have by the same arguments than previously,

Xi = 1−
∏
q∈Qi

(1−
∏

(j,l)∈q

1{τjl<∞}), (4)

which proves the result for CTIC(F ,∞), defining Ejl = 1{τjl<∞}

Lemma 1 is then a direct corollary of Lemma 5 in the case where, for any (j, l) ∈ E ,
∫∞
0
fjl(t)dt =

Hjl.

Proofs of Proposition 1 and Corollary 1

We develop here the full proofs for Proposition 1 and Corollary 1 that apply to any set of initially
infected nodes. We will first need to prove two useful results: Lemma 6, that proves for j ∈ V
a positive correlation between the events ’node j did not infect node i during the epidemic’ and
Lemma 8, that bound the probability that a given node gets infected during the infection process.

Lemma 6. ∀i /∈ A, {1−XjEji}j∈V are positively correlated.

Proof. We will make use of the FKG inequality ([1]):
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Lemma 7. (FKG inequality) Let L be a finite distributive lattice, and µ a nonnegative function on
L, such that, for any (x, y) ∈ L2,

µ(x ∨ y)µ(x ∧ y) ≤ µ(x)µ(y) (5)

Then, for any non-decreasing function f and g on L(∑
x∈L

f(x)g(x)

)(∑
x∈L

µ(x)

)
≥

(∑
x∈L

f(x)µ(x)

)(∑
x∈L

g(x)µ(x)

)
(6)

For a given set of influencers A, the Xj are deterministic functions of the independent random
variables (Eij)ij . Thus, let fij({Ei′j′}(i′,j′)) = 1 −XjEji. In order to apply the FKG inequality,
we first need to show that each fij : {0, 1}n2 → {0, 1} is decreasing with respect to the natural
partial order on {0, 1}n2

(i.e. X ≤ Y if Xi ≤ Yi for all i). Let u ∈ {0, 1}n2

be a given transmission
state of the edges of the network. In order to prove the decreasing behavior of fij , it is sufficient to
show that fij(u) is decreasing with respect to every u(i,j).

But from Lemma 5, it is obvious that Xi(u) = 1 −
∏
q∈Qi(1 −

∏
(j,l)∈q u(j,l)) is increasing with

respect to every u(i,j). This implies that fij(u) = 1 − Xj(u)u(j,i) is decreasing with respect to
every u(i,j) and that fij : {0, 1}n2 → {0, 1} is decreasing with respect to the natural partial order
on {0, 1}n2

.

Finally, since we consider a product measure (due to the independence of the Eij) on a product
space, we can apply the FKG inequality to {1−XjEji}j∈{1,...,N}, and these random variables are
positively correlated.

The next lemma ensures that the variables Xi satisfy an implicit inequation that will be the starting
point of the proof of Proposition 1.
Lemma 8. For any A such that |A| = n0 < n and for any i /∈ A, the probability E[Xi] that node i
will be reached by the contagion originating from A verifies:

E[Xi] ≤ 1− exp

(
−
∑
j

HjiE[Xj ]

)
(7)

Proof. We first note that a node is infected if and only if one of its neighbors is infected, and the
respective ingoing edge transmitted the contagion. Thus

Xi = 0⇔ ∀j ∈ {1, . . . , n}, Xj = 0 or Eji = 0, (8)

which implies the following alternative expression for Xi:

1−Xi =
∏
j

(1−XjEji). (9)

Moreover, the positive correlation of {1−XjEji}j∈{1,...,N} implies that

E[
∏
j

(1−XjEji)] ≥
∏
j

E[1−XjEji] (10)

which leads to
E[Xi] ≤ 1−

∏
j E[1−XjEji]

= 1−
∏
j (1− E[Xj ]E[Eji])

= 1− exp
(∑

j ln(1− E[Xj ]E[Eji])
)

≤ 1− exp
(∑

j ln(1− E[Eji])E[Xj ]
)

= 1− exp
(
−
∑
j HjiE[Xj ]

)
(11)

since we have on the one hand, for any x ∈ [0, 1] and a < 1, ln(1 − ax) ≥ ln(1 − a)x, and on the
other hand E[Eji] = 1− exp(−Hji) by definition ofH.
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Using Lemma 8, we are now ready to start the proof of Proposition 1.

Proof of Proposition 1. In order to simplify notations, we define Zi =
(
E[Xi])i that we collect in

the vector Z = (Zi)i∈[1...n]. Using lemma 8 and convexity of exponential function, we have for any
u ∈ Rn such that ∀i ∈ A, ui = 0 and ∀i /∈ A, ui ≥ 0,

u>Z ≤ |u|1
(
1−

∑n−1
i=1

ui
|u|1 exp(−(H

>Z)i)

)
≤ |u|1

(
1− exp

(
− Z>Hu

|u|1

))
(12)

where |u|1 =
∑
i |ui| is the L1-norm of u.

Now taking u = (1i/∈AZi)i and noting that ∀i ∈ {1, . . . , n},∀j ∈ A,H(A)ij = 0, we have

Z>Z−n0

|Z|1−n0
≤ 1− exp

(
− Z>H(A)Z
|Z|1−n0

)
≤ 1− exp

(
− ρc(A)(Z>Z−n0)

|Z|1−n0
− ρc(A)n0

|Z|1−n0

)
(13)

where ρc(A) = ρ(H(A)+H(A)>

2 ). Defining y = Z>Z−n0

|Z|1−n0
and z = |Z|1 − n0 = σ(A) − n0, the

aforementioned inequation rewrites

y ≤ 1− exp

(
− ρc(A)y −

ρc(A)n0
z

)
(14)

But by Cauchy-Schwarz inequality applied to u, (n−n0)(Z>Z−n0) ≥ (|Z|1−n0)2, which means
that z ≤ y(n− n0). We now consider the equation

x− 1 + exp

(
− ρc(A)x−

ρc(A)n0
x(n− n0)

)
= 0 (15)

Because the function f : x→ x− 1+ exp
(
− ρc(A)x+ ρc(A)n0

x(n−n0)

)
is continuous, verifies f(1) > 0

and limx→0+ f(x) = −1, equation 15 admits a solution γ1 in ]0, 1[.

We then prove by contradiction that z ≤ γ1(n − n0). Let us assume z > γ1(n − n0). Then
y ≤ 1−exp

(
−ρc(A)y− ρc(A)n0

γ1(n−n0)

)
. But the function h : x→ x−1+exp

(
−ρc(A)x+ ρc(A)n0

γ1(n−n0)

)
is convex and verifies h(0) < 0 and h(γ1) = 0. Therefore, for any y > γ1, 0 = f(γ1) ≤
γ1
y f(y) + (1− γ1

y )f(0), and therefore f(y) > 0. Thus, y ≤ γ1. But z ≤ y(n− n0) ≤ γ1(n− n0)
which yields the contradiction.

Proof of Corollary 1. We distinguish between the cases ρc(A) > 1 and ρc(A) ≤ 1.

Case ρc(A) < 1. Using Eq. 15 and the fact that exp(z) ≥ 1+ z, we get γ1 ≤ ρc(A)γ1+ ρc(A)n0

γ1(n−n0)

which rewrites γ1 ≤
√

ρc(A)n0

(1−ρc(A))(n−n0)
in the case ρc < 1. Therefore,

σ(A) ≤ n0 +

√
ρc(A)

1− ρc(A)
√
n0(n− n0) (16)

Case ρc(A) ≥ 1. Using Eq. 15, we get γ1 − 1 + exp(− ρc(A)n0

γ1(n−n0)
) ≥ 0, which implies

γ1 ln(
1

1−γ1 ) ≥
ρc(A)n0

n−n0
≥ n0

n−n0
. By concavity of the logarithm, we therefore have γ21 ≥

n0(1−γ1)
n−n0

which means that γ1(n − n0) ≥
n0(
√

4n/n0−3−1)
2 . By plugging this lower bound in Eq. 15, we

obtain

σ(A) ≤ n0 +
(
1− exp

(
− ρc(A)−

2ρc(A)√
4n/n0 − 3− 1

))
(n− n0) (17)
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Proofs of Proposition 2 and Corollary 2

In this subsection, we develop the proofs for Proposition 2 and Corollary 2 in the case when the set
of initially infected node is drawn from a uniform distribution over Pn0

(V).
We start with an important lemma that will play the same role in the proof of Proposition 2 than
Lemma 8 in the proof of Proposition 1.

Lemma 9. Define ρc = ρ(H+H>

2 ). Assume A is drawn from an uniform distribution over Pn0
(V).

Then, for any i ∈ V , the probability E[Xi] that node i will be reached by the contagion satisfies the
following implicit inequation:

E[Xi] ≤ 1− n− n0
n

exp

(
− n

n− n0

∑
j

HjiE[Xi]

)
(18)

Proof.
E[Xi] = E[1{i∈A}] + E[1{i/∈A}]E[E[Xi|A]|i /∈ A]

≤ n0

n + n−n0

n

(
1− E[exp

(
−
∑
j HjiE[Xj |A]

)
|i /∈ A]

)
≤ n0

n + n−n0

n

(
1− exp

(
−E[

∑
j HjiE[Xj |A]|i /∈ A]

))
= 1− n−n0

n exp
(
−
∑
j HjiE[Xj |i /∈ A]

)
≤ 1− n−n0

n exp
(
− n
n−n0

∑
j HjiE[Xj ]

)
(19)

where the first inequality is Lemma 8 and the second one is Jensen inequality for conditional expec-
tations.

Proof of Proposition 2. We define Zi =
(
E[Xi])i that we collect in the vector Z = (Zi)i∈[1...n].

Then, using Lemma 9, and convexity of exponential function, we have:

Z>Z
|Z|1 ≤

(
1− n−n0

n

∑n
i=1

Zi
|Z|1 exp

(
− n

n−n0
(H>Z)i

))
≤
(
1− n−n0

n exp
(
− n

n−n0

Z>HZ
|Z|1

))
(20)

Now, defining y = Z>Z
|Z|1 , we have by Cauchy-Schwarz inequality |Z|1 ≤ ny where y ≤ 1 −

n−n0

n exp
(
− n

n−n0
ρcy
)
. Because function f : x→ x− 1+ n−n0

n exp
(
− n

n−n0
ρcy
)

is continuous
and convex over ]0, 1[, f(0) < 0 and f(1) > 0, there exists a solution γ ∈]0, 1[ of the equation
f(x) = 0. By the same arguments than in proof of Proposition 1, we have that, for any z ∈ [0, 1],
f(z) ≤ 0 ⇒ z ≤ γ. This proves the uniqueness of γ as well as the fact that y ≤ γ. Now, defining
γ2 = n0

n + n−n0

n γ, we have on the one hand

σuniform ≤ n0 + γ2(n− n0) (21)

and on the other hand

γ2 − 1 + exp

(
−ρcγ2 −

ρcn0
n− n0

)
= 0 (22)

which proves the proposition.

Proof of Corollary 2. In the case ρc < 1, using Proposition 2 and the fact that exp(z) ≥ 1 + z, we
get γ2 ≤ ρcγ2 + ρcn0

n−n0
which rewrites γ2 ≤ ρcn0

(1−ρc)(n−n0)
in the case ρc < 1. Therefore,

σuniform ≤ n0
(
1 +

ρc
1− ρc

)
=

n0
1− ρc

(23)

The second claim is straightforward from Proposition 2, using the fact that γ2 ≤ 1.

4



Proofs of Lemma 2, Lemma 3, Proposition 3 and Corollary 4

Proof of Lemma 2. Because matrices H(A)+H(A)>

2 and β
δA are symmetric and verify 0 ≤

H(A)+H(A)>

2 ≤ β
δA = H where ≤ stands for the coefficient-wise inequality, we have

ρ(H(A)+H(A)>

2 ) ≤ β
δ ρ(A) as a direct consequence of the Perron-Frobenius theorem (see e.g [2]).

We now introduce the function

f : ρ→ n0 +

√
ρ

1− ρ
√
n0(n− n0)−

√
nn0

1− ρ

We have f(0) < 0 and f ′(ρ) =
√
n0(n− n0) ρ

(1−ρ)3/2 −
√
n0n

1
(1−ρ)2 < 0. Therefore, f(ρ) < 0

for any ρ ∈ [0, 1], which proves the Lemma.

Proof of Lemma 3. First, note that, for bond percolation, the random variables 1{{j,l}∈E′} are in-
dependent Bernoulli variables F{j,l} ∼ B(pjl). We therefore have, similarly than in the proof of
Lemma 5

Xi = 1−
∏
q∈Qi

(1−
∏
{j,l}∈q

F{j,l}). (24)

where Xi is 1 if node i belongs to the connected component containing the influencer node v, and
is 0 otherwise. We then show that, because P is symmetric, for any infection process DTIC(P) on
the directed graph Gd, we can also define independent variables F ′{j,l} ∼ B(pjl) such that the final
infection state X ′i of node i is:

X ′i = 1−
∏
q∈Qi

(1−
∏
{j,l}∈q

F ′{j,l}), (25)

which proves that Xi and X ′i have the same probability distribution.

Indeed, the event that node j makes an attempt to infect node l will never occur in the same epidemic
than the event that node l makes an attempt to infect node j. Therefore, drawing two variables Ejl
and Elj at the beginning of each epidemic and letting the dynamic decide which of the two results
will be used, or drawing only one variable F ′{j,l} ∼ B(pjl) and using it for each epidemic to decide
wether the infection can spread along the edge {j, l} or not is strictly equivalent, given that Ejl and
Elj are independent and have the same distribution. From equations 24 and 25, we see that, for any
i ∈ V , the probability that a node i is infected is the same for the two processes.

Proof of Proposition 3. By proposition 2 applied to the case n0 = 1 with the notation γ3 =
(n−1)γ2+1

n , we get σuniform ≤ nγ3. We then use the fact that, when the influencer node is
uniformly randomly drawn on V , it belongs to the largest connected component and therefore
creates an infection of C1(G′) nodes with probability C1(G′)

n . Therefore, E[C1(G′)
n C1(G′)] ≤

σuniform ≤ nγ3. But E[C1(G′)2] ≥ E[C1(G′)]2 which yields E[C1(G′)] ≤ n
√
γ3. Moreover,

denoting as CA(G′) the size of the connected component containing the influencer node, we have
σuniform = E[CA(G′)] =

∑
i iP(CA(G′) = i) ≥ nP(CA(G′) = n) = nP(G′ is connected), and

therefore P(G′ is connected) ≤ γ3.

Proof of Corollary 4. According to Eq. 15 of the article, there exists m ∈ N and η < 1 such that for
any n ≥ m, ρ(Hn) ≤ η. Therefore, Corrolary 3implies E[C1(G′n)] ≤

√
n

1−η . But for any δ > 0,

P(C1(G′n) > δn1/2+ε) ≤ E[C1(G′
n)]

δn1/2+ε = o(1) which proves the corollary.
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