
A Confidence sets with high probability

In this appendix we will build up to a proof of Proposition 5, that the confidence sets defined by —ú

in equation 7 hold with high probability. We begin with some elementary results from martingale
theory.
Lemma 4 (Exponential Martingale).
Let Z

i

œ L1 be real-calued random variables adapted to H
i

. We define the conditional mean µ
i

=
E[Z

i

|H
i≠1] and conditional cumulant generating function Â

i

(⁄) = logE[exp (⁄(Z
i

≠ µ
i

)) |H
i≠1],

then

M
n
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A
nÿ

1

⁄(Z
i

≠ µ
i

) ≠ Â
i

(⁄)

B

is a martingale with E[M
n

(⁄)] = 1.
Lemma 5 (Concentration Guarantee).
For Z

i

adapted real L1 random variables adapted to H
i

. We define the conditional mean µ
i

=
E[Z

i

|H
i≠1] and conditional cumulant generating function Â

i

(⁄) = logE[exp (⁄(Z
i

≠ µ
i

)) |H
i≠1].
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⁄(Z
i

≠ µ
i

) ≠ Â
i

(⁄) Ø x}
B

Æ e≠x

Both of these lemmas are available in earlier discussion for real-valued variables [14]. We now
specialize our discussion to the vector space Y ™ Rd where the inner product < y, y >= ÎyÎ2

2. To
simplify notation we will write fú

t

:= fú(x
t

) and f
t

= f(x
t

) for arbitrary f œ F . We now define

Z
t

= Îfú
t

≠ y
t

Î2 ≠ Îf
t

≠ y
t

Î2

= < fú
t

≠ y
t

, fú
t

≠ y
t

> ≠ < f
t

≠ y
t

, f
t

≠ y
t

, f
t

≠ y
t

>

= ≠ < f
t

≠ fú
t

, f
t

≠ fú
t

> +2 < f
t

≠ fú
t

, y
t

≠ fú
t

>

= ≠Îf
t

≠ fú
t

Î2 + 2 < f
t

≠ fú
t

, ‘
t

>

so that clearly µ
t

= ≠Îf
t

≠ fú
t

Î2. Now since we have said that the noise is ‡-sub-Gaussian,
E[exp (< „, ‘ >)] Æ exp

1
Î„Î2

2‡

2

2

2
’„ œ Y. From here we can deduce that:

Â
t

(⁄) = logE[exp (⁄(Z
t

≠ µ
t

)) |H
t≠1]

= logE[exp(2⁄ < f
t

≠ fú
t

, ‘
t

>)]

Æ Î2⁄(f
t

≠ fú
t

)Î2
2‡2

2 .

We now write
q

t≠1
i=1 Z

i

= L2,t

(fú) ≠ L2,t

(f) according to our earlier definition of L2,t

. We can
apply Lemma 5 with ⁄ = 1/4‡2, x = log(1/”) to obtain:

P{
1

L2,t

(f) Ø L2,t

(fú) + 1
2Îf ≠ fúÎ2,Et ≠ 4‡2 log(1/”)

2
’t} Ø 1 ≠ ”

substituting f = f̂ to be the least squares solution which minimizes L2,t

(f) we can remove L2,t

(f̂)≠
L2,t

(fú) Æ 0. From here we use an –-cover discretization argument to complete the proof of
Proposition 5.

Let F– µ F be an –-2 cover of F such that ’f œ F there is some Îf– ≠ fÎ2 Æ –. We can use a
union bound on F– so that ’f œ F :

L2,t

(f) ≠ L2,t

(fú) Ø 1
2Îf ≠ fúÎ2,Et ≠ 4‡2 log(N(F , –, Î · Î2)/”) + DE(–) (17)

For DE(–) = min
f

–œF–

Ó1
2Îf– ≠ fúÎ2

2,Et ≠ 1
2Îf ≠ fúÎ2

2,Et + L2,t

(f) ≠ L2,t

(f–)
Ô

We will now seek to bound this discretization error with high probability.
Lemma 6 (Bounding discretization error).
If Îf–(x) ≠ f(x)Î2 Æ – for all x œ X then with probability at least 1 ≠ ”:

DE(–) Æ –t
Ë
8C +


8‡2 log(4t2/”)

È
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Proof. For non-trivial bounds we will consider the case of – Æ C and note that via Cauchy-Schwarz:
Îf–(x)Î2

2 ≠ Îf(x)Î2
2 Æ max

ÎyÎ2Æ–

Îf(x) + yÎ2
2 ≠ ÎfÎ2

2 Æ 2C– + –2.

From here we can say that
Îf–(x) ≠ fú(x)Î2

2 ≠ Îf(x) ≠ fú(x)Î2
2 = Îf–(x)Î2

2 ≠ Îf(x)Î2
2 + 2 < fú(x), f(x) ≠ f–(x) >Æ 4C–

Îy ≠ f(x)Î2
2 ≠ Îy ≠ f–(x)Î2

2 = 2 < y, f–(x) ≠ f(x) > +Îf(x)Î2
2 ≠ Îf–(x)Î2

2 Æ 2–|y| + 2C– + –2

Summing these expressions over time i = 1, .., t ≠ 1 and using sub-gaussian high probability bounds
on |y| gives our desired result.

Finally we apply Lemma 6 to equation 17 and use the fact that f̂LS

t

is the L2,t

minimizer to obtain
the result that with probability at least 1 ≠ 2”:

Îf̂LS

t

≠ fúÎ2,Et Æ


—ú
t

(F , –, ”)
Which is our desired result.

B Bounding the number of large widths

Lemma 1 (Bounding the number of large widths).
If {—

t

> 0
--t œ N} is a nondecreasing sequence with F

t

= F
t

(—
t

) then
mÿ

k=1

·ÿ

i=1

1{wFtk
(x

tk+i

) > ‘} Æ
14—

T

‘2 + ·
2

dim
E

(F , ‘)

Proof. We first imagine that wFt (x
t

) > ‘ and is ‘-dependent on K disjoint subsequences of
x1, .., x

t≠1. If x
t

is ‘-dependent on K disjoint subsequences then there exist Îf ≠ fÎ2,Et > K‘2. By
the triangle inequality Îf ≠ fÎ2,Et Æ 2

Ô
—

t

Æ 2
Ô

—
T

so that K < 4—
T

/‘2.

In the case without episodic delay, Russo went on to show that in any sequence of length l there is
some element which is ‘-dependent on at least l

dimE(F,‘) ≠1 disjoint subsequences [14]. Our analysis
follows similarly, but we may lose up to · ≠ 1 proper subsequences due to the delay in updating the
episode. This means that we can only say that K Ø l

dimE(F,‘) ≠ · . Considering the subsequence
wFtk

(x
tk+i

) > ‘ we see that l Æ
! 4—T

‘

2 + ·
"

dim
E

(F , ‘) as required.

C Eluder dimension for specific function classes

In this section of the appendix we will provide bounds upon the eluder dimension for some canonical
function classes. Recalling Definition 3, dim

E

(F , ‘) is the length d of the longest sequence x1, .., x
d

such that for some ‘Õ Ø ‘:

w
k

= sup
;

Î(f ≠ f)(x
k

)Î2

---- Îf ≠ fÎ2,Et Æ ‘Õ
<

> ‘Õ (18)

for each k Æ d.

C.1 Finite domain X

Any x œ X is ‘-dependent upon itself for all ‘ > 0. Therefore for all ‘ > 0 the eluder dimension of
F is bounded by |X |.

C.2 Linear functions f(x) = ◊„(x)

Let F = {f |f(x) = ◊„(x) for ◊ œ Rn◊p, „ œ Rp, Î◊Î2 Æ C
◊

, Î„Î2 Æ C
„

}. To simplify our notation
we will write „

k

= „(x
k

) and ◊ = ◊1 ≠ ◊2. From here, we may manipulate the expression

Î◊„Î2
2 = „T

k

◊T ◊„
k

= T r(„T

k

◊T ◊„
k

) = T r(◊„
k

„T

k

◊)

=∆ w
k

= sup
◊

{Î◊„
k

Î2
--T r(◊�

k

◊T ) Æ ‘2} where �
k

:=
k≠1ÿ

i=1

„
i

„T

i

We next require a lemma which gives an upper bound for trace constrained optimizations.
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Lemma 7 (Bounding norms under trace constraints).
Let ◊ œ Rn◊p, „ œ Rp and V œ Rp◊p

++ , the set of positive definite p ◊ p matrices, then:

W 2 = max
◊

Î◊„Î2
2 subject to T r(◊V ◊T ) Æ ‘2

is bounded above by W 2 Æ (2n ≠ 1)‘2Î„Î2
V

≠1 where Î„Î2
A

:= „T A„.

Proof. We first note that Î◊„Î2
2 = T r(◊„„T ◊T ) =

q
n

1 (◊„)2
i

Æ
!q

n

1 (◊„)
i

"2 by Jensen’s inequality.
We define �̃ œ Rn◊p such that each row of �̃ = „T . Then this inequality can be expressed as:

W 2 = T r(◊„„T ◊T ) Æ Sum(◊ ¢ �̃)2

Where A ¢ B = C for C
ij

= A
ij

B
ij

and Sum(C) :=
q

i,j

C
ij

We can now obtain an upper bound
for our original problem through this convex relaxation:

max
◊

Sum(◊ ¢ �̃) subject to T r(◊V ◊T ) Æ ‘2

We can now form the lagrangian L(◊, ⁄) = ≠Sum(◊ ¢ �̃) + ⁄(T r(◊V ◊T ) ≠ ‘2). Solving for first
order optimality O

◊

L = 0 =∆ ◊ú = 1
2⁄

�̃V ≠1. From here we form the dual objective

g(⁄) = ≠Sum( 1
2⁄

�̃V ≠1 ¢ �̃) + T r( 1
4⁄

�̃V ≠1�̃T ) ≠ ⁄‘2

Here we solve for the dual-optimal ⁄ú O
⁄

g = 0 =∆ 1
2⁄

ú
2
Sum( 1

2⁄

�̃V ≠1 ¢ �̃) ≠
1

4⁄

ú
2
T r( 1

4⁄

�̃V ≠1�̃T ) = ‘2. From the definition of �̃, Sum(�̃V ≠1 ¢ �̃) = n„T V ≠1„ and
T r(�̃V ≠1�̃T ) = „T V ≠1„. From this we can simplify our expression to conclude:

n

2⁄ú2 „T V ≠1„ ≠ 1
4⁄ú2 „T V ≠1„ = ‘2 =∆ ⁄ú =

Ú
(n ≠ 1/2)

2‘2 Î„Î
V

≠1

=∆ g(⁄ú) = ≠ n
2⁄ú Î„Î2

V

≠1 + 1
4⁄ú Î„Î2

V

≠1 ≠ ⁄ú‘

strong duality =∆ f(◊ú) = g(⁄ú) =
Ô

2n ≠ 1‘Î„Î
V

≠1

From here we conclude that the optimal value of W 2 Æ f(◊ú)2 Æ (2n ≠ 1)‘2Î„Î2
V

≠1 .

Using this lemma, we will be able to address the eluder dimension for linear functions. Using the
definition of w

k

from equation 18 together with �
k

we may rewrite:

w
k

= max
◊

{


T r(◊„
k

„T

k

◊)
-- T r(◊�

k

◊T ) Æ ‘2}.

Let V
k

:= �
k

+
1

‘

2C◊

22
I so that T r(◊�

k

◊T ) Æ ‘2 =∆ T r(◊V
k

◊T ) Æ 2‘2 through a triangle
inequality. Now applying Lemma 7 we can say that w

k

Æ ‘
Ô

4n ≠ 2Î„
k

Î
V

≠1
k

. This means that if
w

k

Ø ‘ then Î„
k

Î2
V

≠1
k

> 1
4n≠2 > 0.

We now imagine that w
i

Ø ‘ for each i < k. Then since V
k

= V
k≠1 + „

k

„T

k

we can use the Matrix
Determinant together with the above observation to say that:

det(V
k

) = det(V
k≠1)(1 + „T

k

V ≠1
K

„
k

) Ø det(V
k≠1)

1
1 + 1

4n ≠ 2

2
Ø .. Ø ⁄p

1
1 + 1

4n ≠ 2

2
k≠1

(19)

for ⁄ :=
1

‘

2C◊

22
. To get an upper bound on the determinant we note that det(V

k

) is maximized
when all eigenvalues are equal or equivalently:

det(V
k

) Æ
3

T r(V
k

)
p

4
p

Æ
3

C2
„

(k ≠ 1)
p

+ ⁄

4
p

(20)

Now using equations 19 and 20 together we see that k must satistfy the inequality
!
1 + 1

4n≠2
"(k≠1)/p Æ C

2
„(k≠1)

⁄p

+ 1. We now write ’0 = 1
4n≠2 and –0 =

C

2
„

⁄

=
1

2C„C◊

‘

22
so that we

can epress this as:
(1 + ’0)

k≠1
p Æ –0

k ≠ 1
p

+ 1
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We now use the result that B(x, –) = max{B
-- (1+x)B Æ –B+1} Æ 1+x

x

e

e≠1 {log(1+–)+log( 1+x

x

)}.
We complete our proof of Proposition 2 through computing this upper bound at (’0, –0),

dim
E

(F , ‘) Æ p(4n ≠ 1) e
e ≠ 1 log

53
1 +

12C
„

C
◊

‘

224
(4n ≠ 1)

6
+ 1 = Õ(np).

C.3 Quadratic functions f(x) = „T (x)◊„(x)

Let F = {f |f(x) = „(x)T ◊„(x) for ◊ œ Rp◊p, „ œ Rp, Î◊Î2 Æ C
◊

, Î„Î2 Æ C
„

} then for any X we
can say that:

dim
E

(F , ‘) Æ p(4p ≠ 1) e
e ≠ 1 log

CA
1 +

3
2pC2

„

C
◊

‘

42
B

(4p ≠ 1)

D
+ 1 = Õ(p2).

Where we have simply applied the linear result with ‘̃ = ‘

pCP
. This is valid since if we can identify

the linear function g(x) = ◊„(x) to within this tolerance then we will certainly know f(x) as well.

C.4 Generalized linear models

Let g(·) be a component-wise independent function on Rn with derivative in each component
bounded œ [h, h] with h > 0. Define r = h

h

> 1 to be the condition number. If F = {f |f(x) =
g(◊„(x)) for ◊ œ Rn◊p, „ œ Rp, Î◊Î2 Æ C

◊

, Î„Î2 Æ C
„

} then for any X :

dim
E

(F , ‘) Æ p
!
r2(4n ≠ 2) + 1

" e
e ≠ 1

3
log

5!
r2(4n ≠ 2) + 1

" 3
1 +

12C
◊

C
„

‘

22464
+1 = Õ(r2np)

This proof follows exactly as per the linear case, but first using a simple reduction on the form of
equation (18).

w
k

= sup
;

Î(f ≠ f)(x
k

)Î2

---- Îf ≠ fÎ2,Et Æ ‘Õ
<

Æ max
◊1,◊2

I
Îg(◊1„

k

) ≠ g(◊2„
k

)Î2
--

k≠1ÿ

i=1

Îg(◊1„
i

) ≠ g(◊2„
i

)Î2
2 Æ ‘2

J

Æ max
◊

I
hÎ◊„

k

Î2
--

k≠1ÿ

i=1

h2Î◊„
i

Î2
2 Æ ‘2

J

To which we can now apply Lemma 7 with the ‘ rescaled by r. Following the same arguments as
for linear functions now completes our proof.

D Bounded LQR control

We imagine a standard linear quadratic controller with rewards with x = (s, a) the state-action
vector. The rewards and transitions are given by:

R(x) = ≠xT Ax + ‘
R

, P (x) = �
C

(Bx + ‘
P

),
where A < 0 is positive semi-definite and �

C

projects x onto the Î · Î2-ball at radius C.

In the case of unbounded states and actions the Ricatti equations give the form of the optimal
value function V (s) = ≠sT Qs for Q < 0. In this case we can see that the di�erence in values of
two states:

|V (s) ≠ V (sÕ)| = | ≠ sT Qs + sÕT

QsÕ| = | ≠ (s + sÕ)T Q(s ≠ sÕ)| Æ 2C⁄1Îs ≠ sÕÎ2

where ⁄1 is the largest eigenvalue of Q and C is an upper bound on the Î · Î2-norm of both s and
sÕ. We note that 2C⁄1 works as an e�ective Lipshcitz constant when we know what C can bound
s, sÕ.

We observe that for any projection �
C

(x) = –x for – œ (0, 1] and that for all positive semi-definite
matrices A < 0, (–x)T A(–x) = –2xT Ax Æ xT Ax. Using this observation together with reward
and transition functions we can see that the value function of the bounded LQR system is always
greater than or equal to that of the unconstrained value function. The e�ect of excluding the low-
reward outer region, but maintaining the higher-reward inner region means that the value function
becomes more flat in the bounded case, and so 2C⁄1 works as an e�ective Lipschitz constant for
this problem too.
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E UCRL-Eluder

For completeness, we explicitly outline an optimistic algorithm which uses the confidence sets in
our analysis of PSRL to guarantee similar regret bounds with high probability over all MDP Mú.
The algorithm follows the style of UCRL2 [7] so that at the start of the kth episode the algorithm
form M

k

= {M |P M œ P
k

, RM œ R
k

} and then solves for the optimistic policy that attains the
highest reward over any M in M

k

.

Algorithm 2
UCRL-Eluder
1: Input: Confidence parameter ” > 0, t=1
2: for episodes k = 1, 2, .. do
3: form confidence sets Rk(—ú(R, ”, 1/k2)) and Pk(—ú(P, ”, 1/k2))
4: compute µk optimistic policy over Mk = {M |P M œ Pk, RM œ Rk}
5: for timesteps j = 1, .., · do
6: apply at ≥ µk(st, j)
7: observe rt and st+1
8: advance t = t + 1
9: end for

10: end for

Generally, step 4 of this algorithm with not be computationally tractable even when solving for µM

is possible for a given M .
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