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Abstract

Any reinforcement learning algorithm that applies to all Markov decision
processes (MDPs) will su�er �(

Ô
SAT ) regret on some MDP, where T is

the elapsed time and S and A are the cardinalities of the state and action
spaces. This implies T = �(SA) time to guarantee a near-optimal policy.
In many settings of practical interest, due to the curse of dimensionality,
S and A can be so enormous that this learning time is unacceptable. We
establish that, if the system is known to be a factored MDP, it is possible
to achieve regret that scales polynomially in the number of parameters

encoding the factored MDP, which may be exponentially smaller than S
or A. We provide two algorithms that satisfy near-optimal regret bounds
in this context: posterior sampling reinforcement learning (PSRL) and an
upper confidence bound algorithm (UCRL-Factored).

1 Introduction

We consider a reinforcement learning agent that takes sequential actions within an uncertain
environment with an aim to maximize cumulative reward [1]. We model the environment
as a Markov decision process (MDP) whose dynamics are not fully known to the agent.
The agent can learn to improve future performance by exploring poorly-understood states
and actions, but might improve its short-term rewards through a policy which exploits its
existing knowledge. E�cient reinforcement learning balances exploration with exploitation
to earn high cumulative reward.
The vast majority of e�cient reinforcement learning has focused upon the tabula rasa setting,
where little prior knowledge is available about the environment beyond its state and action
spaces. In this setting several algorithms have been designed to attain sample complexity
polynomial in the number of states S and actions A [2, 3]. Stronger bounds on regret,
the di�erence between an agent’s cumulative reward and that of the optimal controller,
have also been developed. The strongest results of this kind establish Õ(S

Ô
AT ) regret for

particular algorithms [4, 5, 6] which is close to the lower bound �(
Ô

SAT ) [4]. However, in
many setting of interest, due to the curse of dimensionality, S and A can be so enormous
that even this level of regret is unacceptable.
In many practical problems the agent will have some prior understanding of the environment
beyond tabula rasa. For example, in a large production line with m machines in sequence
each with K possible states, we may know that over a single time-step each machine can
only be influenced by its direct neighbors. Such simple observations can reduce the dimen-
sionality of the learning problem exponentially, but cannot easily be exploited by a tabula

rasa algorithm. Factored MDPs (FMDPs) [7], whose transitions can be represented by a
dynamic Bayesian network (DBN) [8], are one e�ective way to represent these structured
MDPs compactly.
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Several algorithms have been developed that exploit the known DBN structure to achieve
sample complexity polynomial in the parameters of the FMDP, which may be exponentially
smaller than S or A [9, 10, 11]. However, these polynomial bounds include several high order
terms. We present two algorithms, UCRL-Factored and PSRL, with the first near-optimal
regret bounds for factored MDPs. UCRL-Factored is an optimistic algorithm that modifies
the confidence sets of UCRL2 [4] to take advantage of the network structure. PSRL is
motivated by the old heuristic of Thompson sampling [12] and has been previously shown
to be e�cient in non-factored MDPs [13, 6]. These algorithms are descibed fully in Section
6.
Both algorithms make use of approximate FMDP planner in internal steps. However, even
where an FMDP can be represented concisely, solving for the optimal policy may take
exponentially long in the most general case [14]. Our focus in this paper is upon the
statistical aspect of the learning problem and like earlier discussions we do not specify which
computational methods are used [10]. Our results serve as a reduction of the reinforcement
learning problem to finding an approximate solution for a given FMDP. In many cases of
interest, e�ective approximate planning methods for FMDPs do exist. Investigating and
extending these methods are an ongoing subject of research [15, 16, 17, 18].

2 Problem formulation

We consider the problem of learning to optimize a random finite horizon MDP M =
(S, A, RM , P M , ·, fl) in repeated finite episodes of interaction. S is the state space, A is the
action space, RM (s, a) is the reward distibution over R in state s with action a, P M (·|s, a)
is the transition probability over S from state s with action a, · is the time horizon, and
fl the initial state distribution. We define the MDP and all other random variables we will
consider with respect to a probability space (�, F ,P).
A deterministic policy µ is a function mapping each state s œ S and i = 1, . . . , · to an action
a œ A. For each MDP M = (S, A, RM , P M , ·, fl) and policy µ, we define a value function

V M

µ,i

(s) := E
M,µ

S

U

·

ÿ

j=i

R
M (s

j

, a
j

)
-

-

-

s
i

= s

T

V ,

where R
M (s, a) denotes the expected reward realized when action a is selected while in

state s, and the subscripts of the expectation operator indicate that a
j

= µ(s
j

, j), and
s

j+1 ≥ P M (·|s
j

, a
j

) for j = i, . . . , · . A policy µ is optimal for the MDP M if V M

µ,i

(s) =
max

µ

Õ V M

µ

Õ
,i

(s) for all s œ S and i = 1, . . . , · . We will associate with each MDP M a policy
µM that is optimal for M .
The reinforcement learning agent interacts with the MDP over episodes that begin at times
t
k

= (k ≠ 1)· + 1, k = 1, 2, . . .. At each time t, the agent selects an action a
t

, observes
a scalar reward r

t

, and then transitions to s
t+1. Let H

t

= (s1, a1, r1, . . . , s
t≠1, a

t≠1, r
t≠1)

denote the history of observations made prior to time t. A reinforcement learning algorithm
is a deterministic sequence {fi

k

|k = 1, 2, . . .} of functions, each mapping H
tk to a probability

distribution fi
k

(H
tk ) over policies which the agent will employ during the kth episode. We

define the regret incurred by a reinforcement learning algorithm fi up to time T to be:

Regret(T, fi, Mú) :=
ÁT/·Ë
ÿ

k=1
�

k

,

where �
k

denotes regret over the kth episode, defined with respect to the MDP Mú by

�
k

:=
ÿ

S
fl(s)(V M

ú

µ

ú
,1(s) ≠ V M

ú

µk,1(s))

with µú = µM

ú and µ
k

≥ fi
k

(H
tk ). Note that regret is not deterministic since it can

depend on the random MDP Mú, the algorithm’s internal random sampling and, through
the history H

tk , on previous random transitions and random rewards. We will assess and
compare algorithm performance in terms of regret and its expectation.
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3 Factored MDPs

Intuitively a factored MDP is an MDP whose rewards and transitions exhibit some condi-
tional independence structure. To formalize this definition we must introduce some more
notation common to the literature [11].
Definition 1 (Scope operation for factored sets X = X1 ◊ .. ◊ X

n

).
For any subset of indices Z ™ {1, 2, .., n} let us define the scope set X [Z] :=

o

iœZ

X
i

. Further,

for any x œ X define the scope variable x[Z] œ X [Z] to be the value of the variables x
i

œ X
i

with indices i œ Z. For singleton sets Z we will write x[i] for x[{i}] in the natural way.

Let PX ,Y be the set of functions mapping elements of a finite set X to probability mass
functions over a finite set Y. PC,‡

X ,R will denote the set of functions mapping elements of a
finite set X to ‡-sub-Gaussian probability measures over (R, B(R)) with mean bounded in
[0, C]. For reinforcement learning we will write X for S ◊ A and consider factored reward
and factored transition functions which are drawn from within these families.
Definition 2 ( Factored reward functions R œ R ™ PC,‡

X ,R).
The reward function class R is factored over S ◊ A = X = X1 ◊ .. ◊ X

n

with scopes Z1, ..Z
l

if and only if, for all R œ R, x œ X there exist functions {R
i

œ PC,‡

X [Zi],R}l

i=1 such that,

E[r] =
l

ÿ

i=1
E

#

r
i

$

for r ≥ R(x) is equal to

q

l

i=1 r
i

with each r
i

≥ R
i

(x[Z
i

]) and individually observed.

Definition 3 ( Factored transition functions P œ P ™ PX ,S ).
The transition function class P is factored over S ◊ A = X = X1 ◊ .. ◊ X

n

and S =
S1 ◊ .. ◊ S

m

with scopes Z1, ..Z
m

if and only if, for all P œ P, x œ X , s œ S there exist some

{P
i

œ PX [Zi],Si
}m

i=1 such that,

P (s|x) =
m

Ÿ

i=1
P

i

3

s[i]
-

-

-

-

x[Z
i

]
4

A factored MDP (FMDP) is then defined to be an MDP with both factored rewards and
factored transitions. Writing X = S ◊ A a FMDP is fully characterized by the tuple

M =
!

{S
i

}m

i=1; {X
i

}n

i=1; {ZR

i

}l

i=1; {R
i

}l

i=1; {ZP

i

}m

i=1; {P
i

}m

i=1; · ; fl
"

,

where ZR

i

and ZP

i

are the scopes for the reward and transition functions respectively in
{1, .., n} for X

i

. We assume that the size of all scopes |Z
i

| Æ ’ π n and factors |X
i

| Æ K so
that the domains of R

i

and P
i

are of size at most K’ .

4 Results

Our first result shows that we can bound the expected regret of PSRL.
Theorem 1 (Expected regret for PSRL in factored MDPs).
Let Mú

be factored with graph structure G =
!

{S
i

}m

i=1; {X
i

}n

i=1; {ZR

i

}l

i=1; {ZP

i

}m

i=1; ·
"

.

If „ is the distribution of Mú
and � is the span of the optimal value function then we can

bound the regret of PSRL:

E
#

Regret(T, fiPS
·

, Mú)
$

Æ
l

ÿ

i=1

;

5·C|X [ZR

i

]| + 12‡
Ò

|X [ZR

i

]|T log
!

4l|X [ZR

i

]|kT
"

<

+ 2
Ô

T

+4 + E[�]
3

1 + 4
T ≠ 4

4

m

ÿ

j=1

;

5· |X [ZP

j

]| + 12
Ò

|X [ZP

j

]||S
j

|T log
!

4m|X [ZP

j

]|kT
"

<

(1)

We have a similar result for UCRL-Factored that holds with high probability.
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Theorem 2 (High probability regret for UCRL-Factored in factored MDPs).
Let Mú

be factored with graph structure G =
!

{S
i

}m

i=1; {X
i

}n

i=1; {ZR

i

}l

i=1; {ZP

i

}m

i=1; ·
"

. If

D is the diameter of Mú
, then for any Mú

can bound the regret of UCRL-Factored:

Regret(T, fiUC
·

, Mú) Æ
l

ÿ

i=1

;

5·C|X [ZR

i

]| + 12‡
Ò

|X [ZR

i

]|T log
!

12l|X [ZR

i

]|kT/”
"

<

+ 2
Ô

T

+CD


2T log(6/”) + CD
m

ÿ

j=1

;

5· |X [ZP

j

]| + 12
Ò

|X [ZP

j

]||S
j

|T log
!

12m|X [ZP

j

]|kT/”
"

<

(2)

with probability at least 1 ≠ ”

Both algorithms give bounds Õ
1

�
q

m

j=1

Ò

|X [ZP

j

]||S
j

|T
2

where � is a measure of MDP
connectedness: expected span E[�] for PSRL and scaled diameter CD for UCRL-Factored.
The span of an MDP is the maximum di�erence in value of any two states under the optimal
policy �(Mú) := max

s,s

ÕœS{V M

ú

µ

ú
,1(s)≠V M

ú

µ

ú
,1(sÕ)}. The diameter of an MDP is the maximum

number of expected timesteps to get between any two states D(Mú) = max
s ”=s

Õ min
µ

T µ

sæs

Õ .
PSRL’s bounds are tighter since �(M) Æ CD(M) and may be exponentially smaller.
However, UCRL-Factored has stronger probabilistic guarantees than PSRL since its bounds
hold with high probability for any MDP Mú not just in expectation. There is an optimistic
algorithm REGAL [5] which formally replaces the UCRL2 D with � and retains the high
probability guarantees. An analogous extension to REGAL-Factored is possible, however,
no practical implementation of that algorithm exists even with an FMDP planner.
The algebra in Theorems 1 and 2 can be overwhelming. For clarity, we present a symmetric
problem instance for which we can produce a cleaner single-term upper bound. Let Q be
shorthand for the simple graph structure with l + 1 = m, C = ‡ = 1, |S

i

| = |X
i

| = K and
|ZR

i

| = |ZP

j

| = ’ for i = 1, .., l and j = 1, .., m, we will write J = K’ .
Corollary 1 (Clean bounds for PSRL in a symmetric problem).
If „ is the distribution of Mú

with structure Q then we can bound the regret of PSRL:

E
#

Regret(T, fiPS
·

, Mú)
$

Æ 15m·


JKT log(2mJT ) (3)
Corollary 2 (Clean bounds for UCRL-Factored in a symmetric problem).
For any MDP Mú

with structure Q we can bound the regret of UCRL-Factored:

Regret(T, fiUC
·

, Mú) Æ 15m·


JKT log(12mJT/”) (4)
with probability at least 1 ≠ ”.

Both algorithms satisfy bounds of Õ(·m
Ô

JKT ) which is exponentially tighter than can be
obtained by any Q-naive algorithm. For a factored MDP with m independent components
with S states and A actions the bound Õ(mS

Ô
AT ) is close to the lower bound �(m

Ô
SAT )

and so the bound is near optimal. The corollaries follow directly from Theorems 1 and 2 as
shown in Appendix B.

5 Confidence sets

Our analysis will rely upon the construction of confidence sets based around the empirical
estimates for the underlying reward and transition functions. The confidence sets are con-
structed to contain the true MDP with high probability. This technique is common to the
literature, but we will exploit the additional graph structure G to sharpen the bounds.
Consider a family of functions F ™ MX ,(Y,�Y ) which takes x œ X to a probability distribu-
tion over (Y, �Y). We will write MX ,Y unless we wish to stress a particular ‡-algebra.
Definition 4 (Set widths).
Let X be a finite set, and let (Y, �Y) be a measurable space. The width of a set F œ MX ,Y
at x œ X with respect to a norm Î · Î is

wF (x) := sup
f,fœF

Î(f ≠ f)(x)Î
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Our confidence set sequence {F
t

™ F : t œ N} is initialized with a set F . We adapt our
confidence set to the observations y

t

œ Y which are drawn from the true function fú œ F
at measurement points x

t

œ X so that y
t

≥ fú(x
t

). Each confidence set is then centered
around an empirical estimate f̂

t

œ MX ,Y at time t, defined by

f̂
t

(x) = 1
n

t

(x)
ÿ

·<t:x· =x

”
y· ,

where n
t

(x) is the number of time x appears in (x1, .., x
t≠1) and ”

yt is the probability mass
function over Y that assigns all probability to the outcome y

t

.
Our sequence of confidence sets depends on our choice of norm Î · Î and a non-decreasing
sequence {d

t

: t œ N}. For each t, the confidence set is defined by:

F
t

= F
t

(Î · Î, xt≠1
1 , d

t

) :=
I

f œ F
-

-

-

-

Î(f ≠ f̂
t

)(x
i

)Î Æ

Û

d
t

n
t

(x
i

) ’i = 1, .., t ≠ 1
J

.

Where xt≠1
1 is shorthand for (x1, .., x

t≠1) and we interpret n
t

(x
i

) = 0 as a null constraint.
The following result shows that we can bound the sum of confidence widths through time.
Theorem 3 (Bounding the sum of widths).
For all finite sets X , measurable spaces (Y, �Y), function classes F ™ MX ,Y with uniformly

bounded widths wF (x) Æ CF ’x œ X and non-decreasing sequences {d
t

: t œ N}:

L

ÿ

k=1

·

ÿ

i=1
wFk (x

tk+i

) Æ 4
!

·CF |X | + 1
"

+ 4


2d
T

|X |T (5)

Proof. The proof follows from elementary counting arguments on n
t

(x) and the pigeonhole
principle. A full derivation is given in Appendix A.

6 Algorithms

With our notation established, we are now able to introduce our algorithms for e�cient
learning in Factored MDPs. PSRL and UCRL-Factored proceed in episodes of fixed policies.
At the start of the kth episode they produce a candidate MDP M

k

and then proceed with the
policy which is optimal for M

k

. In PSRL, M
k

is generated by a sample from the posterior
for Mú, whereas UCRL-Factored chooses M

k

optimistically from the confidence set M
k

.
Both algorithms require prior knowledge of the graphical structure G and an approximate
planner for FMDPs. We will write �(M, ‘) for a planner which returns ‘-optimal policy
for M . We will write �̃(M, ‘) for a planner which returns an ‘-optimal policy for most
optimistic realization from a family of MDPs M. Given � it is possible to obtain �̃ through
extended value iteration, although this might become computationally intractable [4].
PSRL remains identical to earlier treatment [13, 6] provided G is encoded in the prior
„. UCRL-Factored is a modification to UCRL2 that can exploit the graph and episodic
structure of . We write Ri

t

(dRi
t

) and Pj

t

(dPj

t

) as shorthand for these confidence sets
Ri

t

(|E[·]|, xt≠1
1 [ZR

i

], dRi
t

) and Pi

t

(Î · Î1, xt≠1
1 [ZP

j

], d
Pj

t

) generated from initial sets Ri

1 =
PC,‡

X [ZR
i ],R and Pj

1 = PX [ZP
j ],Sj

.

We should note that UCRL2 was designed to obtain regret bounds even in MDPs without
episodic reset. This is accomplished by imposing artificial episodes which end whenever
the number of visits to a state-action pair is doubled [4]. It is simple to extend UCRL-
Factored’s guarantees to this setting using this same strategy. This will not work for PSRL
since our current analysis requires that the episode length is independent of the sampled
MDP. Nevertheless, there has been good empirical performance using this method for MDPs
without episodic reset in simulation [6].
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Algorithm 1
PSRL (Posterior Sampling)
1: Input: Prior „ encoding G, t = 1
2: for episodes k = 1, 2, .. do

3: sample M
k

≥ „(·|H
t

)
4: compute µ

k

= �(M
k

,


·/k)
5: for timesteps j = 1, .., · do

6: sample and apply a
t

= µ
k

(s
t

, j)
7: observe r

t

and sm

t+1
8: t = t + 1
9: end for

10: end for

Algorithm 2
UCRL-Factored (Optimism)
1: Input: Graph structure G, confidence ”, t = 1
2: for episodes k = 1, 2, .. do

3: dRi
t

= 4‡2 log
!

4l|X [ZR

i

]|k/”
"

for i = 1, .., l

4: d
Pj
t

= 4|S
j

| log
!

4m|X [ZP

j

]|k/”
"

for j = 1, .., m

5: M
k

= {M |G, R
i

œ Ri

t

(dRi
t

), P
j

œ Pj

t

(dPj
t

) ’i, j}
6: compute µ

k

= �̃(M
k

,


·/k)
7: for timesteps u = 1, .., · do

8: sample and apply a
t

= µ
k

(s
t

, u)
9: observe r1

t

, .., rl

t

and s1
t+1, .., sm

t+1
10: t = t + 1
11: end for

12: end for

7 Analysis

For our common analysis of PSRL and UCRL-Factored we will let M̃
k

refer generally to
either the sampled MDP used in PSRL or the optimistic MDP chosen from M

k

with
associated policy µ̃

k

). We introduce the Bellman operator T M

µ

, which for any MDP
M = (S, A, RM , P M , ·, fl), stationary policy µ : S æ A and value function V : S æ R,
is defined by

T M

µ

V (s) := R
M (s, µ(s)) +

ÿ

s

ÕœS
P M (sÕ|s, µ(s))V (sÕ).

This returns the expected value of state s where we follow the policy µ under the laws of
M , for one time step. We will streamline our discussion of P M , RM , V M

µ,i

and T M

µ

by simply
writing ú in place of Mú or µú and k in place of M̃

k

or µ̃
k

where appropriate; for example
V ú

k,i

:= V M

ú

µ̃k,i

. We will also write x
k,i

:= (s
tk+i

, µ
k

(s
tk+i

)).

We now break down the regret by adding and subtracting the imagined near optimal reward
of policy µ̃

K

, which is known to the agent. For clarity of analysis we consider only the case
of fl(sÕ) = 1{sÕ = s} but this changes nothing for our consideration of finite S.

�
k

= V ú
ú,1(s) ≠ V ú

k,1(s) =
3

V k

k,1(s) ≠ V ú
k,1(s)

4

+
3

V ú
ú,1(s) ≠ V k

k,1(s)
4

(6)

V ú
ú,1 ≠ V k

k,1 relates the optimal rewards of the MDP Mú to those near optimal for M̃
k

. We
can bound this di�erence by the planning accuracy



1/k for PSRL in expectation, since
Mú and M

k

are equal in law, and for UCRL-Factored in high probability by optimism.
We decompose the first term through repeated application of dynamic programming:

!

V k

k,1 ≠ V ú
k,1

"

(s
tk+1) =

·

ÿ

i=1

!

T k

k,i

≠ T ú
k,i

"

V k

k,i+1(s
tk+i

) +
·

ÿ

i=1
d

tk+1. (7)

Where d
tk+i

:=
q

sœS

Ó

P ú(s|x
k,i

)(V ú
k,i+1 ≠ V k

k,i+1)(s)
Ô

≠ (V ú
k,i+1 ≠ V k

k,i+1)(s
tk+i

) is a mar-
tingale di�erence bounded by �

k

, the span of V k

k,i

. For UCRL-Factored we can use optimism
to say that �

k

Æ CD [4] and apply the Azuma-Hoe�ding inequality to say that:

P

A

m

ÿ

k=1

·

ÿ

i=1
d

tk+i

> CD


2T log(2/”)
B

Æ ” (8)

The remaining term is the one step Bellman error of the imagined MDP M̃
k

. Crucially this
term only depends on states and actions x

k,i

which are actually observed. We can now use
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the Hölder inequality to bound
·

ÿ

i=1

!

T k

k,i

≠ T ú
k,i

"

V k

k,i+1(s
tk+i

) Æ
·

ÿ

i=1
|Rk(x

k,i

)≠R
ú(x

k,i

)|+1
2�

k

ÎP k(·|x
k,i

)≠P ú(·|x
k,i

)Î1 (9)

7.1 Factorization decomposition

We aim to exploit the graphical structure G to create more e�cient confidence sets M
k

. It is
clear from (9) that we may upper bound the deviations of R

ú
, R

k factor-by-factor using the
triangle inequality. Our next result, Lemma 1, shows we can also do this for the transition
functions P ú and P k. This is the key result that allows us to build confidence sets around
each factor P ú

j

rather than P ú as a whole.
Lemma 1 (Bounding factored deviations).
Let the transition function class P ™ PX ,S be factored over X = X1 ◊ .. ◊ X

n

and S =
S1 ◊ .. ◊ S

m

with scopes Z1, ..Z
m

. Then, for any P, P̃ œ P we may bound their L1 distance

by the sum of the di�erences of their factorizations:

ÎP (x) ≠ P̃ (x)Î1 Æ
m

ÿ

i=1
ÎP

i

(x[Z
i

]) ≠ P̃
i

(x[Z
i

])Î1

Proof. We begin with the simple claim that for any –1, –2, —1, —2 œ (0, 1]:

|–1–2 ≠ —1—2| = –2

-

-

-

-

–1 ≠ —1—2
–2

-

-

-

-

Æ –2

3

|–1 ≠ —1| +
-

-

-

-

—1 ≠ —1—2
–2

-

-

-

-

4

Æ –2 |–1 ≠ —1| + —1 |–2 ≠ —2|

This result also holds for any –1, –2, —1, —2 œ [0, 1], where 0 can be verified case by case.
We now consider the probability distributions p, p̃ over {1, .., d1} and q, q̃ over {1, .., d2}. We
let Q = pqT , Q̃ = p̃q̃T be the joint probability distribution over {1, .., d1} ◊ {1, .., d2}. Using
the claim above we bound the L1 deviation ÎQ ≠ Q̃Î1 by the deviations of their factors:

ÎQ ≠ Q̃Î1 =
d1

ÿ

i=1

d2
ÿ

j=1
|p

i

q
j

≠ p̃
i

q̃
j

|

Æ
d1

ÿ

i=1

d2
ÿ

j=1
q

j

|p
i

≠ p̃
i

| + p̃
i

|q
j

≠ q̃
j

|

= Îp ≠ p̃Î1 + Îq ≠ q̃Î1

We conclude the proof by applying this m times to the factored transitions P and P̃ .

7.2 Concentration guarantees for M
k

We now want to show that the true MDP lies within M
k

with high probability. Note that
posterior sampling will also allow us to then say that the sampled M

k

is within M
k

with
high probability too. In order to show this, we first present a concentration result for the
L1 deviation of empirical probabilities.
Lemma 2 (L1 bounds for the empirical transition function).
For all finite sets X , finite sets Y, function classes P ™ PX ,Y then for any x œ X , ‘ > 0 the

deviation the true distribution P ú
to the empirical estimate after t samples P̂

t

is bounded:

P
1

ÎP ú(x) ≠ P̂
t

(x)Î1 Ø ‘
2

Æ exp
3

|Y| log(2) ≠ n
t

(x)‘2

2

4

7



Proof. This is a relaxation of the result proved by Weissman [19].

Lemma 2 ensures that for any x œ X P(ÎP ú
j

(x) ≠ P̂
j

t

(x)Î1 Ø
Ò

2|Sj |
nt(x) log

! 2
”

Õ

"

) Æ ”Õ. We
then define d

Pj

tk
= 2|S

i

| log(2/”Õ
k,j

) with ”Õ
k,j

= ”/(2m|X [ZP

j

]|k2). Now using a union bound
we conclude P(P ú

j

œ Pj

t

(dPj

tk
) ’k œ N, j = 1, .., m) Ø 1 ≠ ”.

Lemma 3 (Tail bounds for sub ‡-gaussian random variables).
If {‘

i

} are all independent and sub ‡-gaussian then ’— Ø 0:

P

A

1
n

|
n

ÿ

i=1
‘

i

| > —

B

Æ exp
3

log(2) ≠ n—2

2‡2

4

A similar argument now ensures that P
1

R
ú
i

œ Ri

t

(dRi
tk

) ’k œ N, i = 1, .., l
2

Ø 1 ≠ ”, and so

P

3

Mú œ M
k

’k œ N
4

Ø 1 ≠ 2” (10)

7.3 Regret bounds

We now have all the necessary intermediate results to complete our proof. We begin with
the analysis of PSRL. Using equation (10) and the fact that Mú, M

k

are equal in law by
posterior sampling, we can say that P(Mú, M

k

œ M
k

’k œ N) Ø 1 ≠ 4”. The contributions
from regret in planning function � are bounded by

q

m

k=1


·/k Æ 2
Ô

T . From here we take
equation (9), Lemma 1 and Theorem 3 to say that for any ” > 0:

E
#

Regret(T, fiPS
·

, Mú)
$

Æ 4”T + 2
Ô

T +
l

ÿ

i=1

;

4(·C|X [ZR

i

]| + 1) + 4
Ò

2dRi
T

|X [ZR

i

]|T
<

+ sup
k=1,..,L

!

E[�
k

|M
k

, Mú œ M
k

]
"

◊
m

ÿ

j=1

;

4(· |X [ZP

j

]| + 1) + 4
Ò

2d
Pj

T

|X [ZP

j

]|T
<

Let A = {Mú, M
k

œ M
k

}, since �
k

Ø 0 and by posterior sampling E[�
k

] = E[�] for all k:

E[�
k

|A] Æ P(A)≠1E[�] Æ
3

1 ≠ 4”

k2

4≠1
E[�] =

3

1 + 4”

k2 ≠ 4”

4

E[�] Æ
3

1 + 4”

1 ≠ 4”

4

E[�].

Plugging in dRi
T

and d
Pj

T

and setting ” = 1/T completes the proof of Theorem 1. The analysis
of UCRL-Factored and Theorem 2 follows similarly from (8) and (10). Corollaries 1 and 2
follow from substituting the structure Q and upper bounding the constant and logarithmic
terms. This is presented in detail in Appendix B.

8 Conclusion

We present the first algorithms with near-optimal regret bounds in factored MDPs. Many
practical problems for reinforcement learning will have extremely large state and action
spaces, this allows us to obtain meaningful performance guarantees even in previously in-
tractably large systems. However, our analysis leaves several important questions unad-
dressed. First, we assume access to an approximate FMDP planner that may be compu-
tationally prohibitive in practice. Second, we assume that the graph structure is known a
priori but there are other algorithms that seek to learn this from experience [20, 21]. Finally,
we might consider dimensionality reduction in large MDPs more generally, where either the
rewards, transitions or optimal value function are known to belong in some function class
F to obtain bounds that depend on the dimensionality of F .
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