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1 Proofs of Theorems and Lemmas in the Paper

We provide detailed proofs of the theorems and lemmas. As stated in the paper, we define

f0 ,
Q∑

i=1

π(i)f (i)
max σ2

0 , ∥K∥22f0 (1)

Let L,C > 0 be constants which only depend on the VC characteristics of the Gaussian kernel K.
For all λ ≥ C and σ > 0, we define

Eσ2 , log (1 + λ/4L)

λLσ2
(2)

Lemma 1. For any PXY ∈ PXY , there exists a n0 which depends on σ0 and VC characteristics

of K, when n > n0, with probability greater than 1 − 2QLh
E

σ2
0

n , the generalization error of the
plug-in classifier satisfies

R (PIS) ≤ RPI
n +O

(√ log h−1
n

nhd
n

+ hγ
n

)
(3)

RPI
n =

∑
i,j=1,...,Q,i ̸=j

IEX

[
η̂
(i)
n,hn

(X) η̂
(j)
n,hn

(X)
]

(4)

where Eσ2 is defined by (2), hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0, η̂(i)n,hn
is the kernel

estimator of the regression function. Moreover, the equality in (3) holds when η̂
(i)
n,hn

≡ 1
Q for

1 ≤ i ≤ Q.
Theorem 1. (Error of the Plug-In Classifier) Given the classification model MY =(
S, PXY , {πi, fi}Qi=1,PI

)
such that PXY ∈ PXY , there exists a n1 which depends on σ0, σ1 and

the VC characteristics of K, when n > n1, with probability greater than 1− 2QLh
E

σ2
0

n −QLh
E

σ2
1

n ,
the generalization error of the plug-in classifier satisfies

R (PIS) ≤ R̂n (PIS) +O
(√ log h−1

n

nhd
n

+ hγ
n

)
(5)

where R̂n (PIS) = 1
n2

∑
l,m

θlmGlm,
√
2hn

, σ2
1 =

∥K∥2
2fmax

fmin
, θlm = 1I{yl ̸=ym} is a class indicator

function and

Glm,h = Gh (xl,xm) , Gh (x, y) =
Kh (x− y)

f̂
1
2
n,h (x)f̂

1
2
n,h (y)

, (6)
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Eσ2 is defined by (2), hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0, f̂n,hn is the kernel density
estimator of f .
Corollary 1. Under the assumption of Theorem 1, for any kernel bandwidth sequence {hn}∞n=1

such that lim
n→∞

hn = 0 and hn > n− 1
4d+4 , with probability 1,

lim
n→∞

√
π

2hn
R̂n (PIS) =

∫
S

f (s)ds (7)

Theorem 2. (Error of the NN) Given the classification model MY =
(
S, PXY , {πi, fi}Qi=1,NN

)
such that PXY ∈ PXY and the support of PX is bounded by [−M0,M0]

d, there exists a n0 which
depends on σ0 and VC characteristics of K, when n > n0, with probability greater than 1 −
2QLh

E
σ2
0

n − (2M0)
dndd0e−n1−dd0fmin , the generalization error of the NN satisfies:

R (NNS) ≤ R̂n (NNS) + c0
(√

d
)γ
n−d0γ +O

(√ log h−1
n

nhd
n

+ hγ
n

)
(8)

where R̂n (NN) = 1
n

∑
1≤l<m≤n

Hlm,hnθlm,

Hlm,hn = Khn (xl − xm)
(∫

Vl
f̂n,hn (x) dx

f̂n,hn (xl)
+

∫
Vm

f̂n,hn (x) dx

f̂n,hn (xm)

)
, (9)

Eσ2 is defined by (2), d0 is a constant such that dd0 < 1, f̂n,hn is the kernel density estimator of f

with the kernel bandwidth hn satisfying hn → 0,
log h−1

n

nhd
n

→ 0, Vl is the Voronoi cell associated with
xl, c0 is a constant, θlm = 1I{yl ̸=ym} is a class indicator function such that θlm = 1 if xl and xm

belongs to different classes, and 0 otherwise. Moreover, the equality in (8) holds when η(i) ≡ 1
Q for

1 ≤ i ≤ Q.
Lemma 2. (Consistency of Kernel Density Estimator) Let the kernel bandwidth hn of the Gaussian
kernel K be chosen such that hn → 0,

log h−1
n

nhd
n

→ 0. For any PX ∈ PX , there exists a n0 which

depends on σ0 and VC characteristics of K, when n > n0, with probability greater than 1−Lh
E

σ2
0

n

over the data {xl},

∥∥∥f̂n,hn (x)− f (x)
∥∥∥
∞

= O
(√ log h−1

n

nhd
n

+ hγ
n

)
(10)

where f̂n,hn is the kernel density estimator of f . Also, with probability 1,

lim
n→∞

∥∥∥f̂n,hn (x)− f (x)
∥∥∥
∞

= O
(√ log h−1

n

nhdn
+ hγn

)
(11)

Furthermore, for any PXY ∈ PXY , when n > n0, then with probability greater than 1 − 2Lh
E

σ2
0

n

over the data {xl},

∥∥∥η̂(i)n,hn
(x)− η(i) (x)

∥∥∥
∞

= O
(√ log h−1

n

nhd
n

+ hγ
n

)
(12)

Also, with probability 1,

lim
n→∞

∥∥∥η̂(i)n,hn
(x)− η(i) (x)

∥∥∥
∞

= O
(√ log h−1

n

nhd
n

+ hγ
n

)
(13)

for each 1 ≤ i ≤ Q.
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Lemma 3. (Consistency of the Generalized Kernel Density Estimator) Suppose f is the probabilistic
density function of PX ∈ PX . Let g be a bounded function defined on X and g ∈ Σγ,g0 , 0 < gmin ≤
g ≤ gmax, and e = f

g . Define the generalized kernel density estimator of e as

ên,h , 1

n

n∑
l=1

Kh (x− xl)

g (xl)
(14)

Let σ2
g =

∥K∥2
2fmax

g2
min

. There exists ng which depends on σg and the VC characteristics of K, When

n > ng , with probability greater than 1− Lh
Eσ2

g
n over the data {xl},

∥ên,hn (x)− e (x)∥∞ = O
(√ log h−1

n

nhd
n

+ hγ
n

)
(15)

where hn is chosen such that hn → 0,
log h−1

n

nhd
n

→ 0. Also, with probability 1,

lim
n→∞

∥ên,hn (x)− e (x)∥∞ = O
(√

log h−1
n

nhd
n

+ hγn
)
.

1.1 Proof of Lemma 3

Proof. Since f satisfies assumption (A), applying Corollary 2.2 in [1], for L,C > 0 that depend
solely on the VC characteristics of K and any λ > C, when n > n0,

Pr
[∥∥∥f̂n,hn − IE

[
f̂n,hn

]∥∥∥
∞

≥ τn
]
≤ L exp

(
− 1

L

log (1 + λ/4L)

λ

nhd
nτ

2
n

σ2
0

)
(a)

where τn = g
√

log h−1
n

nhd
n

, g is a constant and g > 1.

Also, ∥∥∥IE [f̂n,hn

]
− f (x)

∥∥∥
∞

= ∥IEZ [Kh (x− Z)]− f (x)∥∞ (b)

=

∥∥∥∥∫
X
f (x− hnz)K (z) dz − f (x)

∫
X
K (z) dz

∥∥∥∥
∞

≤
∫
X
∥f (x− hnz)− f (x)∥∞K (z) dz

≤ chγ
n

∫
X
∥z∥γ K (z) dx = chγ

nKγ

because f is a Hölder-γ smooth function with Hölder constant c =
∑
i

π(i)ci, and X = IRd. Based

on (a) and (b), with probability greater than 1 − Lh
E

σ2
0

n (since h
g2E

σ2
0

n < h
E

σ2
0

n when hn < 1 for
sufficiently large n) over the data {xl}, (10) holds.

Moreover,

∥∥∥η̂(i)n,hn
(x)− η(i) (x)

∥∥∥
∞

≤
∥∥∥η̂(i)n,hn

(x)−

n∑
l=1

Khn (x− xl)1I{yl=i}

nf (x)

∥∥∥
∞

+
∥∥∥

n∑
l=1

Khn (x− xl)1I{yl=i}

nf (x)
− η(i) (x)

∥∥∥
∞

≤
∥∥∥

n∑
l=1

Khn (x− xl)1I{yl=i}

n

f (x)− f̂n,hn (x)

f (x) f̂n,hn (x)

∥∥∥
∞

+
∥∥∥ 1

f (x)

( n∑
l=1

Khn (x− xl)1I{yl=i}

n
− π(i)f (i) (x)

)∥∥∥
∞

≤ 1

fmin

∥∥∥f (x)− f̂n,hn (x)
∥∥∥
∞

+
1

fmin

∥∥∥
n∑

l=1

Khn (x− xl)1I{yl=i}

n
− π(i)f (i) (x)

∥∥∥
∞

Similar to the proof of (10), with probability greater than 1 − Lh
E

σ2
0

n over the data {xl},∥∥∥∥∥∥
n∑

l=1

Khn (x−xl)1I{yl=i}

n − π(i)f (i) (x)

∥∥∥∥∥∥
∞

= O
(√

log h−1
n

nhd
n

+ hγn

)
. Also, with probability greater
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than 1 − Lh
E

σ2
0

n ,
∥∥∥f̂n,hn (x)− f (x)

∥∥∥
∞

= O
(√

log h−1
n

nhd
n

+ hγn

)
. Therefore, with probability

greater than 1− 2Lh
E

σ2
0

n , (12) holds. (11) and (13) follow from an application of the Borel-Cantelli
lemma.

1.2 Proof of Lemma 3

Proof. For fixed h ̸= 0, we consider the class of functions

F , {K
(
t− ·
h

)
, t ∈ IRd} Fg , {

K
(
t−·
h

)
g (·) , t ∈ IRd}

Since F is a bounded VC class of measurable functions, there exist positive numbers A and v such
that for every probability measure P on IRd for which

∫
F 2dP <∞ and any 0 < τ < 1,

N
(
F , ∥·∥L2(P ) , τ ∥F∥L2(P )

)
≤
(
A

τ

)v

(16)

For any t1 and t2,
∥∥∥∥K( t1−·

h )
g(·) − K( t2−·

h )
g(·)

∥∥∥∥
L2(P )

≤ 1
gmin

∥∥K (
t1−·
h

)
−K

(
t2−·
h

)∥∥
L2(P )

. Let

BF (t0, δ) , {t :
∥∥K (

t−·
h

)
−K

(
t0−·
h

)∥∥
L2(P )

≤ δ}, and BFg (t0, δ) , {t :∥∥∥∥K( t−·
h )

g(·) − K( t0−·
h )

g(·)

∥∥∥∥
L2(P )

≤ δ}. Then BF (t0, δ) ⊆ BFg

(
t0,

δ
gmin

)
.

We choose the envelope function for Fg as Fg = F
gmin

and |ug| ≤ Fg for any ug ∈ Fg , then

N
(
Fg, ∥·∥L2(P ) , τ ∥Fg∥L2(P )

)
≤
(
A

τ

)v

(17)

So that Fg is also a bounded VC class. The conclusion follows from similar argument in the proof
of Theorem 1 and Corollary 2.2 in [1].

1.3 Proof of Lemma 1

Proof. Let PXY ∈ PXY . It can be verified that

R (PIS) =
∑

i,j=1,...,Q,i ̸=j

IEX

[
η(i) (X) Pr [PIS (X) = j]

]
(18)

According to Lemma 2 and (18), with probability greater than 1− 2QLh
E

σ2
0

n ,

R (PIS) =
∑
i ̸=j

IEX

[
η̂
(i)
n,hn

(X) Pr [PIS (X) = j]
]
+O

√ log h−1
n

nhd
n

+ hγ
n


Denote by {R1,R2, . . .RQ} the decision regions of PIS , then η̂(i)n,hn

≥ η̂
(i

′
)

n,hn
for all i

′ ̸= i on each
Ri, and ∑

i,j=1,...,Q,i̸=j

IEX

[
η̂
(i)
n,hn

(X) Pr [PIS (X) = j]
]

=
∑

i,j=1,...,Q,i ̸=j

IEX∈Rj

[
η̂
(i)
n,hn

(X) ·
Q∑

k=1

η̂
(k)
n,hn

(X)

]

≤ IEX

( Q∑
k=1

η̂
(k)
n,hn

(X)

)2
−

Q∑
i=1

IEX

[(
η̂
(i)
n,hn

(X)
)2]

=
∑

i,j=1,...,Q,i ̸=j

IEX

[
η̂
(i)
n,hn

(X) η̂
(j)
n,hn

(X)
]

(19)

Therefore we obtain (3), and the equality in (3) holds when η̂(i)n,hn
≡ 1

Q for 1 ≤ i ≤ Q.
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1.4 Proof of Theorem 1

Proof. By Lemma 2 and Lemma 1, there exists an n(1) which depends on σ0 and the VC character-

istics of K, when n > n(1), with probability greater than 1− 2QLh
E

σ2
0

n ,

RPI
n =

∑
i̸=j

IEX

[
η̂
(i)
n,hn

(X) η̂
(j)
n,hn

(X)
]

=
∑
i̸=j

IEX

[
η(i) (X) η(j) (X)

]
+O

√ log h−1
n

nhd
n

+ hγ
n

 (20)

where hn → 0,
log h−1

n

nhd
n

→ 0. Note that

IEX

[
η(i) (X) η(j) (X)

]
=

∫
X

π(i)f (i) (x)

f
1
2 (x)

· π
(j)f (j) (x)

f
1
2 (x)

dx,

Using the generalized kernel density estimator (14), we obtain the kernel estimator η̃(i)n,hn
of

π(i)f(i)(x)

f
1
2 (x)

as below:

η̃
(i)
n,hn

(x) =
1

n

n∑
l=1

Khn (x− xl) 1I{yl=i}

f
1
2 (xl)

(21)

By Lemma 3, there exists an n(2) which depends on σ1 and the VC characteristics of K, when

n > n(2), with probability greater than 1−QLh
E

σ2
1

n ,∑
i̸=j

IEX

[
η(i) (X) η(j) (X)

]
=
∑
i̸=j

IEX

[
η̃
(i)
n,hn

(X) η̃
(j)
n,hn

(X)
]
+O

√ log h−1
n

nhd
n

+ hγ
n

 (22)

By convolution theorem of Gaussian kernels,∑
i ̸=j

IEX

[
η̃
(i)
n,hn

(X) η̃
(j)
n,hn

(X)
]
=

1

n2

∑
l,m

K√
2hn

(xl − xm)

f
1
2 (xl) f

1
2 (xm)

θlm

Let h̃n =
√
2hn, there exists n(3) depending on σ0 and the VC characteristics of

K, when n > n(3), with probability greater than 1 − Lh
E

σ2
0

n , ∥f̂n,h̃n
(x) − f (x) ∥∞ =

O
(√

log h̃−1
n

nh̃d
n

+ h̃γn

)
and ∥f̂n,h̃n

(x) − f (x) ∥∞ ≤ fmin

2 . It follows that supx∈IRd f̂n,h̃n
(x) ≤

fmax +
fmin

2 , infx∈IRd f̂n,h̃n
(x) ≥ fmin

2 , and

∣∣∣∣∣∣
∑
i̸=j

IEX

[
η̃
(i)
n,hn

(X) η̃
(j)
n,hn

(X)
]
− 1

n2

∑
l,m

Glm,h̃n
θlm

∣∣∣∣∣∣
≤ 1

n2

∑
l,m

Kh̃n
(xl − xm)

∣∣∣∣f 1
2 (xl) f

1
2 (xm)− f̂

1
2

n,h̃n
(xl) f̂

1
2

n,h̃n
(xm)

∣∣∣∣
f̂

1
2

n,h̃n
(xl) f̂

1
2

n,h̃n
(xm) f

1
2 (xl) f

1
2 (xm)

= O

√ log h̃−1
n

nh̃d
n

+ h̃γ
n

 · 1
n

n∑
l=1

f̂n,h̃n
(xl)

= O

√ log h̃−1
n

nh̃d
n

+ h̃γ
n

 = O

√ log hn
−1

nhd
n

+ hγ
n

 (23)

since h̃n =
√
2hn Take n1 = max{n(1), n(2), n(3)}, it follows from (20), (22) and (23) that with

probability greater than 1− 2QLh
E

σ2
0

n −QLh
E

σ2
1

n ,

RPI
n =

1

n2

∑
l,m

Glm,
√

2hn
θlm +O

√ log h−1
n

nhd
n

+ hn
γ

 (24)

and (5) is verified by (24).
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1.5 Proof of Corollary 1

Suppose the data {xi}ni=1 lies on a domain Ω ⊆ Rd. Let f be the probability density function on
Ω, S be the cluster boundary which separates Ω into two parts S1 and S2 (see Figure 1). Let the
domain of f be restricted to Ω in assumption (A) and (B). Based on the analysis in the beginning of
this document, Theorem 1−4 and Lemma 1−2 still hold and the proofs remain almostly unchanged.

The Low Density Separation assumption favors the cluster boundary with low volume, i.e.∫
S
f (s)ds. Corollary 1 reveals the relationship between the error of the plug-in classifier and the

weighted volume of the cluster boundary.

S

Ω

1
x

2
x

n
x…

1
S

2
S

Figure 1: Illustration of the hyperplane S for Low Density Separation.

Proof. Firstly, we show that when restricting the support of the marginal distribution PX to a
subset Ω ⊂ IRd which is not necessarily full-dimensional, Theorem 1 and lemma 1-3 still hold
and our derived bounds are still valid. To see this, we only need to show that the following class
of functions FΩ is a bounded VC class of measurable functions.

FΩ , {K
(
t− ·
h

)
, t ∈ Ω, h ̸= 0} (25)

Since we already know that the class of functions F defined below (also in the paper) is a bounded
VC class of measurable functions with respect to the envelope function F ,

F , {K
(
t− ·
h

)
, t ∈ IRd, h ̸= 0} (26)

we have N
(
F , ∥·∥L2(P ) , τ ∥F∥L2(P )

)
≤

(
A
τ

)v
for every probability measure P on IRd for

which
∫
F 2dP < ∞ and any 0 < τ < 1. N

(
T , d̂, ϵ

)
is defined as the minimal number

of open d̂-balls of radius ϵ required to cover T in the metric space
(
T , d̂

)
. Let {Bi} be the

N
(
F , ∥·∥L2(P ) , τ ∥F∥L2(P )

)
open balls which cover F , then {Bi ∩ Ω} is the set of balls which

cover FΩ since FΩ ⊂ F . It follows that FΩ is also a bounded VC class of measurable functions
with respect to the envelope function F .

According to Theorem 3 in [2], for any ε ∈
(
0, 12

)
, there exists constant C such that for all h

satisfying 0 < h <
√
τ(2d)

− e
2(e−1) ,∣∣∣∣√πh

∫
S2

∫
S1

K√
2h (x− y)ψ√

2h (x)ψ√
2h (y)dxdy −

∫
S

f (s) ds

∣∣∣∣ < Ch2ε (27)

where ψh (x) =
f(x)√∫

Ω
Kh(x−z)f(z)dz

, τ is the radius of the largest ball that can be placed tangent to

the manifold Ω.

By the consistency of kernel density estimator in Lemma 2, there exists n0 depending on σ0 and the

VC characteristics of K, when n > n0, with probability greater than 1 − L̃h
E

σ2
0

n , ∥f̂n,√2hn
(x) −

f (x) ∥∞ ≤ fmin

2 . Define R (x1, . . . ,xn) =
√
π

2hn
R̂n (PIS) =

1
n2

√
π

2hn

∑
l,m

K√
2hn

(xl−xm)

f̂
1
2
n,

√
2hn

(xl)f̂
1
2
n,

√
2hn

(xm)
θlm,

6



then the bounded difference is verified:∣∣∣R(x1, . . . ,xl, . . . ,xn)−R(x1, . . . ,x
′
l , . . . ,xn)

∣∣∣
≤ 1

n2

√
π

hn

∑
m ̸=l

∣∣∣∣∣∣ K√
2hn

(xl − xm)

f̂
1
2

n,
√

2hn
(xl) f̂

1
2

n,
√
2hn

(xm)
−

K√
2hn

(x
′
l − xm)

f̂
1
2

n,
√

2hn

(
x

′
l

)
f̂

1
2

n,
√

2hn
(xm)

∣∣∣∣∣∣
=

1

n2

√
π

hn

∑
m ̸=l

∣∣∣∣f̂ 1
2

n,
√

2hn
(x

′
l)K√

2hn
(xl − xm)− f̂

1
2

n,
√

2hn
(xl)K√

2hn
(x

′
l − xm)

∣∣∣∣
f̂

1
2

n,
√
2hn

(x
′
l)f̂

1
2

n,
√

2hn
(xl)f̂

1
2

n,
√

2hn
(xm)

≤ C1

nhd+1
n

(28)

where C1 a constant determined by fmin, fmax, d. According to McDiarmids Inequality,

Pr [|R (x1, . . . , xn)− IER (x1, . . . , xn)| ≥ ε1] ≤ 2 exp

(
−2nh2d+2

n ε21
C2

1

)
(29)

and
IER (x1, . . . , xn)

=

√
π

2hn

∫
S2

∫
S1

K√
2hn

(x− y)

f̂
1
2

n,
√

2hn
(x) f̂

1
2

n,
√
2hn

(y)
f (x) f (y)dxdy +

√
π

2hn

∫
S1

∫
S2

K√
2hn

(x− y)

f̂
1
2

n,
√

2hn
(x) f̂

1
2

n,
√

2hn
(y)

f (x) f (y)dxdy

=

√
π

hn

∫
S2

∫
S1

K√
2hn

(x− y)

f̂
1
2

n,
√

2hn
(x) f̂

1
2

n,
√
2hn

(y)
f (x) f (y)dxdy

Moreover, the square of the denominator of ψh is the expectation of f̂n,hn
, i.e.∫

Ω
Kh (x− z) f (z) dz = IE

[
f̂n,h

]
. By equation (a) in the proof of Lemma 2,

Pr
[
∥
∫
S2

∫
S1

K√
2hn

(x− y)

f̂
1
2

n,
√

2hn
(x) f̂

1
2

n,
√

2hn
(y)

f (x) f (y)dxdy −
∫
S2

∫
S1

K√
2hn

(x− y)ψ√
2hn

(x)ψ√
2hn

(y)dxdy∥∞ ≥ ε2
]

≤ Pr
[
∥IE
[
f̂n,

√
2hn

(x)
]
− f̂n,

√
2hn

(x) ∥∞ ≥ C2ε2
]

≤ L exp
(
− 1

L

log (1 + λ/4L)

λ

n(
√
2hn)

dC2
2ε

2
2

σ2
0

)
(30)

where C2 is a constant. By (27), (29) and (30) and the application of the Borel-Cantelli lemma, (7)
is verified.

1.6 Proof of Theorem 2

Proof. Denote the support of PX by X . Since X is bounded in IRd, we construct the τ -cover of X

which is a sequence of sets {Ω1,Ω2, ...,ΩR} such that X ⊆
R∪

r=1
Ωr and each Ωr is a box of length τ

in IRd, 1 ≤ r ≤ R, R =
(
2M0

τ

)d
. Let A =

R∩
r=1

{Ωr

∩
{xl}nl=1 ̸= ∅} indicating the event that each

Ωr contains at least one data point from {xl}nl=1, then

Pr [A] ≥ 1−R(1− Pr [Ω1])
n = 1−Ren log (1−Pr[Ω1])

≥ 1−Re−nPr[Ω1] ≥ 1− (
2M0

τ
)de−nfminτ

d

So that A holds with probability greater than 1 − ( 2M0

τ )de−nfminτ
d

. Denote by X̃ the nearest

neighbor of X among {xl}nl=1, and Ỹ is the label of X̃ . Note that
∥∥∥X − X̃

∥∥∥
2
≤

√
dτ if X ∈ Ωr

7



for each r. For any PXY ∈ PXY , some calculation shows that ∃c̃i > 0,
∣∣η(i)(x)− η(i)(y)

∣∣ ≤
c̃i ∥x− y∥γ , so that η(i) is also Hölder-γ smooth with Hölder constant c̃i. We then have

R (NNS) = IE(X,Y )

[
Y ̸= Ỹ

]
(31)

=
R∑

r=1

IEX

[(
1− η(Ỹ ) (X)

)
1I{X∈Ωr}

]
≤

R∑
r=1

IEX

[(
1− η(Ỹ )

(
X̃
)
+ c̃Ỹ

(√
dτ
)γ)

1I{X∈Ωr}

]
≤

R∑
r=1

IEX

[(
1− η(Ỹ )

(
X̃
))

1I{X∈Ωr}

]
+max

i
c̃i︸ ︷︷ ︸

,c0

(√
dτ
)γ

Let Nr = {xs ∈ {xl}nl=1 | xs = X̃ for some X ∈ Ωr} wherein each element is the nearest
neighbor of some X ∈ Ωr, and Ωrs = {X ∈ Ωr | X̃ = xs,xs ∈ Nr} which is a subregion of
Ωr such that all X ∈ Ωrs takes xs as its nearest neighbor. Then Ωr =

∪
s:xs∈Nr

Ωrs, and X̃ = xs

for X ∈ Ωrs. Since {xl}nl=1 ⊂
R∪

r=1
Ωr, each xl should be the nearest neighbor of some X ∈ Ωr,

1 ≤ r ≤ R, so that {xl}nl=1 =
R∪

r=1
Nr.

Based on Theorem 1, with probability greater than 1− 2QLh
E

σ2
0

n ,

R∑
r=1

IEX

[(
1− η(Ỹ )

(
X̃
))

1I{X∈Ωr}

]
=

n∑
s=1

[
1− η(ys) (xs)

] ∫
Vs

f (x) dx

=

n∑
s=1

{[
1− η̂

(ys)
n,hn

(xs)
] ∫

Vs

f̂n,hn (x) dx

}
+O

√ log h−1
n

nhd
n

+ hγ
n


=

1

n

∑
l<m

Hlmθlm +O

√ log h−1
n

nhd
n

+ hγ
n

 (32)

where Vs is the Voronoi cell associated with xs, which is the set of points whose nearest neighbor
is xs: Vs =

∩
l:l ̸=s

{x ∈ X | ∥x− xs∥2 ≤ ∥x− xl∥2}. Combining (31) and (32),

R (NNS) ≤
1

n

∑
l<m

Hlmθlm + c0
(√

dτ
)γ

+O

√ log h−1
n

nhd
n

+ hγ
n

 (33)

Moreover, the equality in (33) holds if the equality in (31) holds, e.g. η(i) ≡ 1
Q for 1 ≤ i ≤ Q.

2 Algorithm and Experiments

The objective function of our pairwise clustering method PIEC is below:

Ψ(e) =

n∑
l=1

exp
(
−Glel,

√
2hn

)
+ λ

∑
l,m

(
θ̃lmGlm,

√
2hn

+ ρlm (el, em)
)

(34)

where ρlm is a function to enforce the consistency of the cluster indicators:

ρlm (el, em) =

{
∞ em = l, el ̸= l or el = m, em ̸= m
0 otherwise

,

8



The minimization of the objective function is converted to a MAP (Maximum a Posterior) problem
in the pairwise MRF. (34) is minimized by Max-Product Belief Propagation (BP) in two steps:

Message Passing: BP iteratively passes messages along each edge according to

mt
lm (em) = min

el

(
M t−1

lm (el) + θ̃lmGlm,
√
2hn

+ ρlm (el, em)
)

(35)

M t
lm (el) ,

∑
k∈N (l)\m

mt
kl (el) + ul (el) (36)

where mt
lm is the message sent from node l to node m in iteration t, N (l) is the set of neighbors

of node l.

Inferring the optimal label: After the message passing converges or the maximal number of itera-
tions is achieved, the final belief for each node is bl (el) =

∑
k∈N (l)

mT
kl (el)+ul (el), T is the number

of iterations of message passing. The resultant optimal e∗l is e∗l = argmin
el

bl (el).

AP (Affinity Propagation) controls the cluster numbers by a parameter called preference. We first
estimate the lower bound and upper bound for the preference using the routine functions provided
by the authors [3], then evenly sample 170 preference values between its upper bound and lower
bound, and run AP with each sampled preference value. CEB (Convex Clustering with Exemplar-
Based Model) produces different cluster numbers by varying the scale ββ0 which controls the shape
of the mixture components. Likewise, we evenly sample 170 values between [0.1, 2] for β, and
β0 = n2log n/

∑
i,j

∥xi − xj∥22 according to [4]. Also, we normalize the BT data set so that it has unit

column variance, since the column variances of BT vary significantly (the largest column variance
is 18580 while the smallest one is 0.0686).
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