Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews


Liam C. MacDermed, Charles L. Isbell


This paper presents four major results towards solving decentralized partially observable Markov decision problems (DecPOMDPs) culminating in an algorithm that outperforms all existing algorithms on all but one standard infinite-horizon benchmark problems. (1) We give an integer program that solves collaborative Bayesian games (CBGs). The program is notable because its linear relaxation is very often integral. (2) We show that a DecPOMDP with bounded belief can be converted to a POMDP (albeit with actions exponential in the number of beliefs). These actions correspond to strategies of a CBG. (3) We present a method to transform any DecPOMDP into a DecPOMDP with bounded beliefs (the number of beliefs is a free parameter) using optimal (not lossless) belief compression. (4) We show that the combination of these results opens the door for new classes of DecPOMDP algorithms based on previous POMDP algorithms. We choose one such algorithm, point-based valued iteration, and modify it to produce the first tractable value iteration method for DecPOMDPs which outperforms existing algorithms.