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Before proving the lemmas we recall the definition of F(w), F'(w), g, and g;(w) as
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gi(w) = gi(w + W) — (w, Vg;(W)).

We also recall that w, and W/, are the optimal solutions that minimize F(w) and F’(w) over the
domain W, and Wy 1, respectively.
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Proof. For each iteration ¢ in the kth epoch, from the strong convexity of F(w) we have
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where F (w) = L 3"  Gi(W). We now try to upper bound the first term in the right hand side.
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where the first inequality follows from the fact that wy; in the minimizer of the following opti-
mization problem:
2
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Therefore, we obtain
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as desired. O

We now turn to prove the upper bound on Ar.

Lemma 2.
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Proof. We bound A as
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where the second inequality follows (a + b)? < 2(a? + b?) and the last inequality follows from the
smoothness assumption. O

Lemma 3. With a probability 1 — 26, we have
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The proof is based on the Berstein inequality for Martingales [1] which is restated here for com-
pleteness.

Theorem 1. (Bernstein’s inequality for martingales). Let X1, ..., X, be a bounded martingale
difference sequence with respect to the filtration F = (F;)1<i<n and with | X;|| < K. Let

1
S; = Z X;
j=1
be the associated martingale. Denote the sum of the conditional variances by
n
S =Y E[XP|Fi],

t=1

Then for all constants t, v > 0,
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and therefore,
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Equipped with this theorem, we are now in a position to upper bound By and Cr as follows.

Proof. (of Lemma 3) Denote X; = (Vg;, (W,) — VF (W, ), w; — W,.). We have that the conditional
expectation of X;, given randomness in previous rounds, is E;_; [X;] = 0. We now apply Theorem 1
to the sum of martingale differences. In particular, we have, with a probability 1 — e™¢
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Hence, with a probability 1 — ¢, we have
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Similar, for C, we have, with a probability 1 —
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Lemmad4. |W.| < 7||w — W]

Proof. We rewrite F(w) as
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Define z = w — w. We have
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Define w, = W, — w. Evidently, W, minimizes F(w). The only difference between F(w) and
F'(w) is that they use different modulus of strong convexity A. Thus, following [2], we have
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Hence,
WLl < AWl = ][ — Wi
which completes the proofs. O
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