
A Supplementary Material

This text is the Supplementary Material of the paper “Approximate inference in latent Gaussian-Markov

models from continuous time observations” by B. Cseke, M. Opper and G. Sanguinetti (Neural Information

Processing Systems 2013).

A.1 Variational formulation using expectation constraints

In this section we formulate an expectation constraints based approximate inference scheme [Heskes et al.,
2005] for our model. It turns out that, when only discrete time observation are present, the inference results
in an expectation propagation type algorithm whereas when only continuous type observations are present
it collapses to the variational approach. These two approaches can be combined into a joint inference
scheme.

A.1.1 Discrete time observations

In the case of only discrete time observations no time discretisation is needed for the formal manipulation
of the distributions. The propagation algorithm we arrive to can be viewed as an EP on a latent Gaussian
model where the (partial) matrix inversion for computing marginal means and variances is replaced by
solving the forward-backward differential equations.

In the following we present an expectation constrained free energy optimisation that leads to the EP algo-
rithm. Here we use the concept of the variational formulation by free energies [e.g. Yedidia et al., 2000].
In a similar spirit as in Heskes et al. [2005], instead of approximating

p({xt}|{yd
ti}i) ∝ p0({xt})×

�

i

p(yd
ti |xti)

with an OU process we define the free energy as function of a family of approximate marginals Q =
{q0({xt}), {qids(xti)}i, {qid(xti)}i} constrained by expectation constraints. The densities qdi will be as-
signed to the factors corresponding to the likelihood terms, q0 will assigned to the factor p0. With some
abuse in notation the family Q can be viewed as representing an approximation q having the form

q({xt}) ∝
q0({xt})

�
i q

i
d(xti)�

i q
i
ds(xti)

.

Note that in the graphical model formalism the densities qids correspond to the densities defined over the
variables of the separator sets in graphical models [Lauritzen, 1996]. The expectation constraints are de-
fined over the function f(z) = (z,−zzT /2) and ensure that the corresponding marginals of the members
of Q are consistent up to second moments, i.e., their marginal means and covariances are equal. Given
the above assumptions, one can define an approximation of the D[q||p] divergence called free energy that
reads as

F (Q) =− �log p0({xt})�q0 −
�

i

�
log p(yd

i |xt)
�

qid

+ �log q0({xt})�q0 +
�

i

[
�
log qid(xti)

�

qid

−
�
log qids(xti)

�

qids

] (16)

and specify the expectation constraints

�f(xti)�q0 = �f(xti)�qids and �f(xti)�qid = �f(xti)�qids for all ti ∈ Td.

The stationary equations of the corresponding Lagrangian

L(Q,Λ) = F (Q) +
�

i

�
λ

0
ti · [�f(xti)�qids − �f(xti)�q0 ] + λ

d
ti · [�f(xti)�qids − �f(xti)�qid ]

�
(17)

result in q0({xt}) ∝ p0({xt}) × exp(
�
i
λ0
ti · f(xti)), qid(xti) ∝ p(yd

i |xti) × exp(λd
ti · f(xti)) and

qids(xti) ∝ exp([λ0
ti + λd

ti ] · f(xti)). The differential w.r.t. the Lagrange multipliers λ0
ti and λd

ti lead
to the above mentioned expectation constraints. Since the expectation constraints are defined over the
sufficient statistics f(z) and the optimal qids belongs to the exponential (Gaussian) family defined by f ,
we can rewrite these constraints into canonical forms. These read as

λ
d
ti + λ

0
ti = Collapse(q0(xti);f) and λ

d
ti + λ

0
ti = Collapse(qid(xti);f).
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Here Collapse(q(z);f) denotes the (unique) moment matching canonical parameters, in other words the
Kullback-Leibler projection Collapse(q(z);f) = argminθ D[q(z)||exp(θ · f(z)− logZ(θ))]. From the
moment matching constraints one can introduce the fixed point iteration

[λ0
ti ]

new = Collapse(qid(xti);f)− λ
d
ti , (18)

[λd
ti ]

new = Collapse(q0(xti);f)− λ
0
ti , (19)

which corresponds to a (parallel) EP algorithm in a latent Gaussian model where the latent Gaussian is
given by an OU process. It can be shown that the free energy in (16) is finite, details are given in Sec-
tion A.2. The collapse operation Collapse(qid(xti);f) is computed by moment matching—computing
the corresponding canonical parameters—while Collapse(q0(xti);f) is computed by using the moment
parameters of the marginals resulting from the forward-backward equations in Section B.1, with λ0

ti =
(hd

ti ,Q
d
ti). Readers familiar with the EP presented in Opper and Winther [2000] or [Minka, 2001] can

identify the multipliers λ0
ti as the canonical parameters of the so called term approximations whereas the

λd
tis correspond to the canonical parameters of the so called cavity distributions. Equations (18) and (19)

correspond to the updates of the term approximation and the cavity distribution through moment matching.
The free energy approach presented above starts from the variational formulation D[q||p] where instead
of single specially chosen Gaussian q, a family of approximate marginals Q is introduced. The EP style
iterative moment matching minimizations in the D[p||·] sense corresponding to Collapse(·;f), arise from
the satisfaction of moment matching constraints.

Clearly, any method that computes the marginal means and covariances of q0 at the time-point in Td suffices
to keep the iteration running, and thus, when possible, one should solve the differential equations between
observation points analytically. We can also opt for the alternative generic approach of computing the
covariance matrix corresponding to the variables {xti}ti∈Td and opt for the equivalent Gaussian process
(OU covariance function) expectation propagation in Opper and Winther [2000] or Minka [2001]. In
the latter case the marginal means and variances for t �∈ Td can be computed by using the conditional
independencies in the model and computing the predictive distributions.

A.1.2 Continuous time observations

In this section we extend the approach to the case when only continuous tine observations are present. The
task is to approximate a posterior distribution having the form

p({xt}|{yc
t}) ∝ p({xt})× exp

�
−
� 1

0

dtV (t,yc
t ,xt)

�
.

In order to simplify notation, we will omit the dependence of V on yc
t . In an similar fashion as in the

previous section we introduce a family of marginals Q = {q0({xt}), qcs({xt}), qc({xt})} and define the
free energy as

F (Q) = −�log p0({xt})�q0 +

�� 1

0

dtV (t,xt)

�

qc

+ �log q0({xt})�q0 + �log qc({xt})�qc − �log qcs({xt})�qcs
(20)

The moment matching constraints will be defined as

�f(xt)�q0 = �f(xt)�qcs and �f(xt)�qc = �f(xt)�qcs for all t ∈ [0, 1].

which imply using Lagrange multiplier terms of the form

C(Q,M) =

� 1

0

dtµ0
t · [�f(xt)�qcs − �f(xt)�q0 ] +

� 1

0

dtµc
t · [�f(xt)�qcs − �f(xt)�qc ]. (21)

In order to carry out the computations and show that the above quantities exist, we discretise the time
domain by using the time-points T = {t0 = 0, t1, . . . , tK−1, tK = 1} with the lags ∆tk = tk+1 − tk and
represent the process {xt}t by the matrix x = [xt0 , . . . ,xtK ]. By using this discretisation, we approximate
all integrals using the corresponding Euler discretisation and,, view p0(x) as a multivariate Gaussian. We
use the indexing T to highlight the discretisation. We define the Lagrangian as

L(QT ,MT ) = F (QT ) + C(QT ,MT ). (22)
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The stationary conditions (22) corresponding to the differentiation w.r.t q0, qcs and qc, result in

q0(x) ∝ p0(x)× exp

�
�

k

∆tkµ
0
tk · f(xtk )

�
, (23)

qc(x) ∝ exp

�
�

k

∆tk[−V (tk,xtk ) + µ
c
tk · f(xtk )]

�
, (24)

qcs(x) ∝ exp

�
�

k

∆tk[µ
0
tk + µ

c
tk ] · f(xtk )

�
. (25)

Due to the factorisation of qcs and qc and the Gaussian nature of qcs(xtk), the stationary conditions corre-
sponding to the moment constraints can be rewritten as

∆tk[µ
0
tk + µ

c
tk ] = Collapse(q0(xtk ];f) and ∆tk[µ

0
tk + µ

c
tk ] = Collapse(qc(xtk );f) for all, tk ∈ T. (26)

Taking the limit ∆tk → 0 is not feasible at this point because the marginals of both qcs and qc collapse into
delta distributions. However, we can observe that Collapse(q0(xtk);f) should always be finite and well
defined. We use the alias µtk = Collapse(q0(xtk ;f) and we eliminate µc

tk from the formulae above. In an
similar spirit as in Section A.1.1, we use the moment matching constraint to define the fixed point iteration

[µ0
tk ]

new = µ
0
tk +

1
∆tk

[Collapse(qc(xtk );f)− µtk ], (27)

where, due to eliminating µc
tk , we have qc(xtk) ∝ exp{−∆tk[V (tk,xtk)+µ0

tk ·f(xtk)]+µtk ·f(xtk)}.
The ∆tk → 0 limit is presented in Section 2.2.3 of the paper and by using µ0

t = (hc
t ,Q

c
t), it results in the

updates

[hc
t ]

new = −∂mt �V (t,xt)�q0(xt)
+ 2∂Vt �V (t,xt)�q0(xt)

mt and [Qc
t ]

new = ∂Vt �V (t,xt)�q0(xt)

(28)

[q0({xt})]new ∝ p0({xt})× exp{
� 1

0

dt[xT
t h

c
t −

1
2
x

T
t Q

c
txt]}

where the marginal moments of q0({xt}) are computed by using the Kalman-Bucy algorithm (Section B.1).

A.1.3 The joint approximation scheme

Now that we have derived the approximation scheme for both discrete and continuous time obser-
vations, we can show that they can be easily combined to obtain a joint approximation. With-
out loss of generality, we can assume that Td ⊂ T . By defining the joint family as Q =
{q0(x), {qid(xti)}i, {qids(xti)}i, qc(x)qcs(x), qc(x)} and the free energy as

F (Q) =− �log p0(x)�q0 −
�

i

�
log p(yd

ti |xt)
�

qid

+

�� 1

0

dtV (t,xt)

�

qc

(29)

�log q0(x)�q0 +
�

i

[
�
log qid(xti)

�

qid

−
�
log qids(xti)

�

qids

] + �log qc(x)�qc − �log qcs(x)�qcs

we can construct the Lagrangian by using the multiplier terms from (17) and the Euler discretisation of
(21). The fixed point iteration follows (18), (19) and (28) where q0 is defined by

[q0({xt})]new ∝ p0({xt})× exp
��

i

[xT
tih

d
ti −

1
2
x

T
tiQ

d
tixti ] +

� 1

0

dt[xT
t h

c
t −

1
2
x

T
t Q

c
txt]

�
. (30)

We use the forward-backward equations (Section B) to compute the marginals of q0. As a result we have an
algorithm behaves like a EP/variational hybrid: the parameters corresponding to the discrete time observa-
tions follow an EP style update (18) and (19), while the ones corresponding to the continuous observations
are updated in a variational fashion according to (28).

A.2 The computation of the free energy

In the following we show that the free energy exist when ∆tk → 0.
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A.2.1 Continuous time observations

The expression of the free energy in (20) after discretisation is

F (QT ) = −�log p0(x)�q0 +
�

k

∆tk �V (tk,xtk )�qc + �log q0(x)�q0 + �log qc(x)�qc − �log qcs(x)�qcs

by substituting (23), (24) and (25) into F (QT ) we find that

F (QT ) = − logZ0({µ0
tk})− logZc({µc

tk}) + logZcs({µ0
tk + µ

c
tk})

where Z0, Zc and Zcs stand for the corresponding normalisation constants. By using the Legendre duality
we can write

− logZ0({µ0
tk}) = D[q0(x)||p0(x)]−

�

k

∆tkµ
0
tk · f(xtk )

and by using the expansion in (11) in Section 2.2.3 of the paper, we find that

− logZc({µc
tk}) + logZcs({µ0

tk + µ
c
tk}) �

�

k

∆tk
�
V (tk,xtk ) + µ

0
tk · f(xtk )

�
q0

.

Since q0 corresponds to an OU process (see Section B.3 for its parametric form), we can take the limit
∆tk → 0 and obtain

F (Q) =D[q0({xt})||p0({xt})] +
� 1

0

dt �V (t,xt)�q0

=
1
2

� 1

0

dt
�
[(At −A

q
t )xt + (ct − c

q
t )]

T
B

−1
t [(At −A

q
t )xt + (ct − c

q
t )]

�

q0

+D[p0(x0)||q0(x0)] +

� 1

0

dt �V (t,xt)�q0 ,

where Aq
t and cqt represent the parameters corresponding to q0. Computing D[q0({xt})||p0({xt})] when

q0 and p0 are parameterised OU processes can be done as in [e.g. Archambeau et al., 2007].

A.2.2 Discrete time observations

We use the notation

qid(xti) =
1

Zi
d

p(yd
i |xti)× exp(λd

i · f(xti)),

qids(xti) =
1

Zi
ds

exp([λ0
i + λ

d
i ] · f(xti))

and by using the Legendre duality as above, we can rewrite (16) as

F (Q) = D[q0({xt})||p0({xt})]−
�

i

λ
0
i · �f(xti)�qids −

�

i

[logZi
d − logZi

ds],

which is a finite, computable quantity. The joint free energy follows from combining the discrete and
continuous free energies according to (29), that is,

F (Q) =D[p0(x0)||q0(x0)] +
1
2

� 1

0

dt
�
[(At −A

q
t )xt + (ct − c

q
t )]

T
B

−1
t [(At −A

q
t )xt + (ct − c

q
t )]

�

q0

+

� 1

0

dt �V (t,xt)�q0 −
�

i

λ
0
i · �f(xti)�qids −

�

i

[logZi
d − logZi

ds].

Note that after convergence we have qids(xt) = q0(xt).

B Computations related to the Kalman-Bucy forward-backward algorithm

This section contains the computations that complement the material presented in Section 2.1. For reasons
of simplicity, in Sections B.2 and B.3 we focus on the continuos time case, the computations related to the
additional discrete time terms follow naturally.
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B.1 The Kalman-Bucy forward-backward equations

By using the Euler discretisation and first order expansions as in [e.g. Särkkä, 2006] one can show that the
forward and backward filtering equations satisfy

d
dt

V
fw
t = AtV

fw
t + V

fw
t A

T
t +Bt − V

fw
t Q

c
tV

fw
t , m

fw
ti+

= (I + V
fw
ti

Q
d
ti)

−1(mfw
ti

+ V
fw
ti

h
d
ti),

d
dt

m
fw
t = Atm

fw
t + ct + V

fw
t

�
h

c
t −Q

c
tm

fw
t

�
, V

fw
ti+

= (I + V
fw
t Q

d
ti)

−1
V

fw
ti

,

d
dt

V
bw
t = AtV

bw
t + V

bw
t A

T
t −Bt + V

bw
t Q

c
tV

bw
t , m

bw
ti− = (I + V

bw
ti Q

d
ti)

−1(mbw
ti + V

bw
ti h

d
ti),

d
dt

m
bw
t = Atm

bw
t + ct − V

bw
t

�
h

c
t −Q

c
tm

bw
t

�
, V

bw
ti− = (I + V

bw
ti Q

d
ti)

−1
V

bw
ti .

We solve the equations for mfw and V fw in a forward fashion using the initial conditions N(x0;m0,V0),
whereas the equations for mfw and V fw are solved in a backwards with the initial, or more specifically, the
end conditions given by the a non-informative Gaussian. By combining the forward and backward solutions
we obtain the posterior marginal density p(xt|{yd

ti}i, {y
c
t}) ∝ N(xt;m

fw
t ,V fw

t ) × N(xt;mbw
t ,V bw

t ).
Note that the backward equations are often replaced by the so called smoothing equations [e.g. Särkkä,
2006]. Thsese combine the backward equations and the latter computation of the marginals into a pair of
differential equations for the mean and the covariance respectively. In some cases one is better off with
computing directly the inverse of V fw

t or V bw
t , these also follow similar quadratic or linear differential

equations as the ones above.

B.2 The variational approach to the Kalman-Bucy problem

In this section we present the computations of D[q({xt})||p({xt}|{yc
t})] for the probabilistic model cor-

responding to the Kalman-Bucy problem defined by the equations

dxt = (Atxt + ct)dt+B
1/2
t dWt, and dyt = Htxtdt+R

1/2
t dWt.

We relate its optimum’s marginals to the marginals computed by the Kalman-Bucy algorithm. Let us
discretise (again) by using the Euler scheme and write

p(x|yc) ∝N(x0;m0,V0))
�

k

N(xtk+1 ;xtk + (Atkxtk + ctk )∆tk,∆tkBtk )

×
�

k

N(yc
tk+1

;yc
tk +Htkxtk∆tk,∆tkRtk )

and assume that we approximate this density by a q(x) which is the discretisation

q(x) ∝ N(x0;m0,V0))
�

k

N(xtk+1 ;xtk + (Aq
tk
xtk + c

q
tk
)∆tk,∆tkBtk )

of an approximating dxt = (Aq
txt + cqt )dt + B1/2

t dWt, say, with same initial conditions. After some
algebra, one can show that

D[q(x)||p(x|y)] =1
2

�

k

∆tk
�
[(Atk −A

q
tk
)xtk + (ct − c

q
tk
)]TB−1

tk [(Atk −A
q
tk
)xtk + (ctk − c

q
tk
)]
�

q(xtk
)

+
1
2

�

k

∆tk

��∆y
c
tk

∆tk
−Htkxtk

�T
R

−1
tk

�∆y
c
tk

∆tk
−Htkxtk

��

q(xtk
)

+
d
2

�

k

log(2π∆tkRtk ).

Clearly, due to the
�

k log(2π∆tkRtk) terms, the limit ∆tk → 0 does not exist but since these are not
dependent on the variational parameters, one can still define the free energy

F (q) =
1
2

� 1

0

dt
�
[(At −A

q
t )xt + (ct − c

q
t )]

T
B

−1
t [(At −A

q
t )xt + (ct − c

q
t )]

�

q(xt)

+
1
2

� 1

0

dt

��dyc
t

dt
−Htxt

�T
R

−1
t

�dyc
t

dt
−Htxt

��

q(xt)

.

Due to the Gaussian nature of the problem, the Kalman-Bucy algorithm provides the marginal means and
variances of the optimal q corresponding to a quadratic loss function. As we show in Section B.3 below,
the Kalman-Bucy algorithm can also be used to compute the Aq

t and cqt parameters of the optimal q. The
case with additional discrete observations follows naturally.
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B.3 The moment matching OU to a Kalman-Bucy solution

Suppose now that we have computed, by Kalman-Bucy smoothing, the marginals of a process q. Since
both the prior and observation processes are linear, the posterior process will also be of OU type; however,
Kalman-Bucy smoothing only computes marginals of the process, and it may be expedient to compute the
SDE formulation of the process. To do that, one needs the drift coefficients At, ct and the diffusion matrix
Bt. In order to compute these parameters, we resort to a variational computation.

We consider the (discretised) KL divergence between a posterior process q(x) arising from a Kalman-Bucy
problem and an OU process p(x) with parameters At, ct and Bt

D[q(x)||p(x)] =const. + �log q(x)�q

+
1
2

�

t

�
[∆xt − (Atxt + ct)∆t][∆tBt]

−1[∆xt − (Atxt + ct)∆t]T + log det(∆tBt)
�

q

To find the optimal A∗
t , c

∗
t and B∗

t we need to compute the expectations needed in the above expression.
Let us denote the forward filtering distribution at time t by N(xt;m

fw
t ,V fw

t ) while the backward filtering
at t+∆t is represented by N(xt+∆t;mbw

t+∆t,V
bw
t+∆t); these distributions are known as they are the outcome

of the Kalman-Bucy forward-backward filtering. The joint posterior of (xt,xt+∆t) can then be written as
q(xt,xt+∆t) ∝N(xt;m

fw
t ,V fw

t )N(yc
t+∆t;yc +Htxt∆t,∆tRt)

×N(xt+∆t; (I +At∆t)xt + ct∆t,∆tBt)N(xt+∆t;m
bw
t+∆t,V

bw
t+dt).

This density can be rewritten in a conditional form
q(xt,xt+∆t) ∝N(xt+∆t;Utxt + vt∆t,∆tZt)N(xt; m̂t, V̂t).

where the first order approximations of the quantities above are given by

m̂t = m
fw
t +∆tV fw

t H
T
t (∆tHtV

fw
t H

T
t +Rt)

−1�∆y
c
t

∆t
−Htm

fw
t

�

� m
fw
t +∆tV fw

t H
T
t R

−1
t

�∆y
c
t

∆t
−Htm

fw
t

�

V̂t = V
fw
t −∆tV fw

t H
T (∆tHtV

fw
t H

T
t +Rt)

−1
HtV

fw
t

� V
fw
t −∆tV fw

t H
T
R

−1
t HtV

fw
t

Ut = (I +∆tBt[V
bw
t+∆t]

−1)−1(I +∆tAt)

� I +∆t(At −Bt[V
bw
t+∆t]

−1)

vt = (I +∆tBt[V
bw
t+∆t]

−1)−1(ct +Bt[V
bw
t+∆t]

−1
m

bw
t+∆t)

� ct +Bt[V
bw
t+∆t]

−1
m

bw
t+∆t −∆tBt[V

bw
t+∆t]

−1(ct +Bt[V
bw
t+∆t]

−1
m

bw
t+∆t)

Zt � Bt −∆tBt[V
bw
t+∆t]

−1
Bt.

Using the parameterisation from above, the minimisers of the KL divergence are given by

A
∗
t =

1
∆t

[
�
∆xtx

T
t

�
− �∆xt� �xt�T ][

�
xtx

T
t

�
− �xt� �xt�T ]−1

� 1
∆t

(U − I)

= At −Bt[V
bw
t+∆t]

−1 (31)

c
∗
t =

1
∆t

�xt+∆t − xt� −A
∗
t �xt�

� 1
∆t

(U − I) �xt� −A
∗
t �xt�+ vt

� ct +Bt[V
bw
t+∆t]

−1
m

bw
t+∆t (32)

B
∗
t =

1
∆t

�
[∆xt − (A∗

txt + c
∗
t )∆t][∆xt − (A∗

txt + c
∗
t )∆t]T

�

� Bt. (33)

We remark that when adding the discrete time observations, the form of (31), (32) and (33) does not
change, we only have to make sure that the backward filtering for computing mbw

t and V bw
t does include

these terms.
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C The inference algorithm

Until convergence do

(1) Update {(hd
ti ,Q

d
ti)}i and {(hc

t ,Q
c
t)}t according to

(1.1) Update (hd
ti ,Q

d
ti) by

(1.1.1) compute the cavity means and variances

m
\ti
ti

= (I −Q
d
tiVt1)

−1(mti − Vtih
d
ti) and V

\ti
ti

= Vti(I −Q
d
tiVti)

−1

(1.1.2) compute mean m̂ti and covariance V̂ti of the tilted distribution qid(xti) ∝
p(yd

ti |xti)N(xti ;m
\ti
ti ,V \ti

ti ) either by exact or numerical methods (see EP related ref-
erences for details)

(1.1.3) compute [hd
ti ]

new and [Qd
ti ]

new from

[hd
ti ]

new =[V̂ti ]
−1

m̂ti − [V \ti
ti

]−1
m

\ti
ti

[Qd
ti ]

new =[V̂ti ]
−1 − [V \ti

ti
]−1

(1.2) Update hc
t and Qc

t by

[hc
t ]

new = −∂mt �V (t,xt)�N (mt,Vt)
+ 2∂Vt �V (t,xt)�N (mt,Vt)

mt

[Qc
t ]

new = ∂Vt �V (t,xt)�N (mt,Vt)

(2) Update mt and Vt by
(2.1) solve forward starting at (m0,V0)

d
dt

V
fw
t = AtV

fw
t + V

fw
t A

T
t +Bt − V

fw
t Q

c
tV

fw
t , m

fw
ti+

= (I + V
fw
ti

Q
d
ti)

−1(mfw
ti

+ V
fw
ti

h
c
ti),

d
dt

m
fw
t = Atm

fw
t + ct + V

fw
t

�
h

c
t −Q

c
tm

fw
t

�
, V

fw
ti+

= (I + V
fw
t Q

d
ti)

−1
V

fw
ti

(2.2) solve backwards starting, say, at (0, 100V fw
1 )

d
dt

V
bw
t = AtV

bw
t + V

bw
t A

T
t −Bt + V

bw
t Q

c
tV

bw
t , m

bw
ti− = (I + V

bw
ti Q

d
ti)

−1(mbw
ti + V

bw
ti h

d
ti),

d
dt

m
bw
t = Atm

bw
t + ct − V

bw
t

�
h

c
t −Q

c
tm

bw
t

�
, V

bw
ti− = (I + V

bw
ti Q

d
ti)

−1
V

bw
ti

(2.3) compute mt and Vt from

[Vt]
−1 = [V fw

t ]−1 + [V bw
t ]−1 and mt = Vt

�
[V fw

t ]−1
m

fw
t + [V bw

t ]−1
m

bw
t

�

The above equations are given for illustrative purposes only, one should always avoid inversion, try to
stabilise computations by reorganising them and, when necessary, performing matrix inversions through
matrix factorisations.

The sequential forward-backward scheduling follows by iteratively solving the forward and backward equa-
tions with Qc

t and hc
t computed according to (1.2) and the update steps (1.1) for Qd

t and hd
t performed at

the jump times ti.
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