
7 Appendix

7.1 Proof of the Proposition 3

In order to prove that result, one needs some intermediate results. Let HU (resp. HUxy ) be the
submatrix of H corresponding to prefixes in U (resp. of the form uxy with u ∈ U ). Let HV (resp.
Hx
yV ) be the submatrix of H corresponding to suffixes in V (resp. of the form x

yv with v ∈ V ).

Lemma 1. Let u and v be two vectors such that u⊺Hε = v⊺Hε. Then, for x ∈ Σ+∪{∗}, y ∈ Σ−∪{∗},
one has u⊺Hx

y
= v⊺Hx

y
.

Proof. Hε is a submatrix of HU with the same rank.

Let u and v be two vectors such that u⊺Hε = v⊺Hε, then u⊺HU = v⊺HU because Hε and HU have
the same rank. Thus, as each Hx

y
is a submatrix of HU , one has u⊺Hx

y
= v⊺Hx

y
.

Lemma 2. Let u ∈ UΣ. Then the vector

∑
x1
y1
...xnyn ∈u

(Hxn
yn

)⊺⋯(Hx1
y1
H+
ε )⊺((H+

ε )⊺H1)

is the row of HV corresponding to the prefix u. In particular, if u ∈ U , the vector is equal to the row
of Hε corresponding to the prefix u.

Proof. By induction. H1 is the row of HV corresponding to ε.

1) Let us suppose that u = u′xy . Because UΣ is prefix-closed, one has u′ ∈ UΣ. Let z′ be the row
of HV corresponding to u′. (H+

ε )⊺z′ represents a decomposition of z′ in terms of rows of Hε. The
vector (Hx

y
)⊺(H+

ε )⊺z is the same linear combination of rows of Hx
yV , and by rank equality is the

same as the row of Hx
yV corresponding to u′. Because H is a Hankel matrix, it is equal to the row

of HV corresponding to u′xy = u.

2) Let us suppose that u = [s1∶n, t1∶k]. Then u1 = [s1∶n−1, t1∶k]sn∗ ∈ UΣ, u2 = [s1∶n, t1∶k−1]∗tk ∈ UΣ,
u3 = [s1∶n−1, t1∶k−1]sntk ∈ UΣ. With the same argument as before applied to u1, u2 and u3, and
because H is Hankel, one has the result.

One has then the symmetric result for the suffixes.

Lemma 3. Let v ∈ ΣV . Then the vector

∑
x1
y1
...xnyn ∈v

(Hx1
y1

)⋯(Hxn
yn
H+
ε )(H∞)

is the column of HU corresponding to the suffix v. In particular, if v ∈ V , the vector is equal to the
column of Hε corresponding to the suffix v.

Proof. It is just the symmetric case of the previous lemma.

7.1.1 Proof of the Proposition 3

Let u ∈ U , v ∈ V . Let Hu be the row of Hε corresponding to u, Hv the column of Hε corresponding
to v. One then has, by Lemma 2 and Lemma 3, rM(uv) = H⊺

uH
+
εHv The vector H+

εHv represents
a decomposition of Hv equivalent to the vector 1v . Then rM(uv) =H⊺

u1v =Hε(u, v).

7.2 Proof of the Proposition 4

Definition 14. Let p be a distribution over i/o sequences computed by an FST. Let rank(p) be
the minimal integer d such that there exist an FST with d states computing p. Let Vp be the class
of parameters for all rank-d FSTs over bi-sequences which compute the same distribution over i/o
sequences as p.
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Definition 15. An affine variety is the set of solutions of a (maybe infinite) polynomial equation
system:

{ P1(X1, . . . ,Xn) = 0
⋮

Lemma 4. Let p be a rank d distribution over bi-sequences computed by an FST. Then Vp is an
affine variety.

Proof. LetA be a d-state FST. The value computed byA for a given i/o sequence (s, t) is a polynom
in its parameter denoted P(s,t). Thus, the set of parameters corresponding to d-state FST computing
a given value p((s, t)) for (s, t) is an affine variety defined by {(X1, . . . ,Xn)∣P(s,t)−p((s, t)) = 0},
and Vp is the affine variety defined by: ⋂(si,tj)∈Σ+×Σ−{(X1, . . . ,Xn)∣P(si,tj)−p((si, tj)) = 0}.

Lemma 5. Let p be a rank d distribution over bi-sequences computed by an FST. Then there exists
a finite setGp of i/o sequences, such that Vp = ⋂(si,tj)∈Gp{(X1, . . . ,Xn)∣P(si,tj)−p((si, tj)) = 0}.
Such a set Gp is called a generative set for p.

Proof. The ring R[X1, . . . ,Xn] is Noetherian, in particular the sequence Ik =
⋂k′≤k{(X1, . . . ,Xn)∣P(sik′ ,tjk′ )

(X1, . . . ,Xn) − p((sik′ , tjk′ )) = 0} is stationary. One has
Vp = ⋃n In = ⋃n≤N In for a certain N . One can take Gp = ⋃n≤N(sin , tjn).

Corollary 1. Let p be a rank d distribution over i/o sequences computed by an FST. Let Gp be a
generative set for p. Let A be an FST of rank ≤ d. One then has:

rA∣Gp = p∣Gp ⇔ rA = p

7.2.1 Proof of Proposition 4

Proof. Let p be a rank d distribution over i/o sequences computed by an FST. LetGp be a generative
set for p. Let U0 (resp. V0) be the prefix-closure (resp. suffix-closure) of Gp. Let Ui+1 = UiΣ,
U = Ud+1 and Vi+1 = ΣVi, V = Vd+1. Let Hi be the minimum rank Hankel matrix over Ui and Vi,
and let H be a minimum rank Hankel matrix over U and V . With Corollary 1 and Proposition 3,
it is sufficient to prove that rank(Hd) = rank(H) = d. As the Hankel matrix of p fulfills the
hypothesis, one has rank(H) ≤ d. Among the family of (d + 1) couples (H0,H1), . . . (Hd,H),
one of them satisfies rank(Hi) = rank(Hi+1), because otherwise rank(Hi) would take d + 2
different values between 0 and d. Thus, the FST computed from Hi+1 agrees on Gp with p by
Proposition 3, and by Corollary 1, as Gp ⊂ U × V , this FST computes p. By minimality of the rank,
one has rank(Hi) = rank(Hi+1) = d, and thus rank(Hd) = rank(H) = d.

7.3 Proof of the Proposition 5

Lemma 6. Let p be a rank d distribution computed by an FST. Let U and V be such as in Proposi-
tion 4. There exists σ > 0 such H ∈ H0 ⇒ σd(Hε) ≥ σ, where σd(Hε) is the d-th singular vaue of
Hε.

Proof. For µ = 0, the rank minimization is equivalent to rank(H) ≤ d, thus the set H0 of the
solutions of (1) is a closed bounded set, thus compact. Suppose that the assumption is false, this
means, by compacity, that one can find a sequence Hn such that σd(Hnε) converges towards a
matrix Hω such that σd(Hωε) = 0 by continuity of singular values. As Hω ∈ H0, The FST obtained
from Hω computes p, which contradicts the fact that rank(Hωε) = d (cf. proof of Proposition 4).

Lemma 7. Let p be a distribution computed by a rank d FST. Let U and V be such as in Proposi-
tion 4. Let σ be as in Lemma 6. There exists µ2 such that H ∈ Hµ2 ⇒ σd(Hε) > σ/2.

Proof. Suppose the assumption is false: there exists a convergent sequence of Hankel matrices
Hn ∈ H1/n such that σd(Hnε) < σ/2, and whose limit is Mω . One then has Hω ∈ H0, and
σd(Hωε) ≤ σ/2 by continuity, which contradicts Lemma 6.
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In particular, this implies that, for a certain µ2, all the solutions Hµ2 of (1) will be such that Hε is
rank d, thusHµ2 is compact.
Lemma 8. Let p be a rank d distribution computed by an FST. Let U and V be such as in Proposi-
tion 6. For all ε > 0 there exists µε such that H ∈ Hµε ⇒minH0∈H0(∥H −H0∥F ) ≤ ε.

Proof. Let us consider µε < µ2, µ2 beeing as in Lemma 7. The rank minimization is equivalent to
rank(H) ≤ d, thus the set Hµε is compact. Let us suppose that the assumption is false, and that
there exists a sequence Hn such that Hn ∈ H1/n and minH0∈H0(∥Hn −H0∥F ) > ε. The limit Hω

belongs toH0 and satisfies minH0∈H0(∥Hω −H0∥F ) ≥ ε which is contradictory.

Lemma 9. Let p be a rank d distribution computed by an FST. Let U and V be such as in Propo-
sition 4. Let δ > 0 be a confidence parameter. Let S be an i.i.d. sample of size N , drawn with
respect to p. Let zS = (pS([s, t]))[s,t]∈U be the vector of frequencies in the sample S, and let
z = (p([s, t]))[s,t]∈U . One has, with probability a least 1 − δ:

∥z − zS∥2 <
1 +

√
2 log(1/δ)
√
N

Proof. Let Si be a sample differing from S for the i-th entry. One has ∥zS − zSi∥2 ≤
√

2/N = ci.
One also has E(∥z−zS∥2

2) ≤ 1/N because of the variance of a multinomial, and thus E(∥z−zS∥2) ≤√
E(∥z − zS∥2

2) ≤ 1/
√
n.

Applying the McDiarmid’s inequality gives P(∥zs − z∥2 ≥ E(∥z − zS∥2) + ε) ≤ e
− ε2

2∑c2i . With

δ = e
− ε2

2∑c2i = e−Nε
2

4 , thus ε =
√

2 log(1/δ)
N

, one has the result.

7.3.1 Proof of the Proposition 5

Let µ2 be as in Lemma 7. By the Lemma 9, with probability 1 − δ, one has H0 ⊂ HSµ , thus
rank(H) ≤ d for any H ∈ HSµ . Moreover, as HSµ ⊂ H2µ, the condition µ < µ2 implies that
rank(Hε) ≥ d for any H ∈ HSµ .

7.4 Proof of the Proposition 6

Lemma 10. Let p be a rank d distribution computed by an FST. Let S be an i.i.d. sample of size N
with respect to p. Let δ > 0 be a confidence parameter. For any ε > 0, let µε be as in Lemma 8. One
supposes that

N >
⎛
⎝

1 +
√

2 log(1/δ)
µε

⎞
⎠

2

With probability 1 − δ, for any H ∈ HSµε, minH0∈H0(∥H −H0∥F ) < ε.

Proof. This is just Lemma 8 and Lemma 9 together.

Let us define the distance between two models with the same rank:
Definition 16. Let A = (α1, α∞,Mx

y
) and A′ = (α′1, α′∞,M ′

x
y
) be two FSTs with d states, on the

same alphabet. On defines the distance

∣A,A′∣∞ = max(max
i

(∣(α1)i − (α′1)i∣),max
i

(∣(α∞)i − (α′∞)i∣), max
i,j,x,y

(∣(Mx
y
)i,j − (M ′

x
y
)i,j ∣))

Let us recall a result [12]:
Lemma 11. Let H and H ′ =H +E be two n×m matrices. Let σ1 ≥ ⋅ ⋅ ⋅ ≥ σn be the singular values
of H , and let σ′1 ≥ ⋅ ⋅ ⋅ ≥ σ′n be the singular values of H ′. One then has

∣σi − σ′i∣ ≤ ∥E∥2

12



Let H = L⊺DR and H ′ = L′⊺D′R′ be the singular value decompositions of H and H ′. One has
H+ = R⊺D−1L and H ′+ = R′⊺D′−1L′. One has:
Lemma 12. Let H and H ′ =H +E be two n ×m matrices. Let H = L⊺DR and H ′ = L′⊺D′R′ be
the singular value decompositions of H and H ′. Let σ be such that ∀i, σi ≥ σ,σ′i ≥ σ. One has

∥D−1 −D′−1∥F ≤ ∥D−1 −D′−1∥∗ ≤
d∥E∥2

σ2

Proof. On has ∣ 1
σi
− 1
σ′i

∣ ≤ ∣σ
′
i−σi
σiσ′i

∣ ≤ ∥E∥2
σ2 , and one has the conclusion.

The following result is straightforward from [19]:
Lemma 13. Let H and H ′ = H + E be two matrices. Let σ1 ≥ ⋅ ⋅ ⋅ ≥ σn be the singular values of
H , and let σ′1 ≥ ⋅ ⋅ ⋅ ≥ σ′n be the singular values of H ′. Let σ be such that ∀i, σi ≥ σ,σ′i ≥ σ. Let
H = L⊺DR and H ′ = L′⊺D′R′ be the singular value decompositions of H and H ′. One supposes
that ∥E∥F ≤ σ/2. One then has

∥L −L′∥F ≤
4(2

√
d∥H∥F ∥E∥F + ∥E∥2

F )
σ2

, ∥R −R′∥F ≤
4(2

√
d∥H∥F ∥E∥F + ∥E∥2

F )
σ2

7.4.1 Proof of Proposition 6

Let µε be as in Lemma 8. The condition on N implies µ < µε. Let H ∈ HSµ , there exists H ′ ∈ H0

such that ∥H − H ′∥F < ε. One has ∥L∥F = ∥L′∥F = ∥R∥F = ∥R′∥F =
√
d, as the matrices are

orthonormal. One has also ∥D−1∥F ≤
√
d/σ. One uses the equality AB −A′B′ = (A−A′)B −(A−

A′)(B −B′) +A(B −B′). One has

H+ −H ′+ = L⊺D−1R −L′⊺D′−1R′

= L⊺[(D−1 −D′−1)R − (D−1 −D′−1)(R −R′) +D−1(R −R′)]
−(L⊺ −L′⊺)[(D−1 −D′−1)R − (D−1 −D′−1)(R −R′) +D−1(R −R′)] + (L⊺ −L′⊺)D−1R

Using the previous inequalities, and keeping only the first order terms, leads to

∥H+ −H ′+∥F ≤ O(d
2ε

σ3
)

One also has ∥H+∥F ≤ d2

σ
. Plugging all those inequalities in the formulas computing the FSTs

parameters leads to the result.

13


	Appendix
	Proof of the Proposition 3
	Proof of the Proposition 3

	Proof of the Proposition 4
	Proof of Proposition 4

	Proof of the Proposition 5
	Proof of the Proposition 5

	Proof of the Proposition 6
	Proof of Proposition 6



