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CVLab, École Polytechnique Fédérale de Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract

A common assumption in machine vision is that the training and test samples
are drawn from the same distribution. However, there are many problems when
this assumption is grossly violated, as in bio-medical applications where differ-
ent acquisitions can generate drastic variations in the appearance of the data due
to changing experimental conditions. This problem is accentuated with 3D data,
for which annotation is very time-consuming, limiting the amount of data that
can be labeled in new acquisitions for training. In this paper we present a multi-
task learning algorithm for domain adaptation based on boosting. Unlike previous
approaches that learn task-specific decision boundaries, our method learns a sin-
gle decision boundary in a shared feature space, common to all tasks. We use
the boosting-trick to learn a non-linear mapping of the observations in each task,
with no need for specific a-priori knowledge of its global analytical form. This
yields a more parameter-free domain adaptation approach that successfully lever-
ages learning on new tasks where labeled data is scarce. We evaluate our approach
on two challenging bio-medical datasets and achieve a significant improvement
over the state of the art.

1 Introduction

Object detection and segmentation approaches often assume that the training and test samples are
drawn from the same distribution. There are many problems in Computer Vision, however, where
this assumption can be grossly violated, such as in bio-medical applications that usually involve
expensive and complicated data acquisition processes that are not easily repeatable. As illustrated
in Fig. 1, this can result in newly-acquired data that is significantly different from the data used for
training. As a result, a classifier trained on data from one acquisition often cannot generalize well to
data obtained from a new one. Furthermore, although it is possible to expect supervised data from
a new acquisition, it is unreasonable to expect the practitioner to re-label large amounts of data for
each new image that is acquired, particularly in the case of 3D image stacks.

A possible solution is to treat each acquisition as a separate, but related classification problem, and
exploit their possible relationship to learn from the supervised data available across all of them.
Typically, each such classification problem is called a task, which is associated with a domain.
For example, for Fig. 1(a,b) the task is mitochondria segmentation in both acquisitions. However,
the domains are different, namely Striatum and Hippocampus EM stacks. Techniques in domain
adaptation [1] and more generally multi-task learning [2, 3] seek to leverage data from a set of
different yet related tasks or domains to help learn a classifier in a seemingly new task. In domain
adaptation, it is typically assumed that there is a fairly large amount of labeled data in one domain,
commonly referred to as the source domain, and that a limited amount of supervision is available in
the other, often called the target domain. Our goal is to exploit the labeled data in the source domain
to learn an accurate classifier in the target domain despite having only a few labeled samples in the
latter.
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Figure 1: (a,b) Slice cuts from two 3D Electron Microscopy acquisitions from different parts of the
brain of a rat. (c,d) 2D aerial road images and 3D neural axons from Olfactory Projection Fibers
(OPF). Top and bottom rows show example images and ground truth respectively.

The data acquisition problem is unique to many multi-task learning problems, however, in that each
task is in fact the same, but what has changed is that the features across different acquisitions have
undergone some unknown transformation. That is to say that each task can be well described by a
single decision boundary in some common feature space that preserves the task-relevant features and
discards the domain specific ones corresponding to unwanted acquisition artifacts. This contrasts the
more general multi-task setting where each task is comprised of both a common and task-specific
boundary, even when mapped to a common feature space, as illustrated in Fig. 2. A method that can
jointly optimize over the common decision boundary and shared feature space is therefore desired.

Linear latent variable methods such as those based on Canonical Correlation Analysis (CCA) [4,
5] can be applied to learn a shared feature space across the different acquisitions. However, the
situation is further complicated by the fact that the unknown transformations are generally non-
linear. Although kernel methods can be applied to model the non-linearity [4, 6, 7], this requires
the existence of a well-defined kernel function that can often be difficult to specify a priori. Also,
the computational complexity of kernel methods scales quadratically with the number of training
examples, limiting their application to large datasets.

In this paper we propose a solution to the data acquisition problem and devise a method that can
jointly solve for the non-linear decision boundary and transformations across tasks. As illustrated
in Fig. 2 our approach maps features from possibly high-dimensional, task-specific feature spaces
to a low-dimensional space common to all tasks. We assume that only the mappings are task-
dependent and that in the shared space the problem is linearly separable and the decision boundary
is common to all tasks. We use the boosting-trick [8, 9, 10] to simultaneously learn the non-linear
task-specific mappings as well as the decision boundary, with no need for specific a-priori knowledge
of their global analytical form. This yields a more parameter-free domain adaptation approach that
successfully leverages learning on new tasks where labeled data is scarce.

We evaluate our approach on the two challenging bio-medical datasets depicted by Fig. 1. We
first consider the classification of curvilinear structures in 3D image stacks of Olfactory Projection
Fibers (OPF) [11] using labeled 2D aerial road images. We then perform mitochondria segmentation
in large 3D Electron Microscopy (EM) stacks of neural rat tissue, demonstrating the ability of our
algorithm to leverage labeled data from different data acquisitions on this challenging task. On both
datasets our approach obtains a significant improvement over using labeled data from either domain
alone and outperforms recent multi-task learning baseline methods.

2 Related Work

Initial ideas to multi-task learning exploited supervised data from related tasks to define a form of
regularization in the target problem [2, 12]. In this setting, related tasks, also sometimes referred to
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