
Appendices
This document contains supplementary material for the NIPS paper “Small-Variance Asymptotics
for Hidden Markov Models.”

A Parametric HMM Details

In this section we describe the derivation of equation (2) in section 2.1.1 in the main paper, and also
discuss the asymptotic treatment of the EM algorithm for the finite-state HMM.

A.1 Bregman Divergence Transition Representation

First we rewrite the relevant equations from section 2.1.1. We wrote the multinomial distribution for
the latent state at time step t as

Pr(zt|zt−1,j = 1) =

K∏
k=1

T ztkjk .

Using standard algebraic manipulations we can rewrite this as

exp

[
K∑
k=1

log T ztkjk

]
= exp

[
K−1∑
k=1

ztk · log Tjk − ztK · log
1

TjK

]
.

Recall that, in our binary 1-of-K notation, ztK = 1−
K−1∑
k=1

ztk. This allows us to rewrite the expres-

sion above as

exp

[
K∑
k=1

log T ztkjk

]
= exp

[
K−1∑
k=1

ztk ·
log Tjk
log TjK

− log
1

TjK

]
. (1)

To reparameterize this in exponential family notation, we denote θ−Kj = {log(Tjk/TjK)}K−1k=1 .
Then the summation in (1) is clearly the inner product of z−Kt and θ−Kj . This then allows us
to re-write (1) as exp

(
〈z−Kt ,θ−Kj 〉 − ψ(θ−Kj)

)
, where the log-partition function ψ

(
θ−Kj

)
=

log(1/TjK).

Now we will show that the expectation parameter given by ∇ψ
(
θ−Kj

)
is exactly the transition

probability distribution corresponding to state j. From this we will be able to show the Legendre
dual of the expectation parameter to be the negative entropy of the transition distribution of j. To
see this, note that the log-partition function may be written as

ψ
(
θ−Kj

)
= log

1

TjK
= log

TjK +

K−1∑
k=1

Tjk

TjK

 = log

(
1 +

K−1∑
k=1

eθ
−K
jk

)
.

We can therefore write the expectation parameter as

mj = ∇ψ
(
θ−Kj

)
= ∇ log

(
1 +

K−1∑
k=1

eθ
−K
jk

)
=

{ eθ
−K
jk

1 +
∑K−1

k=1 eθ
−K
jk

}K−1
k=1

=
{
Tjk

}K−1
k=1

.

Then the Legendre dual φ can be written as

φ(mj) = 〈mj ,θ
−K
j 〉 − ψ(θ−Kj) =

K−1∑
k=1

Tjk log
Tjk
TjK

+ log TjK =

K∑
k=1

Tjk log Tjk.

1

Note that this is exactly the negative entropy of the transition probability distribution πj = Tj. ={
Tjk

}K
k=1

.

The Bregman divergence derived from φ is therefore

dφ(zt,mj) = φ(zt)− φ(mj)− 〈zt −mj ,∇φ(mj)〉

=

K∑
k=1

ztk log ztk −
K∑
k=1

Tjk log Tjk −
K∑
k=1

(ztk − Tjk) (1 + log Tjk)

=

K∑
k=1

ztk log
ztk
Tjk

= KL(zt,mj),

since we have
K∑
k=1

ztk = 1 and
K∑
k=1

Tjk = 1.

Then, by the bijection established in Banerjee et al. [1], we can write the distribution
Pr(zt|zt−1,j = 1) as

Pr(zt|zt−1,j = 1) = exp
(〈
z−Kt ,θ−Kj

〉
− ψ

(
θ−Kj

))
= exp(−dφ(zt,mj))bφ(zt),

where them-independent function bφ(zt) is

bφ(zt) = exp(φ(zt)) = exp

(
K∑
k=1

ztk log ztk

)
= 1,

where we have again used the binary 1-of-K representation of zt. This completes the derivation of
equation (2) in section 2.1.1 of the paper.

Once we are given this appropriate Bregman divergence representation, we can directly apply the
recipe in [3], Lemma 3.1. In particular, the variance on an exponential family distribution may be
scaled by appropriately scaling the partition function and the underlying natural parameter. Stated
simply, we can introduce a new parameter β̂, as in Jiang et al., and use a scaled version of the
Bregman divergence representation, i.e., exp(−β̂dφ(zt,mj))bβ̂φ(zt).

A.2 EM Algorithm Asymptotics

Here we discuss the asymtotic behavior of the EM algorithm for the standard HMM, and show its
reduction to segmental K-means.

The reduction of the E-step posterior marginal update to the MAP estimate is fairly straightforward
but involved. Let us define γ(ztk) as the probability of the value of the tth hidden variable being k,
given the observations, the means, and the T matrix. This probability can be expressed as

γ(ztk) =
α(ztk)β(ztk)
K∑
l=1

α(ztl)β(ztl)

=
1

1 +
K∑

l=1;l 6=k

α(ztl)β(ztl)

α(ztk), β(ztk)

(2)

where α(zt) = p(x1, ...,xt, zt) and β(zt) = p(xt+1, ...,xN | zt); the γ probabilities are what are
computed by the E-step of the EM algorithm for the standard HMM. Asymptotically as σ2 → 0,
we find that this probability goes to zero for all states k except the one that falls on the MAP path,
which may be derived by expanding the ratios of α and β probabilities in the above denominator.
Thus in the E-step analogue of our algorithm, we first find the MAP path, and for each latent state
on that path, we set the corresponding (temporal) posterior probability to 1 and that for the other
states to 0. Note that the MAP path for the Z variables is obtained using a standard Viterbi dynamic
programming algorithm with a forward and backward pass.

2

To complete the derivation of segmental k-means, we now consider the updates to T and µ in the M-
step analog. Recall the expected log-likelihood equation used in the M-step (see, e.g., Bishop [2]):

Q(Θ,Θold) =

K∑
k=1

γ(z1k)lnπk +

N∑
n=1

K∑
k=1

γ(znk)lnp(xn|µk)

+

N∑
n=2

K∑
j=1

K∑
k=1

ξ
(
zn−1,j , znk

)
log Tjk.

Here ξ
(
zn−1,j , znk

)
is the joint posterior marginal of pairwise latent variables, and Θ and Θold

represent the new and existing values, respectively, of Z, µ and T . We first consider maximizing
Q(Θ,Θold) with respect to the transition probabilities.

It can be noted that since we have hard cluster assignments in the asymptotic E-step, the joint pos-
terior marginals will also be binary, and therefore

∑N
n=1 ξ

(
zn−1,j , znk

)
represents the total number

of times the transitions from state j to state k has occurred in the entire chain. Thus, for each state
j, the maximization of the expected log-likelihood is a linear program over the log Tjks, and the
solution can be seen to be clearly the empirical transition probabilities computed from the MAP
transition sequence.

The final step is the updates to the means. This straightforwardly can be derived to be an update of
the empirical means of all points assigned to each state in a manner similar to the derivation of the
k-means cluster mean update as a limit of the M-step in a Gaussian mixture model. This completes
the derivation of segmental k-means as a small-variance approximation of the EM algorithm in the
presence of exponential family probabilities.

B Algorithm for the infinite Hidden Markov Model

Here, we give the detailed description of the algorithm in Section 3.2. The optimization problem we
aim to solve is

min
K,z,µ,T

N∑
t=1

‖xt − µzt‖2 − λ
N∑
t=2

log Tzt−1,zt + λ1

K∑
k=1

(sk − 1) + λ2(K − 1), (3)

where {x1, . . . ,xN} are the observations, {z1, . . . , zN} is the hidden state sequence, K is the total
number of hidden states, T is the transition probability matrix with Ti,j = Pr(zt+1 = j|zt = i),
and si(i = 1, . . . ,K) is the number of states that can be reachable from state i. Note that we are
expressing the transition penalties here in terms of T as opposed to the KL divergence, for ease of
presentation.

To optimize (3), we follow an alternating minimization framework. We first determine the sequence
of states to optimize the objective when all but Z is fixed using a forward-backward routine. Here,
we cannot apply exact dynamic programming, due to the possible creation of new states as well as
the change in transition probabilities when either creating a new state or paying a λ1 penalty. We
then update the means of each state as the empirical means based on the state assignments, and
the transition matrix as the empirical transition matrix. We further adopt a move analogous to that
described for the hard HDP in [4]. This step determines if the objective will decrease if we create a
new hidden state in a certain fashion; in particular, for each existing state j, we compute the change
in objective that occurs when observations that transition from state j to some state k are given their
own new hidden state.

Specifically, given observations {x1, . . . ,xN}, λ, λ1, λ2, our high-level algorithm proceeds as fol-
lows:

(1) Initialization: initialize with one hidden state. The parameters are therefore K = 1,µ1 =
1
N

∑N
i=1 xi, T = 1.

(2) Perform a forward-backward step (via approximate dynamic programming) to update Z.

(3) Update K,µ, T .

3

(4) For each state i, (i = 1, . . . ,K), check if the set of observations to any state j that are reached
by transitioning out of i can form a new dedicated hidden state and lower the objective function
in the process. If there are several such moves, choose the one with the maximum improvement
in objective function.

(5) Update K,µ, T .
(6) Iterate steps (2)-(5) until convergence.

Note: Step (3) here is only for clearer presentation of step (4).

B.1 Forward-Backward Step

In the forward-backward step, we will compute a K × N matrix α, where α(c, t) represents the
minimum cost over paths of length t from the beginning of the sequence and that reach state c at time
step t. We use the term “cost” to refer to the sum of the distances of points to state means, as well as
the additive penalties incurred. Since we are interested in the possibility of potentially creating new
states during this forward-backward process, and the creation of new states will necessarily change
the transition probabilities, it does not appear that α can be computed exactly. We instead describe
a procedure that computes an upper bound for each value of α.

To give further intuition for why it is difficult to compute the exact value of α: suppose we have
computed the minimum cost of paths up to step t− 1 and we would like to compute the values of α
for step t. The value of a path that ends in state c is obtained by examining, for all states i, the cost
of a path that ends at i at step t− 1 and then transitions to state c at step t. Thus, we must consider
the transition from i to c. If there are existing transitions from state i to state c, then we proceed as
in a standard forward-backward algorithm. However, we are also interested in two other cases—one
where there are no existing transitions from i to c but we consider this transition along with a penalty
λ1, and another where an entirely new state is formed and we pay a penalty λ2. In the first case,
the standard forward-backward routine faces an immediate problem, since when we try to compute
the cost of the path given by α(c, t), the cost will be infinite as there is a − log(0) term from the
transition probability. We must therefore alter the forward-backward routine, or there will never be
new states created nor transitions to an existing state which previously had no transitions. The main
idea is to derive and use bounds on how much the transition matrix can change under the above
scenarios. As long as we can show that the values we obtain for α are upper bounds, then we can
show that the objective function will decrease after the forward-backward routine, as the existing
sequence of states is also a valid path (with no new incurred penalties). That is, the cost we compute
here is an upper bound of both the non-penalized objective function value and newly-introduced
penalties. If there is no new states created or no new transitions happened, the upper bound for the
newly-introduced penalties is zero as mentioned before.

Now we describe the algorithm in more detail. In the following description, old K is the number of
states from the previous iteration, and K is the number of states before the computation of α at time
step t. Then, for each state 1 ≤ c ≤ K,

(I). If we are transitioning from a state i ≤ old K,
• Standard situation: If c ≤ old K and Ti,c 6= 0, we compute (as in the parametric case):

d(i, c) = ‖xt − µc‖2 − λ× log(Ti,c). (4)
• No existing transitions: Otherwise, we use the following upper bound when transition-

ing to state c:

d(i, c) = ‖xt − µc‖2 − λ× log

(
1

ni

)
+ λ× Ei + λ1, (5)

where,
– ni is the total number of transitions out of state i.
– Ei is the upper bound of the possible change in one transition probability from

state i incurred by adding one state to the reachable pool of state i. We compute
the change of the maximum of nij

ni
, and we have (assume j is the largest one)

Ei = (nij − 1)×
(

log
nij
ni
− log

nij − 1

ni

)
. (6)

4

– λ1 is the penalty incurred from transiting to a new state.
(II). Entirely new state: Otherwise, we use the bound:

d(i, c) = ‖xt − µc‖2 − λ× log

(
1

N − 1

)
+ λ1. (7)

where,
• 1

N−1 is an upper bound of the transition probability from state i to state c,
• 0 is the upper bound of possible change in the transition probabilities from state k

where the original transition occurred for this transition. Here, in this path which in-
volves transition from an entirely new state i to state c, we not only add a new row to
the transition matrix T , but also change another existing row of T . That is, the transit-
out probability of state k will be changed since it loses one count of transition to state
c.

• λ1 is the penalty incurred when adding this new state transition out of state i.
Empirically, we will use d(i, c) = ‖xt − µc‖2 + λ1 since it still decreases the objective
function value monotonically most of the time in practice and yields better results.

(III). We compute the minimum among all states:

α(c, t) = min
1≤i≤K

α(i, t− 1) + d(i, c) (8)

To check if this time step can be created as a new hidden state, we find

dmin = min
i,c

d(i, c). (9)

If dmin > λ1 + λ2, we create a new hidden state (this is the penalty incurred for transiting to a new
state and a new hidden state). We let K = K + 1,

α(K, t) = min
1≤k≤K−1

α(k, t− 1) + λ1 + λ2. (10)

This follows from the description of (II).

Now, we prove the correctness of the upper bounds. For the first bound, when we consider tran-
sitioning from i to c such that Tic = 0, we are adding a new transition out of state i, which then
impacts the other transition probabilities out of state i. Thus, the Ei bound determines how much
the change in the other transition probabilities impacts the current path cost.
Lemma 1. Ei is an upper bound of the possible change in the objective function value, in terms of
other transition probabilities from state i, incurred by adding one transition to a new state in Step
(I). Here, we assume the total number of transitions from state i is fixed.

Proof. Denote ni as the total number of transitions from state i, nij as the total number of transitions
from state i to state j with nij > 0. Thus, the possible change for other transitions is

(nij − 1)×
(

log
nij
ni
− log

nij − 1

ni

)
≥ 0.

Let f(x) = (x− 1)(log x− log(x− 1)), x ≥ 2, we have

f ′(x) = log x− log(x− 1)− 1

x

= log x− [log x+
−1

x
− 1

2x2
+ o(

1

2x2
)]− 1

x

=
1

2x2
+ o(

1

2x2
) > 0

Thus, f(x) is increasing as x increases for x ≥ 2. When x = 1, we have by definition f(1) = 0.
Therefore,

Ei = (nik − 1)×
(

log
nik
ni
− log

nik − 1

ni

)
= max

j
(nij − 1)×

(
log

nij
ni
− log

nij − 1

ni

)
,

where k = argmaxjnij .

5

The second bound deals with transitioning from an entirely new state. We are adding one row to the
transition matrix T , which then also changes another row of transition probabilities out of state k
where this transition previously is coming from state k.

Lemma 2. 0 is an upper bound of possible change in the objective function value in terms of the
transition probabilities from state k where the original transition occurred for this transition in Step
(II).

Proof. Denote nk the total number of transitions from state k, nkj the total number of transitions
from state k to state j with nkj > 0. Without loss of generality, we assume that the lost transitions
are all from nki and the number of lost transitions is x. Thus, the change is∑

j

nkj log
nkj
nk
−
∑
j 6=i

nkj log
nkj

nk − x
− (nki − x) log

nki − x
nk − x

=
∑
j 6=i

nkj log
nk − x
nk

+ nki

(
log

nki
nk
− log

nki − x
nk − x

)
+ x log

nki − x
nk − x

≤ 0,

since nki

nk
≤ 1, nk−x

nk
< 1, nki−x

nk−x ≤ 1, and nki

nk
≥ nki−x

nk−x .

From Lemma 1 and 2, we know that in each time step we compute an upper bound of the minimum
non-penalized objective function value. And since we add λ1 and λ2 in α whenever we transition
to a state where there was no existing transitions or we create an entirely new state respectively,
we also manage to upper-bound the newly-introduced penalties. Combining these two together, we
have the following:

Proposition 1. The computation of α gives an upper bound of the minimum cost of every possible
path.

B.2 Local Move - Step 4

After finishing the forward-backward step and updating the means and transition matrix, we check
locally if we should create a new state by determining, for all i and k, if the objective function is
lowered when all data points in state k that reached state k via state i are put into a new state. In
particular, we determine and execute the single best such move.

In detail, for each state 1 ≤ i ≤ K, we consider all the time steps Ai that are one step from a time
step with state i. These time steps Ai can be grouped by their states: Ai(1), . . . , Ai(K), where
Ai(j) indicates time steps belonging to state j. Then, for all states j with |Ai(j)| > 0, we can
compute the objective function contribution from these time steps. We have

old =
∑

t∈Ai(j)

{‖xt − µzt‖2 − λ× log Ti,zt − λ× log Tzt,zt+1
}. (11)

If we let Ai(j) be a new hidden state, the contribution would be

new =
∑

t∈Ai(j)

{‖xt − x̄t‖2 − λ× log Ti,zt − λ× log TK+1,zt+1}+ λ1 ×Ki(j) + λ2, (12)

where

• x̄t = 1
|Ai(j)|

∑
t∈Ai(j)

xt;

• Let Bi(j) be the time steps which are one-step from those of Ai(j). TK+1,zt+1
is just the

empirical transition probability from time step t ∈ Ai(j) to the next time step t+1 ∈ Bi(j).

• Ki(j) is the number of states in Bi(j).

• Since there is no change of λ1 penalty for state i, we do not need to consider this in the
“old” contribution.

6

If new < old, then Ai(j) is considered as a candidate for a new hidden state.

After a whole pass of the states, we find the largest reduction

[i, j] ∈ argmaxi,j oldi(j)− newi(j), (13)

and create Ai(j) as a new hidden state.

In summary, in the forward-backward step, the cost we compute is an upper bound of both the
non-penalized objective function value and newly-introduced penalties. If there is no new states
created or no new transitions happened, the upper bound for the newly-introduced penalties is zero.
That is, we preserve the non-penalized objective function value of any path from previous iteration,
and upper-bound the non-penalized objective function value and the newly-introduced penalties of
any new path we find. In the local move step, we further reduce the objective function value by
considering locally for each state we get in the forward-backward step. Therefore, we have
Proposition 2. The algorithm decreases the objective function value in each iteration.

Proof. We know that the best path old P obtained from last iteration would be a possible path in this
iteration, and from the forward-backward step, it would preserve its cost from the previous iteration.
Thus, we have

α(new P) = min
all possible P

α(P) ≤ α(old P).

From Proposition 1, we know α gives the upper bound of the additional incurred cost, thus

cost(new P) ≤ cost(old P).

We also further decreases the cost from the local move, which preserves the inequality. That is, we
have

cost(new P) ≤ cost(old P).

C Additional Experimental Details

C.1 Heuristic for Parameter Selection

In this section, we give a simple heuristic which we found empirically promising for parameter
selection. We observe empirically that there is a gap between 1 and the smallest resulting number of
states larger than 1 (as in Figure 1) when performing a grid search over all the λ values. Thus, we
select the parameters that yield the smallest number of states bigger than 1 and consider this as the
estimate of the number of hidden states. If there are many combinations of parameters that reach
the estimated number of states, we choose the set of parameters which gives the best fit, that is, the
smallest non-penalized objective function value. We stress that this technique is a heuristic, and do
not claim any theoretical justification for it.

C.2 Well-log data

This additional experiment illustrates qualitative performance of our algorithms on a changepoint
detection problem. The data consists of 4050 noisy NMR measurements of rock strata obtained via
lowering a probe through a bore-hole. The data has been previously analyzed in [5] by eliminating
the forty greatest outliers and running a changepoint detection algorithm with a fixed number of
changepoints. This approach works well as this one-dimensional dataset can be inspected visually
to make a decision on whether to throw away datapoints and get a rough idea for the number of
changepoints. It has been noted in [5] that Gaussian mixtures seem to be a good model for this
data; in addition visual inspection of the data seems to suggest five clusters, at five distinct depths.
Thus we used a five-state Gaussian HMM to model this data. As in the synthetic case, we first
ran k-means for initialization of the mixture means and randomly initialized the transition/pseudo-
transition kernels.

The state sequence inferred by our algorithm is color-plotted in Figure 2. The changepoints seem
to have been accurately detected, with imperceptibly small noise. Relative performance trends are

7

Figure 1: An example showing the trend of the number of states as a function of lambda.

Figure 2: Visual display of the state assignments provided by the asymp-HMM algorithm on the
well-log data. Each color shows a different state (best viewed in color); see text for details.

similar to the synthetic case; the standard HMM took an average of 16 iterations to converge, with
an average running time of 4.5s. Our algorithm converges in 9 iterations, with an average time of
1.7s with λ = 3.

References
[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences.

Journal of Machine Learning Research, 6:1705–1749, 2005.
[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] K. Jiang, B. Kulis, and M. I. Jordan. Small-variance asymptotics for exponential family Dirich-

let process mixture models. In Advances in Neural Information Processing Systems, 2012.
[4] B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics.

In Proceedings of the 29th International Conference on Machine Learning, 2012.
[5] J. Ruanaidh and W. J. Fitzgerald. Numerical Bayesian methods applied to signal processing.

Springer-Verlag New York Inc, 1996.

8

	Appendices
	Parametric HMM Details
	Bregman Divergence Transition Representation
	EM Algorithm Asymptotics

	Algorithm for the infinite Hidden Markov Model
	Forward-Backward Step
	Local Move - Step 4

	Additional Experimental Details
	Heuristic for Parameter Selection
	Well-log data

