
A Omitted proofs

First, we restate and prove Lemma 1.

Lemma 6 The value of the portfolio of S(b) at time T can be bounded as
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PROOF: First let us assume that ↵ = � = 1 to simplify exposition.
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In other words, the change in value of the holdings plus cash is no more than the size of the price
deviation times whatever was the largest absolute holdings, either at t or t+ 1.

We will use this previous bound to simplify the problem as follows. First let us imagine that on the
final round T the price makes a (potentially large) fluctuation to pT+1

so that the window returns to
its initial point, aT+2

= a
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. Notice that pT+1
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The we have:
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It now suffices to show, with this final price fluctuation returning the window to its starting position,
that VT+2

=

PT+1

t=1

b
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|at+1

� at| which will complete the proof. To establish this fact, notice the
holdings HT+2

finish at 0 because the window has returned to its initial position, so we can do some
clever accouting to determine the cash balance at the final period. We are going to match up every
share purchase with a sell, and we can analyze the profit earned from this pair of transactions. We
may assume without loss of generality that the price moved by exactly one unit on each round, since
we can always take larger price movements and break them up into a sequence of unit trades with
no change to the strategy’s earnings and holdings. Pick a price p, and notice that since the window
returned to its initial position a

1

, then every time point t where at moved up to p can be matched up
with a time point t0 where at0 dropped down to p� �. When the window moved up to p a share was
sold for p+ b, but when it dropped below p then a share was purchased for p. Thus we can record a
profit of b for this pair of actions. Put another way, an (amortized) profit of b
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was booked for each
unit movement. But the total movement of the window is exactly
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� at| as desired. 2

Now we restate and prove Lemma 2.

Lemma 7 Consider any two strategies S(b) and S(b0) with b0 < b. Let [a0t, a
0
t + b0] and [at, at + b]

denote the intervals chosen by S(b) and S(b0) at time t respectively. Then for all t, we have [a0t, a
0
t+

b0] ⇢ [at, at + b].

PROOF: We prove that the first claim by induction on t. For t = 1, since a
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+ b]. Now assume that for some t � 1 we have [a0t, a0t+ b0] ⇢ [at, at+ b]. We
show that [a0t+1
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+ b]. This follows by easy case analysis on where pt lies:

1. a0t  pt  a0t + b0. In this case [a0t+1

, a0t+1

+ b0] = [a0t, a
0
t + b0] ⇢ [at, at + b] =
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2. a0t + b0 < pt  at + b. In this case [a0t+1

, a0t+1

+ b0] = [pt � b0, pt] ⇢ [at, at + b] =
[at+1
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3. pt > at + b. In this case [a0t+1
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+ b0] = [pt � b0, pt] ⇢ [pt � b, pt] = [at+1
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4. at  pt < a0t. Similar reasoning to case 2.
5. pt < at. Similar reasoning to case 3.
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Next, we restate and prove Lemma 3.
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Lemma 8 For any strategy S(b), its inventory at time t, Ht, equals a
1

� at.

PROOF: We show that Ht + at is an invariant. This is easy by case analysis on the position of pt:
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Next, we restate and prove Lemma 4.

Lemma 9 Define G = 2�B +�
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PROOF: For notational convenience, we will drop the reference to b and simply use Vt, Ht etc. to
refer to Vt(b), Ht(b), etc. At any time period t, note since |pt�pt�1
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for S(b), in the next period the strategy buys or sells at most � shares. Thus |Ht+1

� Ht|  �.
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Next, we restate and prove Lemma 5.

Lemma 10 In round t, the change in total value of the meta-algorithm equals
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PROOF: At the beginning of time period t, the meta-algorithm’s inventory is Ht · wt�1
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Now, let H := minb2B{Ht(b)}. By Corollary 1, we have |Ht(b)�H|  B for all b, so if we define
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Next, we restate and prove Theorem 3.
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Theorem 5 Suppose we set ⌘t =
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PROOF: By Lemma 4, the range of the entries of Vt+1

� Vt is bounded by 2G. Since the choice of
⌘t ensures that 2⌘tG  1, we have the following bound on the regret of the MW algorithm:
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Finally, we restate and prove Theorem 4.

Theorem 6 Choose ⌘ =

1

2G

q
log(N)

T . Then the regret of MMFPL is bounded by 7G
p
log(N)T .

PROOF: Fix the initial perturbation p. For every round t, let the “perturbed leader” `(t) be the
strategy S(b) such that Vt(b) + p(b) is maximum over all b 2 B (breaking ties arbitrarily).

By Lemma 4, the range of the entries of Vt+1

�Vt is bounded by 2G. Kalai and Vempala [17] show
that the probability that the leader changes from round t to t+ 1 is bounded by 2⌘G, i.e.
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Again since the range of the entries of Vt+1

� Vt is bounded by 2G, the analysis of Kalai and
Vempala [17] shows the following bound on the regret of the FPL algorithm:
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Thus, by Theorem 2, we get the following bound on the regret of MMFPL:
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