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Abstract

We find that various well-known graph-based models exhibit a common important
harmonic structure in its target function – the value of a vertex is approximately
the weighted average of the values of its adjacent neighbors. Understanding of
such structure and analysis of the loss defined over such structure help reveal im-
portant properties of the target function over a graph. In this paper, we show that
the variation of the target function across a cut can be upper and lower bounded by
the ratio of its harmonic loss and the cut cost. We use this to develop an analytical
tool and analyze five popular graph-based models: absorbing random walks, par-
tially absorbing random walks, hitting times, pseudo-inverse of the graph Lapla-
cian, and eigenvectors of the Laplacian matrices. Our analysis sheds new insights
into several open questions related to these models, and provides theoretical justi-
fications and guidelines for their practical use. Simulations on synthetic and real
datasets confirm the potential of the proposed theory and tool.

1 Introduction

Various graph-based models, regardless of application, aim to learn a target function on graphs that
well respects the graph topology. This has been done under different motivations such as Laplacian
regularization [4, 5, 6, 14, 25, 26, 27], random walks [17, 19, 24, 27], hitting and commute times
[10], p-resistance distances [1], pseudo-inverse of the graph Laplacian [10], eigenvectors of the
Laplacian matrices [18, 20], diffusion maps [8], to name a few. Whether these models can capture
the graph structure faithfully, or whether their target functions possess desirable properties over
the graph, remain unclear. Understanding of such issues can be of great value in practice and has
attracted much attention recently [16, 22, 24].

Several important observations about learning on graphs have been reported. Nadler et al. [ 16]
showed that the target functions of Laplacian regularized methods become flat as the number of
unlabeled points increases, but they also observed that a good classification can still be obtained
if an appropriate threshold is used. An explanation to this would be interesting. Von Luxburg
et al. [22] proved that commute and hitting times are dominated by the local structures in large
graphs, ignoring the global patterns. Does this mean these metrics are flawed? Interestingly, despite
this finding, the pseudo-inverse of graph Laplacian, known as the kernel matrix of commute times,
consistently performs superior in collaborative filtering [10]. In spectral clustering, the eigenvectors
of the normalized graph Laplacian are more desired than those of the un-normalized one [ 20, 21].
Also for the recently proposed partially absorbing random walks [ 24], certain setting of absorption

∗This article is the full version of [23].
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rates seems better than others. While these issues arise from seemingly unrelated contexts, we will
show in this paper that they can be addressed in a single framework.

Our starting point is the discovery of a common structure hidden in the target functions of various
graph models. That is, the value of a vertex is approximately the weighted average of the values
of its adjacent neighbors. We call this structure the harmonic structure for its resemblance to the
harmonic function [9, 27]. It naturally arises from the first step analysis of random walk models,
and, as will be shown in this paper, implicitly exists in other methods such as pseudo-inverse of the
graph Laplacian and eigenvectors of the Laplacian matrices. The target functions of these models
are characterized by their harmonic loss, a quantitative notion introduced in this paper to measure
the discrepancy of a target function f on cuts of graphs. The variations of f across cuts can then be
upper and lower bounded by the ratio of its harmonic loss and the cut cost. As long as the harmonic
loss varies slowly, the graph conductance dominates the variations of f – it will remain smooth in
a dense area but vary sharply otherwise. Models possessing such properties successfully capture
the cluster structures, and as shown in Sec. 4, lead to superior performance in practical applications
including classification and retrieval.

This novel perspective allows us to give a unified treatment of graph-based models. We use this tool
to study five popular models: absorbing random walks, partially absorbing random walks, hitting
times, pseudo-inverse of the graph Laplacian, and eigenvectors of the Laplacian matrices. Our
analysis provides new theoretical understandings into these models, answers related open questions,
and helps to correct and justify their practical use. The key message conveyed in our results is that
various existing models enjoying the harmonic structure are actually capable of capturing the global
graph topology, and understanding of this structure can guide us in applying them properly.

2 Analysis

Let us first define some notations. In this paper, we consider graphs which are connected, undirected,
weighted, and without self-loops. Denote by G = (V ,W ) a graph with n vertices V and a symmetric
non-negative affinity matrix W = [wij ] ∈ R

n×n (wii = 0). Denote by di =
∑

j wij the degree of
vertex i, by D = diag(d1, d2, . . . , dn) the degree matrix, and by L = D −W the graph Laplacian

[7]. The conductance of a subset S ⊂ V of vertices is defined as Φ(S) = w(S,S̄)

min(d(S),d(S̄))
, where

w(S, S̄) = ∑
i∈S,j∈S̄ wij is the cut cost between S and its complement S̄ , and d(S) = ∑

i∈S di is
the volume of S. For any i /∈ S, denote by i ∼ S if there is an edge between vertex i and the set S.

Definition 2.1 (Harmonic loss). The harmonic loss of f : V → R on any S ⊆ V is defined as:

Lf (S) :=
∑
i∈S

di

⎛
⎝f(i)−

∑
j∼i

wij

di
f(j)

⎞
⎠ =

∑
i∈S

⎛
⎝dif(i)−

∑
j∼i

wijf(j)

⎞
⎠ . (1)

Note that Lf (S) =
∑

i∈S(Lf)(i). By definition, the harmonic loss can be negative. However, as
we shall see below, it is always non-negative on superlevel sets.

The following lemma shows that the harmonic loss couples the cut cost and the discrepancy of the
function across the cut. This observation will serve as the foundation of our analysis in this paper.

Lemma 2.2. Lf (S) =
∑

i∈S,j∈S̄ wij(f(i)− f(j)). In particular, Lf (V) = 0.

Proof. By definition 2.1, we have

Lf (S) =
∑
i∈S

⎛
⎝dif(i)−

∑
j∼i

wijf(j)

⎞
⎠ =

∑
i∈S

⎛
⎝∑

j

wij(f(i)− f(j))

⎞
⎠

=
∑
i∈S

⎛
⎝∑

j∈S
wij(f(i)− f(j)) +

∑
j∈S̄

wij(f(i)− f(j))

⎞
⎠

=
∑

i∈S,j∈S̄
wij(f(i)− f(j)),
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where in the last equation we use the fact that
∑

i∈S,j∈S wij(f(i)−f(j)) = 0, due to the symmetry
of the affinity (wij = wij ).

In practice, to examine the variation of f on a graph, one does not necessarily examine on every
subset of vertices, which will be exponential in the number of vertices. Instead, it suffices to consider
its variation on the superlevel sets defined as follows.

Definition 2.3 (Superlevel set). For any function f : V → R on a graph and a scalar c ∈ R, the
set {i | f(i) ≥ c} is called a superlevel set of f with level c.

W.l.o.g., we assume the vertices are sorted such that f(1) ≥ f(2) ≥ · · · ≥ f(n − 1) ≥ f(n). The
subset Si := {1, . . . , i} is the superlevel set with level f(i) if f(i) > f(i+1). For convenience, we
still call Si a superlevel set of f even if f(i) = f(i + 1). In this paper, we will mainly examine the
variation of f on its n superlevel sets S1, . . . ,Sn. Our first observation is that the harmonic loss on
each superlevel set is non-negative, stated as follows.

Lemma 2.4. Lf (Si) ≥ 0, i = 1, . . . , n.

Proof. This follows from Lemma 2.2 and the fact that f(k) ≥ f(j), ∀k ∈ Si and ∀j ∈ S̄i.

Based on the notion of superlevel sets, it becomes legitimate to talk about the continuity of a function
on graphs, which we formally define as follows.

Definition 2.5 (Continuity). For any function f : V → R, we call it left-continuous if i ∼ S i−1,
i = 2, . . . , n; we call it right-continuous if i ∼ S̄i, i = 1, . . . , n − 1; we call it continuous if
i ∼ Si−1 and i ∼ S̄i, i = 2, . . . , n− 1. Particularly, f is called left-continuous, right-continuous,
or continuous at vertex i if i ∼ Si−1, i ∼ S̄i, or i ∼ Si−1 and i ∼ S̄i, respectively.

Proposition 2.6. For any function f : V → R and any vertex 1 < i < n, 1) if L f (i) < 0, then
i ∼ Si−1, i.e., f is left-continuous at i; 2) if Lf (i) > 0, then i ∼ S̄i, i.e., f is right-continuous at i;
3) if Lf (i) = 0 and f(i− 1) > f(i) > f(i+1), then i ∼ Si−1 and i ∼ S̄i, i.e., f is continuous at i.

Proof. 1) By Definition 2.1, if Lf (i) < 0, we have f(i) − ∑
j∼i

wij

di
f(j) < 0. Then there must

exist some j ∼ i, such that f(j) > f(i), implying j ∈ Si−1 and thus i ∼ Si−1. Result 2) can be
shown similarly.

3) As we assume the graph is connected, we must have i ∼ S i−1 or i ∼ S̄i. Suppose i ∼ Si−1.
Then there exists some j ∈ Si−1 such that f(j) > f(i) since f(i − 1) > f(i). Since Lf (i) = 0,
i.e., f(i) − ∑

j∼i
wij

di
f(j) = 0, there must exist some k ∼ i such that f(k) < f(i), i.e., i ∼ S̄i.

Similarly, we can show that if i ∼ S̄i then i ∼ Si−1.

The variation of f can be characterized by the following upper and lower bounds.

Theorem 2.7 (Dropping upper bound). For i = 1, . . . , n− 1,

f(i)− f(i+ 1) ≤ Lf (Si)

w(Si, S̄i)
=

Lf (Si)

Φ(Si)min(d(Si), d(S̄i))
. (2)

Proof. By Lemma 2.2, we have

Lf (Si) =
∑

j∈Si,k∈S̄i

wjk(f(j)− f(k)) ≥
∑

j∈Si,j∈S̄i

wjk(f(i)− f(i+ 1))

≥ (f(i)− f(i+ 1))
∑

j∈Si,k∈S̄i

wjk = (f(i)− f(i+ 1))w(Si, S̄i),

which concludes the proof.

Theorem 2.8 (Dropping lower bound). For i = 1, . . . , n− 1,

f(u)− f(v) ≥ Lf (Si)

w(Si, S̄i)
=

Lf (Si)

Φ(Si)min(d(Si), d(S̄i))
, (3)

where u := arg max
j∈Si,j∼S̄i

f(j) and v := arg min
j∈S̄i,j∼Si

f(j).
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Proof. By Lemma 2.2, we have

Lf (Si) =
∑

j∈Si,k∈S̄i

wjk(f(j)− f(k)) ≤
∑

j∈Si,j∈S̄i

wjk(f(u)− f(v))

≤ (f(u)− f(v))
∑

j∈Si,k∈S̄i

wjk = (f(u)− f(v))w(Si, S̄i),

which concludes the proof.

The key observations are two-fold. First, for any function f on a graph, as long as its harmonic
loss Lf (Si) varies slowly on the superlevel sets, i.e., f is harmonic almost everywhere, the graph
conductance Φ(Si) will dominate the variation of f . In particular, by Theorem 2.7, f(i + 1) drops
little if Φ(Si) is large, whereas by Theorem 2.8, a big gap exists across the cut if Φ(Si) is small (see
Sec. 3.1 for illustration). Second, the continuity (either left, right, or both) of f ensures that its varia-
tions conform with the graph connectivity, i.e., points with similar values on f tend to be connected.
It is a desired property because a “discontinuous” function that changes alternatively among differ-
ent clusters can hardly describe the graph. These observations can guide us in identifying “good”
functions that encode the global structure of graphs, as will be shown in the next section.

3 Examples

With the tool developed in Sec. 2, in this section, we study five popular graph models arising from
different contexts including SSL, retrieval, recommendation, and clustering. For each model, we
show its target function in harmonic forms, quantify its harmonic loss, analyze its dropping bounds,
and provide corrections or justifications for its use.

3.1 Absorbing Random Walks

The first model we examine is the seminal Laplacian regularization method [ 27] proposed for SSL.
While it has a nice interpretation in terms of absorbing random walks, with the labeled points being
absorbing states, it was argued in [16] that this method might be ill-posed for large unlabeled data
in high dimension (≥ 2) because the target function is extremely flat and thus seems problematic
for classification. [1] further connected this argument with the resistance distance on graphs, point-
ing out that the classification biases to the labeled points with larger degrees. Here we show that
Laplacian regularization can actually capture the global graph structure and a simple normalization
scheme would resolve the raised issue.

For simplicity, we consider the binary classification setting with one label in each class. Denote by
f : V → R the absorption probability vector from every point to the positive labeled point. Assume
the vertices are sorted such that 1 = f(1) > f(2) ≥ · · · ≥ f(n−1) > f(n) = 0 (vertex 1 is labeled
positive and vertex n is labeled negative). By the first step analysis of the random walk,

f(i) =
∑
k∼i

wik

di
f(k), for i = 2, . . . , n− 1. (4)

Our first observation is that the harmonic loss of f is constant w.r.t. S i, as shown below.

Corollary 3.1. Lf (Si) =
∑

k∼1 w1k(1 − f(k)), i = 1, . . . , n− 1.

Proof. By Definition 2.1, Eq. (4), and Lemma 2.2, we have

Lf (Si) =
i∑

j=1

Lf (j) = Lf (1) =
∑
k∼1

w1k(1− f(k)). (5)

The following statement shows that f changes continuously on graphs under general condition.

Corollary 3.2. Suppose f is mutually different on unlabeled data. Then f is continuous.
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Figure 1: Absorbing random walks on a 6-point graph.

Proof. This follows from Proposition 2.6 since Lf (i) = 0 for each unlabeled instance i.

Since the harmonic loss of f is a constant on the superlevel sets S i (Corollary 3.1), by Theorems
2.7 and 2.8, the variation of f depends solely on the cut value w(S i, S̄i), which indicates that it will
drop slowly when the cut is dense but drastically when the cut is sparse. Also by Corollary 3.2, f is
continuous. Therefore, we conclude that f is a good function on graphs.

This can be illustrated by a toy example in Fig. 1, where the graph consists of 6 points in 2 classes
denoted by different colors, with 3 points in each. The edge weights are all 1 except for the edge
between the two cluster, which is 0.1. Vertices 1 and 6 (black edged) are labeled. The absorption
probabilities from all the vertices to vertex 1 are computed and shown. We can see that since the
cut w(S2, S̄2) = 2 is quite dense, the drop between f(2) and f(3) is upper bounded by a small
number (Theorem 2.7), so f(3) must be very close to f(2), as observed. In contrast, since the cut
w(S3, S̄3) = 0.1 is very weak, Theorem 2.8 guarantees that there will be a huge gap between f(3)
and f(4), as also verified. The bound in Theorem 2.8 is now tight as there is only 1 edge in the cut.

Now let f1 and f2 denote the absorption probability vectors to the two labeled points respectively.
To classify an unlabeled point i, the usual way is to compare f 1(i) and f2(i), which is equivalent to
setting the threshold as 0 in f0 = f1 − f2. It was observed in [16] that although f0 can be extremely
flat in the presence of large unlabeled data in high dimension, setting the “right” threshold can
produce sensible results. Our analysis explains this – it is because both f1 and f2 are informative of
the cluster structures. Our key argument is that Laplacian regularization actually carries sufficient
information about the graph structure, but how to exploit it can really make a difference.
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Figure 2: (a) Two 20-dimensional Gaussians with the first two dimensions plotted. The magenta
triangle and the green circle denote labeled data. The blue cross denotes a starting vertex indexed
by i for later use. (b) Absorption probabilities to the two labeled points. (c) Classification by
comparing the absorption probabilities. (d) Normalized absorption probabilities. (e) Classification
by comparing the normalized absorption probabilities.

We illustrate this point by using a mixture of two 20-dimensional Gaussians of 600 points, with one
label in each Gaussian (Fig. 2(a)). The absorption probabilities to both labeled points are shown in
Fig. 2(b), in magenta and green respectively. The green vector is well above the the magenta vector,
indicating that every unlabeled point has larger absorption probability to the green labeled point.
Comparing them classifies all the unlabeled points to the green Gaussian (Fig. 2(c)). Since the green
labeled point has larger degree than the magenta one 1, this result is expected from the analysis in
[1]. However, the probability vectors are informative, with a clear gap between the clusters in each
vector. To use the information, we propose to normalize each vector by its probability mass, i.e.,
f ′(i) = f(i)/

∑
j f(j) (Fig. 2(d)). Comparing them leads to a perfect classification (Fig. 2(e)).

1The degrees are 1.4405 and 0.1435. We use a weighted 20-NN graph (see Sec. 4).
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This idea is based on two observations from our analysis: 1) the variance of the probabilities within
each cluster is small; 2) there is a gap between the clusters. The small variance indicates that
comparing the probabilities is essentially the same as comparing their means within clusters. The
gap between the clusters ensures that the normalization makes the vectors align well. Lemma 3.3
makes this point precise. Our above analysis applies to multi-class problems and allows more than
one labeled points in one class. In this general case, the classification rule is as follows: 1) compute
the absorption probability vector f i : U → R for each labeled point i by taking all other labeled
points as negative, where U denotes the set of unlabeled points; 2) normalize f i by its mass, denoted
by f ′

i ; 3) assign each unlabeled point j to the class of j ∗ := argmaxi{f ′
i(j)}. We denote this

algorithm as ARW-N-1NN.

Lemma 3.3. Let f1 : V → R, f2 : V → R be non-negative, and let f ′
1 : V → R, f ′

2 : V → R,
where f ′

1(i) = f1(i)/
∑

j f1(j), f
′
2(i) = f2(i)/

∑
j f2(j). Suppose {C1, C2} is a 2-partitioning of

V , i.e., C1 ∪ C2 = V , C1 ∩ C2 = ∅, and denote u1 = 1
|C1|

∑
i∈C1

f1(i), v1 = 1
|C2|

∑
i∈C2

f1(i),

u2 = 1
|C1|

∑
i∈C1

f2(i), v2 = 1
|C2|

∑
i∈C2

f2(i), u′
1 = 1

|C1|
∑

i∈C1
f ′
1(i), v

′
1 = 1

|C2|
∑

i∈C2
f ′
1(i),

u′
2 = 1

|C1|
∑

i∈C1
f ′
2(i), v

′
2 = 1

|C2|
∑

i∈C2
f ′
2(i). If u1 > v1 and u2 < v2, then u′

1 > u′
2 and

v′1 < v′2.

Proof. Note that we have u′
1 > v′1 and u′

2 < v′2 since u1 > v1 and u2 < v2. Assume, to the contrary,
that u′

1 ≤ u′
2. Then v′2 > u′

2 ≥ u′
1 > v′1. Thus 1 = u′

1|C1| + v′1|C2| < u′
2|C1| + v′2|C2| = 1,

implying that the assumption is not correct. So we have u ′
1 > u′

2. The case for v′1 < v′2 can be
shown similarly.

3.2 Partially Absorbing Random Walks

Here we revisit the recently proposed partially absorbing random walks (PARW) [ 24], which gener-
alizes absorbing random walks by allowing partial absorption at each state. The absorption rate p ii

at state i is defined as pii = αλi

αλi+di
, where α > 0, λi > 0 are regularization parameters. Given cur-

rent state i, a PARW in the next step will get absorbed at i with probability p ii and with probability
(1 − pii) × wij

di
moves to state j. Let aij be the probability that a PARW starting from state i gets

absorbed at state j within finite steps, and denote by A = [a ij ] ∈ R
n×n the absorption probability

matrix. Then A = (αΛ + L)−1αΛ, where Λ = diag(λ1, . . . , λn) is the regularization matrix.

PARW is a unified framework with several popular SSL methods and PageRank [ 17] as its special
cases, corresponding to different Λ. Particularly, the case Λ = I has been justified in capturing the
cluster structures [24]. In what follows, we extend this result to show that the columns of A obtained
by PARW with almost arbitrary Λ (not just Λ = I) actually exhibit strong harmonic structures and
should be expected to work equally well.

Our first observation is that while A is not symmetric for arbitrary Λ, AΛ−1 = (αΛ + L)−1α is.

Lemma 3.4. aij =
λj

λi
aji.

Proof. AΛ−1 = (αΛ + L)−1α is symmetric. So aij

λj
= (AΛ−1)ij = (AΛ−1)ji =

aji

λi
.

Lemma 3.5. aii is the only largest entry in the i-th column of A, i = 1, . . . , n.

Proof. Since Q = (qij) := AΛ−1 = (αΛ + L)−1α is symmetric and each column of A is the
corresponding column in Q multiplied by a positive scale, it suffices to prove that q ii is the largest
in the row i of Q.

Note that B = (bij) := αΛ + D − W is symmetric and strictly diagonally dominant, i.e., bkk >∑
� �=k |bk�| for any k. Assume, to the contrary, there exists i, j, i �= j, such that q ii ≤ qij . Denote

k = argmax� �=i qi�. Note that Q > 0 since A > 0. Then by BQ = αI , we have 0 = B(k, :)Q(:
, i) =

∑
� bk�q�i = bkkqki +

∑
� �=k bk�q�i ≥ bkkqki −

∑
� �=k |bk�|qki = (bkk −

∑
� �=k |bk�|)qki > 0.

This contradicts the assumption, and thus completes the proof.

Our second observation is that the harmonic structure exists in the probabilities of PARW from every
vertex getting absorbed at a particular vertex, i.e., in the columns of A. W.l.o.g., consider the first
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column of A and denote it by p. Assume that the vertices are sorted such that p(1) > p(2) ≥ · · · ≥
p(n− 1) ≥ p(n), where p(1) > p(2) is due to Lemma 3.5. By the first step analysis of PARW, we
can write p in a recursive form:

p(1) =
αλ1

d1 + αλ1
+

∑
k∼1

w1k

d1 + αλ1
p(k), p(i) =

∑
k∼i

wik

di + αλi
p(k), i = 2, . . . , n, (6)

which is equivalent to the following harmonic form:

p(1) =
αλ1

d1
(1− p(1)) +

∑
k∼1

w1k

d1
p(k), p(i) = −αλi

di
p(i) +

∑
k∼i

wik

di
p(k), i = 2, . . . , n. (7)

The harmonic loss of p can be computed from Eq. ( 7).

Corollary 3.6. Lp(Si) = αλ1(1−
∑

k∈Si
a1k) = αλ1

∑
k∈S̄i

a1k, i = 1, . . . , n− 1.

Proof. By Definition 2.1 and Eq. (7), we have

Lp(Si) =

i∑
k=1

Lp(k) = αλ1(1 − p(1))−
i∑

k=2

αλkp(k)

= αλ1 − αλ1a11 −
i∑

k=2

αλkak1 = αλ1 − αλ1a11 −
i∑

k=2

αλ1a1k = αλ1

∑
k∈S̄i

a1k,

where we have used Lemma 3.4 and the fact that
∑

k a1k = 1.

Corollary 3.7. p is left-continuous.

Proof. This follows from Lp(i) = −αλip(i) < 0.

Now we are ready to examine the variation of p. Note that
∑

k a1k = 1 and a1k → λk/
∑

i λi

as α → 0 [24]. By Theorem 2.7, the drop of p(i) is upper bounded by αλ1/w(Si, S̄i), which is
small when the cut w(Si, S̄i) is dense and α is small. Now let k be the largest number such that
d(Sk) ≤ 1

2d(V), and assume
∑

i∈S̄k
λi ≥ 1

2

∑
i λi. By Theorem 2.8, for 1 ≤ i ≤ k, the drop of p(i)

across the cut {Si, S̄i} is lower bounded by 1
3αλ1/w(Si, S̄i), if α is sufficiently small. This shows

that p(i) will drop a lot when the cut w(Si, S̄i) is weak. The comparison between the corresponding
row and column of A is shown in Figs. 3(a–b)2, which confirms our analysis.

It is worth mentioning that our analysis substantially extends the results in [ 24] by showing that the
setting of Λ is not really necessary – a random Λ can perform equally well using the columns instead
of the rows of A. In addition, our result includes the seminal local clustering model [ 2] as a special
case, which corresponds to Λ = D in our analysis.

3.3 Pseudo-inverse of the Graph Laplacian

The pseudo-inverse L† of the graph Laplacian is a valid kernel corresponding to commute times
[10, 12]. While commute times may fail to capture the global topology in large graphs [ 22], L†, if
used directly as a similarity measure, gives superior performance in practice [ 10]. Here we provide
a formal analysis and justification for L† by revealing the strong harmonic structure hidden in it.

Lemma 3.8. (L†L)ij = − 1
n , i �= j; and (L†L)ii = 1− 1

n .

Proof. Denote by L = UΛU� the eigen-decomposition of L. ThenL†L = UΛ†ΛU� = I− 1
n11

�,
where we have used the fact that 1/

√
n is the eigenvector of L associated with eigenvalue zero.

Note that L† is symmetric since L is symmetric. W.l.o.g., we consider the first row of L † and denote
it by �. The following lemma shows the harmonic form of �.

2λi’s are sampled from the uniform distribution on the interval [0, 1] and α = 1e− 6, as used in Sec. 4.
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Figure 3: (a) Absorption probabilities that a PAWR gets absorbed at other points when starting from
i (see Fig. 2). (b) Absorption probabilities that PAWR gets absorbed at i when starting from other
points. (c) The i-th row of L†. (d) Hitting times from i to hit other points. (e) Hitting times from
other points to hit i. (f) and (g) Eigenvectors of L (min i{di} = 0.0173). (h) An eigenvector of
Lsym. (i) and (j) Eigenvectors of Lrw. The values in (f–j) denote eigenvalues.

Lemma 3.9. � has the following harmonic form:

�(1) =
1− 1

n

d1
+

∑
k∼1

w1k

d1
�(k), �(i) = −

1
n

di
+
∑
k∼i

wik

di
�(k), i = 2, . . . , n. (8)

Proof. By Lemma 3.8, we have

1− 1

n
= (L†L)11 = L†(1, :)L(:, 1) =

∑
k

�(k)L(k, 1) = �(1)d1 −
∑
k∼1

�(k)wk1, (9)

giving �(1) =
1− 1

n

d1
+
∑

k∼1
w1k

d1
�(k) using symmetry wk1 = w1k .

Similarly, for i > 1, we have

− 1

n
= (L†L)1i = L†(1, :)L(:, i) =

∑
k

�(k)L(k, i) = �(i)di −
∑
k∼i

�(k)wki, (10)

which yields �(i) = − 1
n

di
+
∑

k∼i
wik

di
�(k) using symmetry wki = wik .

W.l.o.g., assume the vertices have been sorted such that �(1) > �(2) ≥ · · · ≥ �(n − 1) ≥ �(n)3.
Then the harmonic loss of � on the set Si admits a very simple form, as shown below.

Corollary 3.10. L�(Si) =
|S̄i|
n , i = 1, . . . , n− 1.

Proof. By Definition 2.1, we have

L�(Si) =

i∑
k=1

dk

⎛
⎝�(k)−

∑
j∼k

wkj

dk
�(j)

⎞
⎠ = d1(

1− 1
n

d1
) +

i∑
k=2

dk(−
1
n

dk
) =

|S̄i|
n

. (11)

Corollary 3.11. � is left-continuous.

Proof. By Lemma 3.9, the harmonic loss for each vertex i = 2, . . . , n is negative (i.e., − 1
n ). Thus �

is left-continuous according to Proposition 2.6.

By Corollary 3.10, L�(Si) < 1 and decreases very slowly in large graphs since L�(Si)−L�(Si+1) =
1
n for any i. From the analysis in Sec. 2, we can immediately conclude that the variation of �(i) is
dominated by the cut cost on the superlevel set S i. Fig. 3(c) illustrates this argument.

3�(1) > �(2) since one can show that any diagonal entry in L† is the only largest in the corresponding row.
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3.4 Hitting Times

The hitting time hij from vertex i to j is the expected number of steps it takes a random walk starting
from i to reach j for the first time. While it was proven in [22] that hitting times are dominated by
the local structure of the target, we show below that the hitting times from other points to the same
target admit a harmonic structure, and thus are still able to capture the global structure of graphs.
Our result is complementary to the analysis in [22], and provides a justification of using hitting times
in information retrieval where the query is taken as the target to be hit by others [ 15].

Let h : V → R be the hitting times from every vertex to a particular vertex. W.l.o.g., assume the
vertices have been sorted such that h(1) ≥ h(2) ≥ · · · ≥ h(n− 1) > h(n) = 0, where vertex n is
the target vertex. Applying the first step analysis, we obtain the harmonic form of h:

h(i) = 1 +
∑
k∼i

wik

di
h(k), for i = 1, . . . , n− 1. (12)

The harmonic loss on the set Si turns out to be the volume of the set, as stated below.

Corollary 3.12. Lh(Si) =
∑

1≤k≤i

dk, i = 1, . . . , n− 1.

Proof. By Definition 2.1, we have

Lh(Si) =

i∑
k=1

dk

⎛
⎝h(k)−

∑
j∼k

wkj

dk
h(j)

⎞
⎠ =

∑
1≤k≤i

dk.

Corollary 3.13. h is right-continuous.

Proof. By Eq. (12), the harmonic loss at each vertex is positive. Thus h is right-continuous accord-
ing to Proposition 2.6.

Now let us examine the variation of h across any cut {S i, S̄i}. Note that

Lh(Si)

w(Si, S̄i)
=

αi

Φ(Si)
, where αi =

d(Si)

min(d(Si), d(S̄i))
. (13)

First, by Theorem 2.8, there could be a significant gap between the target and its neighbors, since
αn−1 = d(V)

dn
− 1 could be quite large. As i decreases from d(Si) > 1

2d(V), the variation of αi

becomes slower and slower (αi = 1 when d(Si) ≤ 1
2d(V)), so the variation of h will depend on the

variation of the conductance of Si, i.e., Φ(Si), according to Theorems 2.7 and 2.8. Fig. 3(e) shows
that h is flat within the clusters, but there is a large gap presented between them. In contrast, there
are no gaps exhibited in the hitting times from the target to other vertices (Fig. 3(d)).

3.5 Eigenvectors of the Laplacian Matrices

The eigenvectors of the Laplacian matrices play a key role in graph partitioning [ 20]. In practice, the
eigenvectors with smaller (positive) eigenvalues are more desired than those with larger eigenvalues,
and the ones from a normalized Laplacian are preferred than those from the un-normalized one.
These choices are usually justified from the relaxation of the normalized cuts [ 18] and ratio cuts
[11]. However, it has been known that these relaxations can be arbitrarily loose [ 20]. It seems more
interesting if one can draw conclusions by analyzing the eigenvectors directly. Here we address
these issues by examining the harmonic structures in these eigenvectors.

We follow the notations in [20] to denote two normalized graph Laplacians: Lrw := D−1L and
Lsym := D− 1

2LD− 1
2 . Denote by u and v two eigenvectors of L and Lrw with eigenvalues λu > 0

and λv > 0, respectively, i.e., Lu = λuu and Lrwv = λvv. Then we have

u(i) =
∑
k∼i

wik

di − λu
u(k), v(i) =

∑
k∼i

wik

di(1− λv)
v(k), for i = 1, . . . , n. (14)
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We can see that the smaller λu and λv , the stronger the harmonic structures of u and v. This explains
why in practice the eigenvector with the second4 smallest eigenvalues gives superior performance.
As long as λu � mini{di}, we are safe to say that u will have a significant harmonic structure, and
thus will be informative for clustering. However, if λu is close to mini{di}, no matter how small λu

is, the harmonic structure of u will be weaker, and thus u is less useful. In contrast, from Eq. ( 14),
v will always enjoy a significant harmonic structure as long as λv is much smaller than 1. This
explains why eigenvectors of Lrw are preferred than those of L for clustering. These arguments are
validated in Figs. 3(f–j), where we also include an eigenvector of L sym for comparison.

4 Experiments

In the first experiment, we test absorbing random walks (ARW) for SSL, with the class mass nor-
malization suggested in [27] (ARW-CMN), our proposed normalization (ARW-N-1NN, Sec. 3.1),
and without any normalization (ARW-1NN) – where each unlabeled instance is assigned the class
of the labeled instance at which it most likely gets absorbed. We also compare with the local and
global consistency (LGC) method [25] and the PARW with Λ = I in [24], where the regulariza-
tion parameters are set as 0.9 and 1e − 6, respectively. We use 9 real data sets for this experiment,
including USPS, YaleB, and 7 frequently used UCI datasets, as summarized in Table 1.

We construct a weighted 20-NN graph for each data set, except for the YaleB, imageseg, and iris
data sets, where we build 50-NN, 50-NN, and 25-NN graphs respectively to ensure the graphs are
connected. The similarity between vertices i and j is computed as w ij = exp(−d2ij/σ) if i is within
j’s k nearest neighbors or vice versa, and wij = 0 otherwise, where σ = 0.2 × r with r as the
average square distance between each point to its 20th nearest neighbor. For USPS and YaleB, we
randomly sample 20 instances as labeled data; while for others, we randomly sample 10 instances.
The sampling process makes sure at least one label is sampled for each class. Each classification
accuracy is averaged over 100 trials.

The results are summarized in Table 2. We can see that ARW-N-1NN and PARW (Λ = I) con-
sistently perform the best, which verifies our analysis in Sec. 3. The results of ARW-1NN are
unsatisfactory due to its bias to the labeled instance with the largest degree [ 1]. While ARW-CMN
does improve over ARW-1NN in many cases, it does not perform as well as ARW-N-1NN, mainly
because of the artifacts induced by estimating the class proportion from limited labeled data. The
results of LGC are not comparable to ARW-N-1NN and PARW (Λ = I), which is probably due to
the lack of a harmonic structure5.

Table 1: The 9 datasets tested in the experiments.
USPS YaleB satimage imageseg ionosphere iris protein spiral soybean

# examples 9298 5760 6435 2310 351 150 116 100 47
# classes 10 10 6 7 2 3 6 2 4

# dimensions 256 1200 36 19 34 4 20 3 35

Table 2: Classification accuracy on 9 datasets.
USPS YaleB satimage imageseg ionosphere iris protein spiral soybean

ARW-N-1NN .879 .892 .777 .673 .771 .918 .589 .830 .916
ARW-1NN .445 .733 .650 .595 .699 .902 .440 .754 .889
ARW-CMN .775 .847 .741 .624 .724 .894 .511 .726 .856

LGC .821 .884 .725 .638 .731 .903 .477 .729 .816
PARW (Λ = I) .880 .906 .781 .665 .752 .928 .572 .835 .905

In the second experiment, we test PARW on a retrieval task on the whole USPS dataset (Table 1).
We compare the cases with Λ = I and Λ = R, where R is a random diagonal matrix with positive
diagonal entries sampled from the uniform distribution on the interval [0, 1]. For Λ = R, we also
compare the uses of columns and rows for retrieval. Following [ 24], we set α = 1e − 6, use each
instance in USPS as a query for the entire dataset, and report the mean average precision (MAP).
The graph construction is the same as in the first experiment.

4Note that the smallest one is zero in either L or Lrw.
5Our arguments are still valid for other values of the regularization parameter for LGC.
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The results are shown in Table 3. We observe that the columns in Λ = R gives significantly better
results compared with rows, implying that the harmonic structure is vital to the performance. Λ = R
(column) and Λ = I perform very similarly. This suggests that it is not the special setting of
absorbing rates but the harmonic structure that dominates the overall performance.

Table 3: Ranking results (MAP) on USPS.
Digits 0 1 2 3 4 5 6 7 8 9 All

Λ = R (column) .981 .988 .875 .892 .647 .780 .941 .918 .746 .731 .850
Λ = R (row) .169 .143 .114 .096 .092 .076 .093 .093 .075 .086 .103

Λ = I .981 .988 .876 .893 .646 .778 .940 .919 .746 .730 .850

In the third experiment, we test hitting times and pseudo-inverse of graph Laplacian for SSL on
the whole USPS dataset (Table 1). We compare two different uses of hitting times, the case of
starting from the labeled data L to hit the unlabeled data U (HT(L → U)), and the case of the
opposite direction (HT(U → L)). Each unlabeled instance j is assign to the class of labeled instance
j∗, where j∗ = argmini∈L{hij} in HT(L → U), j∗ = argmini∈L{hji} in (HT(U → L)), and
j∗ = argmaxi∈L{�ji} in L† = (�ij). Following [20], we use undirected and unweighted graphs for
this experiment. We vary the number of neighbors k from 10 to 500, where there is an edge between
points i and j if i is within j’s k nearest neighbors or vice versa. The labeled data are selected as in
the first experiment.

The results averaged over 100 trials are shown in Table 4, where we see that HT(L → U) performs
much better than HT(U → L), which is expected as the former admits a desired harmonic structure.
Note that HT(L → U) is not lost as the number of neighbors increases (i.e., the graph becomes
more connected). The slight performance drop is due to the inclusion of more noisy edges. In
contrast, HT(U → L) is completely lost [20]. We also observe that L† produces very competitive
performance, which again supports our analysis.

Table 4: Classification accuracy on USPS.
k-NN unweighted graphs 10 20 50 100 200 500

HT(L → U) .8514 .8361 .7822 .7500 .7071 .6429
HT(U → L) .1518 .1454 .1372 .1209 .1131 .1113

L† .8512 .8359 .7816 .7493 .7062 .6426

5 Conclusion

In this paper, we explore the harmonic structure that widely exists in graph models. Different
from previous research [3, 13] of harmonic analysis on graphs, where the selection of canonical
basis on graphs and the asymptotic convergence on manifolds are studied, here we examine how
functions on graphs deviate from being harmonic and develop bounds to analyze their theoretical
behavior. The proposed harmonic loss quantifies the discrepancy of a function across cuts, allows a
unified treatment of various models from different contexts, and makes them easy to analyze. Due
to its resemblance with standard mathematical concepts such as divergence and total variation, an
interesting line of future work is to make their connections clear. Other future works include deriving
more rigorous bounds for certain functions and extending our analysis to more graph models.
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