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Abstract

Markov Decision Processes (MDPs) are extremely useful for modeling and solv-
ing sequential decision making problems. Graph-based MDPs provide a compact
representation for MDPs with large numbers of random variables. However, the
complexity of exactly solving a graph-based MDP usually grows exponentially in
the number of variables, which limits their application. We present a new varia-
tional framework to describe and solve the planning problem of MDPs, and derive
both exact and approximate planning algorithms. In particular, by exploiting the
graph structure of graph-based MDPs, we propose a factored variational value iter-
ation algorithm in which the value function is first approximated by the multiplica-
tion of local-scope value functions, then solved by minimizing a Kullback-Leibler
(KL) divergence. The KL divergence is optimized using the belief propagation
algorithm, with complexity exponential in only the cluster size of the graph. Ex-
perimental comparison on different models shows that our algorithm outperforms
existing approximation algorithms at finding good policies.

1 Introduction
Markov Decision Processes (MDPs) have been widely used to model and solve sequential decision
making problems under uncertainty, in fields including artificial intelligence, control, finance and
management (Puterman, 2009, Barber, 2011). However, standard MDPs are described by explicitly
enumerating all possible states of variables, and are thus not well suited to solve large problems.
Graph-based MDPs (Guestrin et al., 2003, Forsell and Sabbadin, 2006) provide a compact repre-
sentation for large and structured MDPs, where the transition model is explicitly represented by a
dynamic Bayesian network. In graph-based MDPs, the state is described by a collection of random
variables, and the transition and reward functions are represented by a set of smaller (local-scope)
functions. This is particularly useful for spatial systems or networks with many “local” decisions,
each affecting small sub-systems that are coupled together and interdependent (Nath and Domingos,
2010, Sabbadin et al., 2012).

The graph-based MDP representation gives a compact way to describe a structured MDP, but the
complexity of exactly solving such MDPs typically still grows exponentially in the number of state
variables. Consequently, graph-based MDPs are often approximately solved by enforcing context-
specific independence or function-specific independence constraints (Sigaud et al., 2010). To take
advantage of context-specific independence, a graph-based MDP can be represented using decision
trees or algebraic decision diagrams (Bahar et al., 1993), and then solved by applying structured
value iteration (Hoey et al., 1999) or structured policy iteration (Boutilier et al., 2000). However,
in the worst case, the size of the diagram still increases exponentially with the number of variables.
Alternatively, methods based on function-specific independence approximate the value function by
a linear combination of basis functions (Koller and Parr, 2000, Guestrin et al., 2003). Exploit-
ing function-specific independence, a graph-based MDP can be solved using approximate linear
programming (Guestrin et al., 2003, 2001, Forsell and Sabbadin, 2006), approximate policy itera-
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tion (Sabbadin et al., 2012, Peyrard and Sabbadin, 2006) and approximate value iteration (Guestrin
et al., 2003). Among these, the approximate linear programming algorithm in Guestrin et al. (2003,
2001) has an exponential number of constraints (in the treewidth), and thus cannot be applied to
general MDPs with many variables. The approximate policy iteration algorithm in Sabbadin et al.
(2012), Peyrard and Sabbadin (2006) exploits a mean field approximation to compute and update
the local policies; unfortunately this can give loose approximations.

In this paper, we propose a variational framework for the MDP planning problem. This framework
provides a new perspective to describe and solve graph-based MDPs where both the state and deci-
sion spaces are structured. We first derive a variational value iteration algorithm as an exact planning
algorithm, which is equivalent to the classical value iteration algorithm. We then design an approx-
imate version of this algorithm by taking advantage of the factored representation of the reward and
transition functions, and propose a factored variational value iteration algorithm. This algorithm
treats the value function as a unnormalized distribution and approximates it using a product of local-
scope value functions. At each step, this algorithm computes the value function by minimizing a
Kullback-Leibler divergence, which can be done using a belief propagation algorithm for influence
diagram problems (Liu and Ihler, 2012) . In comparison with the approximate linear programming
algorithm (Guestrin et al., 2003) and the approximate policy iteration algorithm (Sabbadin et al.,
2012) on various graph-based MDPs, we show that our factored variational value iteration algo-
rithm generates better policies.

The remainder of this paper is organized as follows. The background and some notation for graph-
based MDPs are introduced in Section 2. Section 3 describes a variational view of planning for finite
horizon MDPs, followed by a framework for infinite MDPs in Section 4. In Section 5, we derive
an approximate algorithm for solving infinite MDPs based on the variational perspective. We show
experiments to demonstrate the effectiveness of our algorithm in Section 6.

2 Markov Decision Processes and Graph-based MDPs
2.1 Markov Decision Processes
A Markov Decision Process (MDP) is a discrete time stochastic control process, where the system
chooses the decisions at each step to maximize the overall reward. An MDP can be characterized
by a four tuple (X ,D, R, T ), where X represents the set of all possible states; D is the set of all
possible decisions; R : X × D → R is the reward function of the system, and R (x,d) is the
reward of the system after choosing decision d in state x; T : X ×D × X → [0, 1] is the transition
function, and T (y|x,d) is the probability that the system arrives at state y, given that it starts from
x upon executing decision d. A policy of the system is a mapping from the states to the decisions
π (x) : X → D so that π (x) tells the decision chosen by the system in state x. The graphical
representation of an MDP is shown in Figure 1(a).

We consider the case of an MDP with infinite horizon, in which the future rewards are discounted
exponentially with a discount factor γ ∈ [0, 1]. The task of the MDP is to choose the best stationary
policy π∗ (x) that maximizes the expected discounted reward on the infinite horizon. The value
function v∗ (x) of the best policy π∗ (x) then satisfies the following Bellman equation:

v∗ (x) = max
π(x)

∑
y∈X

T (y|x, π (x)) (R (x, π (x)) + γv∗ (y)), (1)

where v∗ (x) = v∗ (y) ,∀x = y. The Bellman equation can be solved using stochastic dynamic
programming algorithms such as value iteration and policy iteration, or linear programming algo-
rithms (Puterman, 2009).

2.2 Graph-based MDPs
We assume that the full state x can be represented as a collection of state variables xi, so that X
is a Cartesian product of the domains of the xi: X = X1 × X2 × · · · × XN , and similarly for d:
D = D1 ×D2 × · · · × DN . We consider the following particular factored form for MDPs: for each
variable i, there exist neighborhood sets Γi (including i) such that the value of xt+1

i depends only
on the variable i’s neighborhood, xt [Γi], and the ith decision dti. Then, we can write the transition
function in a factored form:

T (y|x,d) =

N∏
i=1

Ti (yi|x[Γi], di), (2)
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Figure 1: (a) A Markov decision process; (b) A graph-based Markov decision process.

where each factor is a local-scope function Ti : X [Γi]×Di×Xi → [0, 1] ,∀i ∈ {1, 2, . . . , N} . We
also assume that the reward function is the sum of N local-scope rewards:

R (x,d) =

N∑
i=1

Ri (xi, di), (3)

with local-scope functions Ri : Xi ×Di → R,∀i ∈ {1, 2, . . . , N}.
To summarize, a graph-based Markov decision process is characterized by the following parameters:
({Xi : 1 ≤ i ≤ N} ; {Di : 1 ≤ i ≤ N} ; {Ri : 1 ≤ i ≤ N} ; {Γi : 1 ≤ i ≤ N} ; {Ti : 1 ≤ i ≤ N}) .
Figure 1(b) gives an example of a graph-based MDP. These assumptions for graph-based MDPs can
be easily generalized, for example to include Ti and Ri that depend on arbitrary sets of variables
and decisions, using some additional notation.

The optimal policy π (x) cannot be explicitly represented for large graph-based MDPs, since the
number of states grows exponentially with the number of variables. To reduce complexity, we con-
sider a particular class of local policies: a policy π (x) : X → D is said to be local if decision di is
made using only the neighborhood Γi, so that π (x) = (π1 (x [Γ1]) , π2 (x [Γ2]) , . . . , πN (x [ΓN ]))
where πi (x [Γi]) : X [Γi]→ Di. The main advantage of local policies is that they can be concisely
expressed when the neighborhood sizes |Γi| are small.

3 Variational Planning for Finite Horizon MDPs
In this section, we introduce a variational planning viewpoint of finite MDPs. A finite MDP can
be viewed as an influence diagram; we can then directly relate planning to the variational decision-
making framework of Liu and Ihler (2012).

Influence diagrams (Shachter, 2007) make use of Bayesian networks to represent structured decision
problems under uncertainty. The shaded part in Figure 1(a) shows a simple example influence
diagram, with random variables {x,y}, decision variable d and reward functions {R (x,d) , v (y)}.
The goal is then to choose a policy that maximizes the expected reward.

The best policy πt (x) for a finite MDP can be computed using backward induction (Barber, 2011):

vt−1 (x) = max
π(x)

∑
y∈X

T (y|x, π (x))
(
R (x, π (x)) + γvt (y)

)
, (4)

Let pt (x,y,d) = T (y|x, π (x)) (R (x, π (x)) + γvt (y)) be an augmented distribution (see, e.g.,
Liu and Ihler (2012)). Applying a variational framework for influence diagrams (Liu and Ihler,
2012, Theorem 3.1), the optimal policy can be equivalently solved from the dual form of Eq. (4):

Φ
(
θt
)

= max
τ∈M

{〈
θ∆;t, τ

〉
+H (x,y,d; τ )−H (d|x; τ )

}
, (5)

where θ∆;t (x,y,d) = log pt (x,y,d) = log T (y|x,d) + log (R (x,d) + γvt (y)), and τ is a
vector of moments in the marginal polytope M (Wainwright and Jordan, 2008). In a mild abuse
of notation, we will use τ to refer both to the vector of moments and to the maximum entropy
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distribution τ (x,y,d) consistent with those moments; H(·; τ ) refers to the entropy or conditional
entropy of this distribution. See also Wainwright and Jordan (2008), Liu and Ihler (2012) for details.

Let τ t (x,y,d) be the optimal solution of Eq. (5); then from Liu and Ihler (2012), the optimal policy
πt (x) is simply arg maxd τ t (d|x). Moreover, the optimal value function vt−1 (x) can be obtained
from Eq. (5). This result is summarized in the following lemma.

Lemma 1. For finite MDPs with non-stationary policy, the best policy πt (x) and the value function
vt−1 (x) can be obtained by solving Eq. (5). Let τ t (x,y,d) be the optimal solution of Eq. (5).

(a) The optimal policy can be obtained from τ t (x,y,d), as πt (x) = arg maxd τ t (d|x).

(b) The value function w.r.t. πt (x) can be obtained as vt−1 (x) = exp (Φ (θt)) τ t (x).

Proof. (a) follows directly from Theorem 3.1 of Liu and Ihler (2012). (b) Note that
T (y|x, πt (x)) (R (x, πt (x)) + γvt (y)) = exp (Φ (θt)) τ t (x,y,d). Making use of Eq. (4),
summing over y and maximizing over d on exp (Φ (θt)) τ t (x,y,d), we obtain vt−1 (x) =
exp (Φ (θt)) τ t (x).

4 Variational Planning for Infinite Horizon MDPs

Given the variational form of finite MDPs, we now construct a variational framework for infinite
MDPs. Compared to the primal form (i.e., Eq. (4)) of finite MDPs, the Bellman equation of an
infinite MDP, Eq. (1), has the additional constraint that vt−1 (x) = vt (y) when x = y. For an
infinite MDP, we can simply consider a two-stage finite MDP with the variational form in Eq. (5),
but with this additional constraint. The main result is given by the following theorem.

Theorem 2. Assume τ and Φ are the solution of the following optimization problem,

max
τ∈M,Φ∈R

Φ, subject to Φ =
〈
θ∆, τ

〉
+H (x,y,d; τ )−H (d|x; τ ), (6)

θ∆ = log T (y|x,d) + log (R (x,d) + γ exp (Φ) τx (y)) , (7)

where τx denotes the marginal distribution on x. With τ ∗ being the optimal solution, we have

(a) The optimal policy of the infinite MDP can be decoded as π∗ (x) = arg maxd τ ∗ (d|x).

(b) The value function w.r.t. π∗ (x) is v∗ (x) = exp (Φ) τ ∗ (x).

Proof. The Bellman equation is equivalent to the backward induction in Eq. (4), subject to an extra
constraint that vt = vt−1. The result follows by replacing Eq. (4) with its variational dual (5).

Like the Bellman equation (4), its dual form (6) also has no closed-form solution. Analogously to the
value iteration algorithm for the Bellman equation, Eq. (6) can be solved by alternately fixing τx (x),
Φ in θ∆ and solving Eq. (6) with only the first constraint using some convex optimization technique.
However, each step of solving for τ and Φ is equivalent to one step of value iteration; if τ (x,y,d) is
represented explicitly, it seems to offer no advantage over simply applying the elimination operators
as in (4). The usefulness of this form is mainly in opening the door to design new approximations.

5 Approximate Variational Algorithms for Graph-based MDPs

The framework in the previous section gives a new perspective on the MDP planning problem, but
does not by itself simplify the problem or provide new solution methods. For graph-based MDPs,
the sizes of the full state and decision spaces are exponential in the number of variables. Thus, the
complexity of exact algorithms is exponentially large. In this section, we present an approximate
algorithm for solving Eq. (6), by exploiting the factorization structure of the transition function (2),
the reward function (3) and the value function v (x).

Standard variational approximations take advantage of the multiplicative factorization of a dis-
tribution to define their approximations. While our (unnormalized) distribution p (x,y,d) =
exp[θ∆(x,y,d)] is structured, some of its important structure comes from additive factors, such
as the local-scope reward functions Ri (xi, di) in Eq. (3), and the discounted value function γv (x)
in Eq. (1). Computing the sum of these additive factors directly would create a large factor over an
unmanageably large variable domain, and destroy most of the useful structure of p (x,y,d).
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To avoid this effect, we convert the presence of additive factors into multiplicative factors by aug-
menting the model with a latent “selector” variable, which is similar to that used for the “complete
likelihood” in mixture models (Liu and Ihler, 2012). For example, consider the sum of two factors:

f(x) = f12 (x1, x2) + f23 (x2, x3) =
∑

a∈{0,1}

(f12)a · (f23)(1−a) =
∑

a∈{0,1}

f̄12(a, x1, x2) · f̄23(a, x2, x3).

Introducing the auxilliary variable a converts f into a product of factors, where marginalizing over
a yields the original function f .

Using this augmenting approach, the additive elements of the graph-based MDP are converted to
multiplicative factors, that is Ri (xi, di) → R̃i (xi, di, a), and γv (x) → ṽγ (x, a). In this way, the
parameter θ∆ of a graph-based MDP can be represented as

θ∆ (x,y,d, a) =

N∑
i=1

log Ti (yi|x[Γi], di) +

N∑
i=1

log R̃i (xi, di, a) + log ṽγ (y, a) .

Now, p (x,y,d, a) = exp[θ∆ (x,y,d, a)] has a representation in terms of a product of factors. Let

θ (x,y,d, a) =

N∑
i=1

log Ti (yi|x[Γi], di) +

N∑
i=1

log R̃i (xi, di, a).

Before designing the algorithms, we first construct a cluster graph (G; C;S) for the distribution
exp[θ (x,y,d, a)], where C denotes the set of clusters and S is the set of separators. (See Liu and
Ihler (2012, 2011), Wainwright and Jordan (2008) for more details on cluster graphs.) We assign
each decision node di to one cluster that contains di and its parents pa(i); clusters so assigned are
called decision clusters A, while other clusters are called normal clustersR, so that C = {R,A}.
Using the structure of the cluster graph, θ can be decomposed into

θ (x,y,d, a) =
∑
k∈C

θck (xck ,yck ,dck , a), (8)

and the distribution τ is approximated as

τ (x,y,d, a) =

∏
k∈C τck (zck)∏

(kl)∈S τskl
(zskl

)
, (9)

where zck = {xck ,yck ,dck , a}. Therefore, instead of optimizing the full distribution τ , we can
optimize the collection of marginal distributions τ = {τck , τsk}, with far lower computational cost.
These marginals should belong to the local consistency polytope L, which enforces that marginals
are consistent on their overlapping sets of variables (Wainwright and Jordan, 2008).

We now construct a reduced cluster graph over x from the full cluster graph, to serve as the approx-
imating structure of the marginal τ (x). We assume a factored representation for τ (x):

τ (x) =

∏
k∈C τck (xck)∏

(kl)∈S τskl
(xskl

)
, (10)

where the τck(xck) is the marginal distribution of τck(zck) on xck . Note that Eq. (10) also dictates a
factored approximation of the value function v (x), because v (x) ≈ exp (Φ) τ (x). Assume vγ (x)
factors into vγ (x) =

∏
k vck(xck). Then, the constraint (7) reduces to a set of simpler constraints

on the cliques of the cluster graph,

θ∆
ck

(xck ,yck ,dck , a) = θck (xck ,yck ,dck , a) + log vck,x (yck , a) , k ∈ C. (11)

Correspondingly, the constraint (6) can be approximated by

Φ =
∑
k∈C

〈θ∆
ck
, τck〉+

∑
k∈R

Hck +
∑
k∈D

H ′ck −
∑

(kl)∈S

Hskl
, (12)

where Hck
is the entropy of variables in cluster ck, Hck = H (xck ,yck ,dck , a; τ ) and H ′ck =

H (xck ,yck ,dck , a; τ )−H (dck |xck ; τ ). With these approximations, we solve the optimization in
Theorem 2 using “mixed” belief propagation (Liu and Ihler, 2012) for fixed {θ∆

ck
}; we then update

{θ∆
ck
} using the fixed point condition (11). This gives the double loop algorithm in Algorithm 1.
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Algorithm 1 Factored Variational Value Iteration Algorithm
Input: A graph-based MDP with ({Xi} ; {Di} ; {Ri} ; {Γi} ; {Ti}), the cluster graph (G; C;S), and

the initial
{
τ t=0
ck

(xck) ,∀ck ∈ C
}

.
Iterate until convergence (for both the outer loop and the inner loop).

1: Outer loop: Update θ∆;t
ck

using Eq. (11).
2: Inner loop: Maximize the right side of Eq. (12) with fixed θ∆;t

ck
and compute τ t+1

ck
(xck)

using the belief propagation algorithm proposed in Liu and Ihler (2012):

mk→l(zck) ∝ ψskl
(zskl

)
∑

zck\skl

σ
[
ψck(zck)m∼k(zck)

]
ml→k(zck)

,

where ψck(zck) = exp[θ∆
ck

(zck)], and σ[τck(zck)] =

{
τck(zck) ck ∈ R
τck(zck)τck(dck |xck) ck ∈ A,

with τck(zck) = ψck(zck)m∼k(zck) and τck(xck) = max
dck

∑
yck

,a

τck(zck)

Output: The local policies {τ (di|x (Γi))}, and the value function v̂ (x) = exp (Φ) τ (x).

6 Experiments
We perform experiments in two domains, disease management in crop fields and viral marketing, to
evaluate the performance of our factored variational value iteration algorithm (FVI). For comparison,
we use approximate policy iteration algorithm (API) (Sabbadin et al., 2012), (a mean-field based pol-
icy iteration approach), and the approximate linear programming algorithm (ALP) (Guestrin et al.,
2001). To evaluate each algorithm’s performance, we obtain its approximate local policy, then com-
pute the expected value of the policy using either exact evaluation (if feasible) or a sample-based
estimate (if not). We then compare the expected reward Ualg (x) = 1

|X |
∑

x v
alg (x) of each algo-

rithm’s policy.
6.1 Disease Management in Crop Fields
A graph-based MDP for disease management in crop fields was introduced in (Sabbadin et al.,
2012). Suppose we have a set of crop fields in an agricultural area, where each field is susceptible to
contamination by a pathogen. When a field is contaminated, it can infect its neighbors and the yield
will decrease. However, if a field is left fallow, it has a probability (denoted by q) of recovering from
infection. The decisions of each year include two options (Di = {1, 2}) for each field: cultivate
normally (di = 1) or leave fallow (di = 2). The problem is then to choose the optimal stationary
policy to maximize the expected discounted yield. The topology of the fields is represented by an
undirected graph, where each node represents one crop field. An edge is drawn between two nodes
if the fields share a common border (and can thus pass an infection). Each crop field can be in
one of three states: xi = 1 if it is uninfected and xi = 2 to xi = 3 for increasing degrees of
infection. The probability that a field moves from state xi to state xi + 1 with di = 1 is set to be
P = P (ε, p, ni) = ε+ (1− ε) (1− (1− p)ni), where ε and p are parameters and ni is the number
of the neighbors of i that are infected. The transition function is summarized in Table 1. The reward
function depends on each field’s state and local decision. The maximal yield r > 1 is achieved by an
uninfected, cultivated field; otherwise, the yield decreases linearly with the level of infection, from
maximal reward r to minimal reward 1 + r/10. A field left fallow produces reward 1.

Table 1: Local transition probabilities p
(
x′i|xN(i), ai

)
, for the disease management problem.

di = 1 di = 2
xi = 1 xi = 2 xi = 3 xi = 1 xi = 2 xi = 3

x′i = 1 1− P 0 0 1 q q/2
x′i = 2 P 1− P 0 0 1− q q/2
x′i = 3 0 P 1 0 0 1− q

6.2 Viral Marketing
Viral marketing (Nath and Domingos, 2010, Richardson and Domingos, 2002) uses the natural
premise that members of a social network influence each other’s purchasing decisions or comments;
then, the goal is to select the best set of people to target for marketing such that overall profit is
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maximized. Viral marketing has been previously framed as a one-shot influence diagram problem
(Nath and Domingos, 2010). Here, we frame the viral marketing task as an MDP planning problem,
where we optimize the stationary policy to maximize long-term reward.

The topology of the social network is represented by a directed graph, capturing directional social
influence. We assume there are three states for each person in the social network: xi = 1 if i is
making positive comments, xi = 2 if not commenting, and xi = 3 for negative comments. There is
a binary decision corresponding to each person i: market to this person (di = 1) or not (di = 2). We
also define a local reward function: if a person gives good comments when di = 2, then the reward
is r; otherwise, the reward is less, decreasing linearly to minimum value 1 + r/10. For marketed
individuals (di = 1), the reward is 1. The local transition p

(
x′i|xN(i), di

)
is set as in Table 1.

6.3 Experimental Results
We evaluate both problems above on two topologies of model, each of three sizes (6, 10, and 20
nodes). Our first topology type are random, regular graphs with three neighbors per node. Our
second are “chain-like” graphs, in which we order the nodes, then connect each node at random to
four of its six nearest nodes in the ordering. This ensures that the resulting graph has low tree-width
(≤ 6), enabling comparison of the ALP algorithm. We set parameters r = 10 and ε = 0.1, and test
the results on different choices of p and q.

Tables 2– 4 show the expected rewards found by each algorithm for several settings. The best
performance (highest rewards) are labeled in bold. For models with 6 nodes, we also compute the
expected reward under the optimal global policy π∗ (x) for comparison. Note that this value over-
estimates the best possible local policy {π∗i (Γi(x))} being sought by the algorithms; the best local
policy is usually much more difficult to compute due to imperfect recall. Since the complexity of the
approximate linear programming (ALP) algorithm is exponential in the treewidth of graph defined
by the neighborhoods Γi, we were unable to compute results for models beyond treewidth 6.

The tables show that our factored variational value iteration (FVI) algorithm gives policies with
higher expected rewards than those of approximate policy iteration (API) on the majority of models
(156/196), over all sets of models and different p and q. Compared to approximate linear program-
ming, in addition to being far more scalable, our algorithm performed comparably, giving better
policies on just over half of the models (53/96) that ALP could be run on. However, when we
restrict to low-treewidth “chain” models, we find that the ALP algorithm appears to perform better
on larger models; it outperforms our FVI algorithm on only 4/32 models of size 6, but this increases
to 14/32 at size 10, and 25/32 at size 20. It may be that ALP better takes advantage of the structure
of x on these cases, and more careful choice of the cluster graph could similarly improve FVI.

The average results across all settings are shown in Table 5, along with the relative improvements of
our factored variational value iteration algorithm to approximate policy iteration and approximate
linear programming. Table 5 shows that our FVI algorithm, compared to approximate policy iter-
ation, gives the best policies on regular models across sizes, and gives better policies than those of
the approximate linear programming on chain-like models with small size (6 and 10 nodes). Al-
though on average the approximate linear programming algorithm may provide better policies for
“chain” models with large size, its exponential number of constraints makes it infeasible for general
large-scale graph-based MDPs.

7 Conclusions
In this paper, we have proposed a variational planning framework for Markov decision processes.
We used this framework to develop a factored variational value iteration algorithm that exploits the
structure of the graph-based MDP to give efficient and accurate approximations, scales easily to large
systems, and produces better policies than existing approaches. Potential future directions include
studying methods for the choice of cluster graphs, and improved solutions for the dual approxima-
tion (12), such as developing single-loop message passing algorithms to directly optimize (12).
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Table 2: The expected rewards of different algorithms on regular models with 6 nodes.
Disease Management Viral Marketing

(p, q) Exact FVI API ALP Exact FVI API ALP
(0.2, 0.2) 202.4 202.4 164.7 148.3 259.3 258.2 250.0 237.7

(0.4, 0.2) 169.2 169.2 139.0 123.3 212.2 195.3 192.6 183.4

(0.6, 0.2) 158.1 155.2 157.4 115.4 209.6 167.8 174.0 156.4

(0.8, 0.2) 154.1 152.7 153.2 106.0 209.5 152.7 172.2 144.7

(0.2, 0.4) 262.5 259.2 254.7 236.7 361.6 361.6 355.8 355.0

(0.4, 0.4) 220.1 219.1 177.0 181.3 300.2 285.8 285.1 267.3

(0.6, 0.4) 212.1 203.8 203.8 162.7 297.3 244.6 249.6 244.8

(0.8, 0.4) 211.7 198.2 198.2 136.1 297.3 225.2 296.8 273.5

(0.2, 0.6) 349.3 349.3 333.6 307.3 428.1 428.1 428.1 427.7

(0.4, 0.6) 290.7 276.7 276.7 200.0 361.8 351.7 303.3 350.0

(0.6, 0.6) 284.7 242.7 243.7 212.8 355.5 304.7 152.5 306.5
(0.8, 0.6) 284.0 236.1 236.1 194.7 355.5 282.9 355.0 271.3

(0.2, 0.8) 423.6 423.6 423.6 274.7 470.0 469.8 469.8 469.8

(0.4, 0.8) 362.2 351.0 344.3 264.5 411.6 402.0 402.0 403.7
(0.6, 0.8) 351.6 304.8 302.7 242.5 398.2 347.8 351.8 336.6

(0.8, 0.8) 350.5 284.2 284.9 207.9 398.0 320.8 398.0 294.0

Table 3: The expected rewards of different algorithms on “chain-like” models with 10 nodes.
Disease Management Viral Marketing

(p, q) FVI API ALP FVI API ALP
(0.3, 0.3) 304.8 258.4 288.9 355.5 324.1 335.5

(0.5, 0.3) 273.4 228.7 292.7 308.1 291.5 323.8
(0.7, 0.3) 262.2 261.6 329.6 298.5 298.1 269.7

(0.3, 0.5) 420.2 395.4 456.5 550.1 523.9 543.9

(0.5, 0.5) 358.5 317.7 302.6 453.3 450.9 410.0

(0.7, 0.5) 343.8 344.9 394.3 386.1 418.6 436.9

(0.3, 0.7) 612.9 613.6 531.2 659.9 634.8 664.7

(0.5, 0.7) 498.2 491.8 538.6 542.7 523.9 518.2

(0.7, 0.7) 430.0 411.8 427.3 496.9 495.7 451.2

Table 4: The expected rewards (×102) of different algorithms on models with 20 nodes.
Disease Manag. Viral Marketing Disease Manag. Viral Marketing

(p, q) FVI API FVI API (p, q) FVI API FVI API
(0.2, 0.2) 7.17 6.33 7.87 7.88 (0.4, 0.2) 5.93 5.19 6.53 5.65

(0.6, 0.2) 5.33 4.94 5.99 5.28 (0.8, 0.2) 5.12 5.20 5.76 5.62

(0.4, 0.4) 9.10 8.82 11.56 11.52 (0.4, 0.4) 7.70 6.23 9.23 8.83

(0.4, 0.4) 7.04 6.17 7.95 7.65 (0.4, 0.4) 6.72 6.72 7.45 7.14

(0.6, 0.6) 12.29 12.11 13.85 13.85 (0.6, 0.6) 9.97 10.06 11.74 11.72

(0.6, 0.6) 8.50 8.72 10.22 10.02 (0.6, 0.6) 8.01 7.69 9.23 8.88

(0.8, 0.8) 14.53 14.57 15.25 15.27 (0.8, 0.8) 12.57 12.43 13.47 13.22

(0.8, 0.8) 10.90 10.78 11.82 11.50 (0.8, 0.8) 9.92 9.56 10.77 10.64

Table 5: Comparison of average expected rewards on regular and “chain-like” models.
Type n = 6 n = 10 n = 20

Regular FVI: 275.8
API: 271.4

Rel. Imprv.

1.6%
FVI: 458.7
API: 452.3

Rel. Imprv.

1.4%
FVI: 935.6
API: 905.1

Rel. Imprv.

3.37%

Chain
FVI: 275.8
API: 271.6
ALP: 244.9

Rel. Imprv.

1.6%
12.6%

FVI: 415.7
API: 399.4
ALP: 414.7

Rel. Imprv.

4.1%
0.7%

FVI: 821.9
API: 749.6

ALP: 872.2

Rel. Imprv.

9.7%
−5.8%
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