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Abstract

This paper provides new algorithms for distributed clustering for two popular
center-based objectives, k-median and k-means. These algorithms have provable
guarantees and improve communication complexity over existing approaches.
Following a classic approach in clustering by [16], we reduce the problem of
finding a clustering with low cost to the problem of finding a coreset of small
size. We provide a distributed method for constructing a global coreset which
improves over the previous methods by reducing the communication complexity,
and which works over general communication topologies. Experimental results
on large scale data sets show that this approach outperforms other coreset-based
distributed clustering algorithms.

1 Introduction
Most classic clustering algorithms are designed for the centralized setting, but in recent years data
has become distributed over different locations, such as distributed databases [24, 8], images and
videos over networks [23], surveillance [13] and sensor networks [7, 14]. In many of these appli-
cations the data is inherently distributed because, as in sensor networks, it is collected at different
sites. As a consequence it has become crucial to develop clustering algorithms which are effective
in the distributed setting.

Several algorithms for distributed clustering have been proposed and empirically tested. Some of
these algorithms [12, 25, 9] are direct adaptations of centralized algorithms which rely on statistics
that are easy to compute in a distributed manner. Other algorithms [17, 19] generate summaries of
local data and transmit them to a central coordinator which then performs the clustering algorithm.
No theoretical guarantees are provided for the clustering quality in these algorithms, and they do
not try to minimize the communication cost. Additionally, most of these algorithms assume that
the distributed nodes can communicate with all other sites or that there is a central coordinator that
communicates with all other sites.

In this paper, we study the problem of distributed clustering where the data is distributed across
nodes whose communication is restricted to the edges of an arbitrary graph. We provide algorithms
with small communication cost and provable guarantees on the clustering quality. Our technique
for reducing communication in general graphs is based on the construction of a small set of points
which act as a proxy for the entire data set.

An ε-coreset is a weighted set of points whose cost on any set of centers is approximately the cost
of the original data on those same centers up to accuracy ε. Thus an approximate solution for the
coreset is also an approximate solution for the original data. Coresets have previously been studied
in the centralized setting ([16, 10]) but have also recently been used for distributed clustering as
in [26] and as implied by [11]. In this work, we propose a distributed algorithm for k-means and

1



5 6

3

1

2 4

C2 C4

C5 C6

C356

(a) Zhang et al.[26]

5 6

3

1

2 4

5 

2 

3 

4 

6 

1 

(b) Our Construction

Figure 1: (a) Each node computes a coreset on the weighted pointset for its own data and its
subtrees’ coresets. (b) Local constant approximation solutions are computed, and the costs of these
solutions are used to coordinate the construction of a local portion on each node.

k-median, by which each node constructs a local portion of a global coreset. Communicating the
approximate cost of a global solution to each node is enough for the local construction, leading to
low communication cost overall. The nodes then share the local portions of the coreset, which can
be done efficiently in general graphs using a message passing approach.

More precisely, in Section 3, we propose a distributed coreset construction algorithm based on local
approximate solutions. Each node computes an approximate solution for its local data, and then
constructs the local portion of a coreset using only its local data and the total cost of each node’s
approximation. For ε constant, this builds a coreset of size Õ(kd + nk) for k-median and k-means
when the data lies in d dimensions and is distributed over n sites. If there is a central coordina-
tor among the n sites, then clustering can be performed on the coordinator by collecting the local
portions of the coreset with a communication cost equal to the coreset size. For distributed clus-
tering over general connected topologies, we propose an algorithm based on the distributed coreset
construction and a message-passing approach, whose communication cost improves over previous
coreset-based algorithms. We provide a detailed comparison below.

Experimental results on large scale data sets show that our algorithm performs well in practice. For
a fixed amount of communication, our algorithm outperforms other coreset construction algorithms.

Comparison to Other Coreset Algorithms: Since coresets summarize local information they are
a natural tool to use when trying to reduce communication complexity. If each node constructs an ε-
coreset on its local data, then the union of these coresets is clearly an ε-coreset for the entire data set.
Unfortunately the size of the coreset in this approach increases greatly with the number of nodes.

Another approach is the one presented in [26]. Its main idea is to approximate the union of local
coresets with another coreset. They assume nodes communicate over a rooted tree, with each node
passing its coreset to its parent. Because the approximation factor of the constructed coreset depends
on the quality of its component coresets, the accuracy a coreset needs (and thus the overall commu-
nication complexity) scales with the height of this tree. Although it is possible to find a spanning
tree in any communication network, when the graph has large diameter every tree has large height.
In particular many natural networks such as grid networks have a large diameter (Ω(

√
n) for grids)

which greatly increases the size of coresets which must be communicated across the lower levels of
the tree. We show that it is possible to construct a global coreset with low communication overhead.
This is done by distributing the coreset construction procedure rather than combining local coresets.
The communication needed to construct this coreset is negligible – just a single value from each data
set representing the approximate cost of their local optimal clustering. Since the sampled global ε-
coreset is the same size as any local ε-coreset, this leads to an improvement of the communication
cost over the other approaches. See Figure 1 for an illustration. The constructed coreset is smaller
by a factor of n in general graphs, and is independent of the communication topology. This method
excels in sparse networks with large diameters, where the previous approach in [26] requires core-
sets that are quadratic in the size of the diameter for k-median and quartic for k-means; see Section 4
for details. [11] also merge coresets using coreset construction, but they do so in a model of parallel
computation and ignore communication costs.
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2 Preliminaries
Let d(p, q) denote the Euclidean distance between any two points p, q ∈ Rd. The goal of k-means
clustering is to find a set of k centers x = {x1, x2, . . . , xk}which minimize the k-means cost of data
set P ⊆ Rd. Here the k-means cost is defined as cost(P,x) =

∑
p∈P d(p,x)2 where d(p,x) =

minx∈x d(p, x). If P is a weighted data set with a weighting function w, then the k-means cost
is defined as

∑
p∈P w(p)d(p,x)2. Similarly, the k-median cost is defined as

∑
p∈P d(p,x). Both

k-means and k-median cost functions are known to be NP-hard to minimize (see for example [2]).
For both objectives, there exist several readily available polynomial-time algorithms that achieve
constant approximation solutions (see for example [18, 21]).

In distributed clustering, we consider a set of n nodes V = {vi, 1 ≤ i ≤ n} which communicate
on an undirected connected graph G = (V,E) with m = |E| edges. More precisely, an edge
(vi, vj) ∈ E indicates that vi and vj can communicate with each other. Here we measure the
communication cost in number of points transmitted, and assume for simplicity that there is no
latency in the communication. On each node vi, there is a local data set Pi, and the global data set
is P =

⋃n
i=1 Pi. The goal is to find a set of k centers x which optimize cost(P,x) while keeping

the computation efficient and the communication cost as low as possible. Our focus is to reduce the
communication cost while preserving theoretical guarantees for approximating clustering cost.

Coresets: For the distributed clustering task, a natural approach to avoid broadcasting raw data is
to generate a local summary of the relevant information. If each site computes a summary for their
own data set and then communicates this to a central coordinator, a solution can be computed from
a much smaller amount of data, drastically reducing the communication.

In the centralized setting, the idea of summarization with respect to the clustering task is captured
by the concept of coresets [16, 10]. A coreset is a set of weighted points whose cost approximates
the cost of the original data for any set of k centers. The formal definition of coresets is:

Definition 1 (coreset). An ε-coreset for a set of points P with respect to a center-based cost function
is a set of points S and a set of weights w : S → R such that for any set of centers x, we have
(1− ε)cost(P,x) ≤∑p∈S w(p)cost(p,x) ≤ (1 + ε)cost(P,x).

In the centralized setting, many coreset construction algorithms have been proposed for k-median,
k-means and some other cost functions. For example, for points in Rd, algorithms in [10] construct
coresets of size Õ(kd/ε4) for k-means and coresets of size Õ(kd/ε2) for k-median. In the dis-
tributed setting, it is natural to ask whether there exists an algorithm that constructs a small coreset
for the entire point set but still has low communication cost. Note that the union of coresets for mul-
tiple data sets is a coreset for the union of the data sets. The immediate construction of combining
the local coresets from each node would produce a global coreset whose size was larger by a factor
of n, greatly increasing the communication complexity. We present a distributed algorithm which
constructs a global coreset the same size as the centralized construction and only needs a single
value1 communicated to each node. This serves as the basis for our distributed clustering algorithm.

3 Distributed Coreset Construction
Here we design a distributed coreset construction algorithm for k-means and k-median. The under-
lying technique can be extended to other additive clustering objectives such as k-line median.

To gain some intuition on the distributed coreset construction algorithm, we briefly review the con-
struction algorithm in [10] in the centralized setting. The coreset is constructed by computing a
constant approximation solution for the entire data set, and then sampling points proportional to
their contributions to the cost of this solution. Intuitively, the points close to the nearest centers can
be approximately represented by the centers while points far away cannot be well represented. Thus,
points should be sampled with probability proportional to their contributions to the cost. Directly
adapting the algorithm to the distributed setting would require computing a constant approximation
solution for the entire data set. We show that a global coreset can be constructed in a distributed
fashion by estimating the weight of the entire data set with the sum of local approximations. With
this approach, it suffices for nodes to communicate the total costs of their local solutions.

1The value that is communicated is the sum of the costs of approximations to the local optimal clustering.
This is guaranteed to be no more than a constant factor times larger than the optimal cost.
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Algorithm 1 Communication aware distributed coreset construction

Input: Local datasets {Pi, 1 ≤ i ≤ n}, parameter t (number of points to be sampled).
Round 1: on each node vi ∈ V
• Compute a constant approximation Bi for Pi.

Communicate cost(Pi, Bi) to all other nodes.
Round 2: on each node vi ∈ V
• Set ti = t cost(Pi,Bi)∑n

j=1 cost(Pj ,Bj)
and mp = cost(p,Bi),∀p ∈ Pi.

• Pick a non-uniform random sample Si of ti points from Pi,
where for every q ∈ Si and p ∈ Pi, we have q = p with probability mp/

∑
z∈Pi

mz .

Let wq =
∑

i

∑
z∈Pi

mz

tmq
for each q ∈ Si.

• For ∀b ∈ Bi, let Pb = {p ∈ Pi : d(p, b) = d(p,Bi)}, wb = |Pb| −
∑
q∈Pb∩S wq.

Output: Distributed coreset: points Si ∪Bi with weights {wq : q ∈ Si ∪Bi}, 1 ≤ i ≤ n.

Theorem 1. For distributed k-means and k-median clustering on a graph, there exists an algorithm
such that with probability at least 1 − δ, the union of its output on all nodes is an ε-coreset for
P =

⋃n
i=1 Pi. The size of the coreset isO( 1

ε4 (kd+log 1
δ )+nk log nk

δ ) for k-means, andO( 1
ε2 (kd+

log 1
δ ) + nk) for k-median. The total communication cost is O(mn).

As described below, the distributed coreset construction can be achieved by using Algorithm 1 with
appropriate t, namely O( 1

ε4 (kd + log 1
δ ) + nk log nk

δ ) for k-means and O( 1
ε2 (kd + log 1

δ )) for k-
median. Due to space limitation, we describe a proof sketch highlighting the intuition and provide
the details in the supplementary material.

Proof Sketch of Theorem 1: The analysis relies on the definition of the pseudo-dimension of a
function space and a sampling lemma.

Definition 2 ([22, 10]). Let F be a finite set of functions from a set P to R≥0. For f ∈ F , let
B(f, r) = {p : f(p) ≤ r}. The dimension of the function space dim(F, P ) is the smallest integer d
such that for any G ⊆ P ,

∣∣{G ∩B(f, r) : f ∈ F, r ≥ 0}
∣∣ ≤ |G|d.

Suppose we draw a sample S according to {mp : p ∈ P}, namely for each q ∈ S and p ∈ P , q = p

with probability mp∑
z∈P mz

. Set the weights of the points as wp =
∑

z∈P mz

mp|S| for p ∈ P . Then for
any f ∈ F , the expectation of the weighted cost of S equals the cost of the original data P , since
E
[∑

q∈S wqf(q)
]

=
∑
q∈S E[wqf(q)] =

∑
q∈S

∑
p∈P Pr[q = p]wpf(p) =

∑
p∈P f(p).

If the sample size is large enough, then we also have concentration for any f ∈ F . The lemma is
implicit in [10] and we include the proof in the supplementary material.

Lemma 1. Fix a set F of functions f : P → R≥0. Let S be a sample drawn i.i.d. from P according
to {mp ∈ R≥0 : p ∈ P}: for each q ∈ S and p ∈ P , q = p with probability mp∑

z∈P mz
. Let wp =∑

z∈P mz

mp|S| for p ∈ P . If for a sufficiently large c, |S| ≥ c
ε2

(
dim(F, P ) + log 1

δ

)
, then with probabil-

ity at least 1− δ, ∀f ∈ F :
∣∣∣∑p∈P f(p)−∑q∈S wqf(q)

∣∣∣ ≤ ε(∑p∈P mp

)(
maxp∈P

f(p)
mp

)
.

To get a small bound on the difference between
∑
p∈P f(p) and

∑
q∈S wqf(q), we need to choose

mp such that maxp∈P
f(p)
mp

is bounded. More precisely, if we choose mp = maxf∈F f(p), then the
difference is bounded by ε

∑
p∈P mp.

We first consider the centralized setting and review how [10] applied the lemma to construct a
coreset for k-median as in Definition 1. A natural approach is to apply this lemma directly to
the cost fx(p) := cost(p,x). The problem is that a suitable upper bound mp is not available for
cost(p,x). However, we can still apply the lemma to a different set of functions defined as follows.
Let bp denote the closest center to p in the approximation solution. Aiming to approximate the error∑
p[cost(p,x)− cost(bp,x)] rather than to approximate

∑
p cost(p,x) directly, we define fx(p) :=

cost(p,x) − cost(bp,x) + cost(p, bp), where cost(p, bp) is added so that fx(p) ≥ 0. Since 0 ≤
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fx(p) ≤ 2cost(p, bp), we can apply the lemma with mp = 2cost(p, bp). It bounds the difference
|∑p∈P fx(p)−∑q∈S wqfx(q)| by 2ε

∑
p∈P cost(p, bp), so we have an O(ε)-approximation.

Note that
∑
p∈P fx(p) −∑q∈S wqfx(q) does not equal

∑
p∈P cost(p,x) −∑q∈S wqcost(q,x).

However, it equals the difference between
∑
p∈P cost(p,x) and a weighted cost of the sampled

points and the centers in the approximation solution. To get a coreset as in Definition 1, we need to
add the centers of the approximation solution with specific weights to the coreset. Then when the
sample is sufficiently large, the union of the sampled points and the centers is an ε-coreset.

Our key contribution in this paper is to show that in the distributed setting, it suffices to choose
bp from the local approximation solution for the local dataset containing p, rather than from an
approximation solution for the global dataset. Furthermore, the sampling and the weighting of the
coreset points can be done in a local manner. In the following, we provide a formal verification
of our discussion above. We have the following lemma for k-median with F = {fx : fx(p) =
d(p,x)− d(bp,x) + d(p, bp),x ∈ (Rd)k}.
Lemma 2. For k-median, the output of Algorithm 1 is an ε-coreset with probability at least 1 − δ,
if t ≥ c

ε2

(
dim(F, P ) + log 1

δ

)
for a sufficiently large constant c.

Proof Sketch of Lemma 2: We want to show that for any set of centers x the true cost for using
these centers is well approximated by the cost on the weighted coreset. Note that our coreset has two
types of points: sampled points q ∈ S = ∪ni=1Si with weight wq :=

∑
z∈P mz

mq|S| and local solution
centers b ∈ B = ∪ni=1Bi with weight wb := |Pb|−

∑
q∈S∩Pb

wq . We use bp to represent the nearest
center to p in the local approximation solution. We use Pb to represent the set of points which have
b as their closest center in the local approximation solution.

As mentioned above, we construct fx(p) to be the difference between the cost of p and
the cost of bp so that Lemma 1 can be applied. Note that the centers are weighted such
that

∑
b∈B wbd(b,x) =

∑
b∈B |Pb|d(b,x) − ∑b∈B

∑
q∈S∩Pb

wqd(b,x) =
∑
p∈P d(bp,x) −∑

q∈S wqd(bq,x). Taken together with the fact that
∑
p∈P mp =

∑
q∈S wqmq , we can show

that
∣∣∣∑p∈P d(p,x)−∑q∈S∪B wqd(q,x)

∣∣∣ =
∣∣∣∑p∈P fx(p)−∑q∈S wqfx(q)

∣∣∣. Note that 0 ≤
fx(p) ≤ 2d(p, bp) by triangle inequality, and S is sufficiently large and chosen according to
weights mp = d(p, bp), so the conditions of Lemma 1 are met. Thus we can conclude that∣∣∣∑p∈P d(p,x)−∑q∈S∪B wqd(q,x)

∣∣∣ ≤ O(ε)
∑
p∈P d(p,x), as desired.

In [10] it is shown that dim(F, P ) = O(kd). Therefore, by Lemma 2, when |S| ≥
O
(

1
ε2 (kd+ log 1

δ )
)
, the weighted cost of S ∪ B approximates the k-median cost of P for any set

of centers, then (S ∪ B,w) becomes an ε-coreset for P . The total communication cost is bounded
by O(mn), since even in the most general case that every node only knows its neighbors, we can
broadcast the local costs with O(mn) communication (see Algorithm 3).

Proof Sketch for k-means: Similar methods prove that for k-means when t = O( 1
ε4 (kd+ log 1

δ ) +

nk log nk
δ )), the algorithm constructs an ε-coreset with probability at least 1− δ. The key difference

is that triangle inequality does not apply directly to the k-means cost, and so the error |cost(p,x)−
cost(bp,x)| and thus fx(p) are not bounded. The main change to the analysis is that we divide the
points into two categories: good points whose costs approximately satisfy the triangle inequality
(up to a factor of 1/ε) and bad points. The good points for a fixed set of centers x are defined as
G(x) = {p ∈ P : |cost(p,x)− cost(bp,x)| ≤ ∆p} where the upper bound is ∆p =

cost(p,bp)
ε , and

the analysis follows as in Lemma 2. For bad points we can show that the difference in cost must still
be small, namely O(εmin{cost(p,x), cost(bp,x)}).

More formally, let fx(p) = cost(p,x)− cost(bp,x) + ∆p, and let gx(p) be fx(p) if p ∈ G(x) and
0 otherwise. Then

∑
p∈P cost(p,x)−∑q∈S∪B wqcost(q,x) is decomposed into three terms:∑

p∈P
gx(p)−

∑
q∈S

wqgx(q)︸ ︷︷ ︸
(A)

+
∑

p∈P\G(x)

fx(p)

︸ ︷︷ ︸
(B)

−
∑

q∈S\G(x)

wqfx(q)

︸ ︷︷ ︸
(C)
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Algorithm 2 Distributed clustering on a graph

Input: {Pi, 1 ≤ i ≤ n}: local datasets; {Ni, 1 ≤ i ≤ n}: the neighbors of vi; Aα: an α-
approximation algorithm for weighted clustering instances.

Round 1: on each node vi
• Construct its local portion Di of an ε/2-coreset by Algorithm 1,

using Message-Passing for communicating the local costs.
Round 2: on each node vi
• Call Message-Passing(Di, Ni). Compute x = Aα(

⋃
j Dj).

Output: x

Algorithm 3 Message-Passing(Ii, Ni)

Input: Ii is the message, Ni are the neighbors.
• Let Ri denote the information received. Initialize Ri = {Ii}, and send Ii to Ni.
•While Ri 6= {Ij , 1 ≤ j ≤ n}:

If receive message Ij 6∈ Ri, then let Ri = Ri ∪ {Ij} and send Ij to Ni.

Lemma 1 bounds 4 by O(ε)cost(P,x), but we need an accuracy of ε2 to compensate for the 1/ε
factor in the upper bound of fx(p). This leads to an O(1/ε4) factor in the sample complexity.

For 5 and 6, |cost(p,x) − cost(bp,x)| > ∆p since p 6∈ G(x). This can be used to show that p and
bp are close to each other and far away from x, and thus |cost(p,x) − cost(bp,x)| is O(ε) smaller
than cost(p,x) and cost(bp,x). This fact bounds (5) by O(ε)cost(P,x). It also bounds 6, noting
that E[

∑
q∈Pb∩S wq] = |Pb|, and thus

∑
q∈Pb∩S wq ≤ 2|Pb| when t ≥ O(nk log nk

δ ). The proof is
completed by bounding the function space dimension by O(kd) as in [10].

4 Effect of Network Topology on Communication Cost
If there is a central coordinator in the communication graph, then we can run distributed coreset con-
struction algorithm and send the local portions of the coreset to the coordinator, which can perform
the clustering task. The total communication cost is just the size of the coreset.

In this section, we consider distributed clustering over arbitrary connected topologies. We propose
to use a message passing approach for collecting information for coreset construction and sharing
the local portions of the coreset. The details are presented in Algorithm 2 and 3. Since each piece
of the coreset is shared at most twice across any particular edge in message passing, we have
Theorem 2. Given an α-approximation algorithm for weighted k-means (k-median respectively)
as a subroutine, there exists an algorithm that with probability at least 1 − δ outputs a (1 + ε)α-
approximation solution for distributed k-means (k-median respectively). The communication cost is
O(m( 1

ε4 (kd+ log 1
δ ) + nk log nk

δ )) for k-means, and O(m( 1
ε2 (kd+ log 1

δ ) + nk)) for k-median.

In contrast, an approach where each node constructs an ε-coreset for k-means and sends it to the
other nodes incurs communication cost of Õ(mnkdε4 ). Our algorithm significantly reduces this.

Our algorithm can also be applied on a rooted tree: we can send the coreset portions to the root
which then applies an approximation algorithm. Since each portion are transmitted at most h times,
Theorem 3. Given an α-approximation algorithm for weighted k-means (k-median respectively)
as a subroutine, there exists an algorithm that with probability at least 1 − δ outputs a (1 + ε)α-
approximation solution for distributed k-means (k-median respectively) clustering on a rooted tree
of height h. The total communication cost is O(h( 1

ε4 (kd + log 1
δ ) + nk log nk

δ )) for k-means, and
O(h( 1

ε2 (kd+ log 1
δ ) + nk)) for k-median.

Our approach improves the cost of Õ(nh
4kd
ε4 ) for k-means and the cost of Õ(nh

2kd
ε2 ) for k-median

in [26] 2. The algorithm in [26] builds on each node a coreset for the union of coresets from its
2 Their algorithm used coreset construction as a subroutine. The construction algorithm they used builds

coreset of size Õ(nkh
εd

log |P |). Throughout this paper, when we compare to [26] we assume they use the
coreset construction technique of [10] to reduce their coreset size and communication cost.
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children, and thus needs O(ε/h) accuracy to prevent the accumulation of errors. Since the coreset
construction subroutine has quadratic dependence on 1/ε for k-median (quartic for k-means), the
algorithm then has quadratic dependence on h (quartic for k-means). Our algorithm does not build
coreset on top of coresets, resulting in a better dependence on the height of the tree h.

In a general graph, any rooted tree will have its height h at least as large as half the diameter. For
sensors in a grid network, this implies h = Ω(

√
n). In this case, our algorithm gains a significant

improvement over existing algorithms.

5 Experiments

Here we evaluate the effectiveness of our algorithm and compare it to other distributed coreset algo-
rithms. We present the k-means cost of the solution by our algorithm with varying communication
cost, and compare to those of other algorithms when they use the same amount of communication.

Data sets: We present results on YearPredictionMSD (515345 points in R90, k = 50). Similar
results are observed on five other datasets, which are presented in the supplementary material.

Experimental Methodology: We first generate a communication graph connecting local sites, and
then partition the data into local data sets. The algorithms were evaluated on Erdös-Renyi random
graphs with p = 0.3, grid graphs, and graphs generated by the preferential attachment mecha-
nism [1]. We used 100 sites for YearPredictionMSD.

The data is then distributed over the local sites. There are four partition methods: uniform,
similarity-based, weighted, and degree-based. In all methods, each example is distributed to the
local sites with probability proportional to the site’s weight. In uniform partition, the sites have
equal weights; in similarity-based partition, each site has an associated data point randomly selected
from the global data and the weight is the similarity to the associated point; in weighted partition,
the weights are chosen from |N(0, 1)|; in degree-based, the weights are the sites’ degrees.

To measure the quality of the coreset generated, we run Lloyd’s algorithm on the coreset and the
global data respectively to get two solutions, and compute the ratio between the costs of the two
solutions over the global data. The average ratio over 30 runs is then reported. We compare our
algorithm with COMBINE, the method of combining coresets from local data sets, and with the
algorithm of [26] (Zhang et al.). When running the algorithm of Zhang et al., we restrict the network
to a spanning tree by picking a root uniformly at random and performing a breadth first search.

Results: Figure 2 shows the results over different network topologies and partition methods. We
observe that the algorithms perform well with much smaller coreset sizes than predicted by the
theoretical bounds. For example, to get 1.1 cost ratio, the coreset size and thus the communication
needed is only 0.1%− 1% of the theoretical bound.

In the uniform partition, our algorithm performs nearly the same as COMBINE. This is not surpris-
ing since our algorithm reduces to the COMBINE algorithm when each local site has the same cost
and the two algorithms use the same amount of communication. In this case, since in our algorithm
the sizes of the local samples are proportional to the costs of the local solutions, it samples the same
number of points from each local data set. This is equivalent to the COMBINE algorithm with the
same amount of communication. In the similarity-based partition, similar results are observed as it
also leads to balanced local costs. However, when the local sites have significantly different costs (as
in the weighted and degree-based partitions), our algorithm outperforms COMBINE. As observed
in Figure 2, the costs of our solutions consistently improve over those of COMBINE by 2% − 5%.
Our algorithm then saves 10%− 20% communication cost to achieve the same approximation ratio.

Figure 3 shows the results over the spanning trees of the graphs. Our algorithm performs much better
than the algorithm of Zhang et al., achieving about 20% improvement in cost. This is due to the fact
that their algorithm needs larger coresets to prevent the accumulation of errors when constructing
coresets from component coresets, and thus needs higher communication cost to achieve the same
approximation ratio.

Acknowledgements This work was supported by ONR grant N00014-09-1-0751, AFOSR grant
FA9550-09-1-0538, and by a Google Research Award. We thank Le Song for generously allowing
us to use his computer cluster.
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indicate the network topology and partition method.
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A Additional Related Work

Many empirical algorithms adapt the centralized algorithms to the distributed setting. They generally
provide no bound for the clustering quality or the communication cost. For instance, a technique is
proposed in [12] to adapt several iterative center-based data clustering algorithms including Lloyd’s
algorithm for k-means to the distributed setting, where sufficient statistics instead of the raw data
are sent to a central coordinator. This approach involves transferring data back and forth in each
iteration, and thus the communication cost depends on the number of iterations. Similarly, the
communication costs of the distributed clustering algorithms proposed in [9] and [25] depend on
the number of iterations. Some other algorithms gather local summaries and then perform global
clustering on the summaries. The distributed density-based clustering algorithm in [17] clusters and
computes summaries for the local data at each node, and sends the local summaries to a central node
where the global clustering is carried out. This algorithm only considers the flat two-tier topology.
Some in-network aggregation schemes for computing statistics over distributed data are useful for
such distributed clustering algorithms. For example, an algorithm is provided in [7] for approximate
duplicate-sensitive aggregates across distributed data sets, such as SUM. An algorithm is proposed
in [14] for power-preserving computation of order statistics such as quantile.

Several coreset construction algorithms have been proposed for k-median, k-means and k-line me-
dian clustering [16, 6, 15, 20, 10]. For example, the algorithm in [10] constructs a coreset of size
Õ(kd/ε2) whose cost approximates that of the original data up to accuracy ε with respect to k-
median in Rd. All of these algorithms consider coreset construction in the centralized setting, while
our construction algorithm is for the distributed setting.

There has also been work attempting to parallelize clustering algorithms. [11] showed that coresets
could be constructed in parallel and then merged together. In Scalable k-means++ [3], Bahmani
et al. adapted k-means++ to the parallel setting. In this setting a centralized problem is broken up
and distributed to several processors with the aim of reducing computation time. In contrast to the
distributed setting, the communication costs are ignored.

There is also related work providing approximation solutions for k-median based on random sam-
pling [5]. Particularly, they showed that given a sample of size Õ( kε2 ) drawn i.i.d. from the data,
there exists an algorithm that outputs a solution with an average cost bounded by twice the optimal
average cost plus an error bound ε. If we convert it to a multiplicative approximation factor, the
factor depends on the optimal average cost. When there are outlier points far away from all other
points, the optimal average cost can be very small after normalization, then the multiplicative ap-
proximation factor is large. The coreset approach provides better guarantees. Additionally, their
approach is not applicable to k-means.

B Proof of Lemma 1

The proof of Lemma 1 follows from the analysis in [10], although not explicitly stated there. We be-
gin with the following theorem for uniform sampling on a function space. The theorem is from [10]
but rephrased for convenience.
Theorem 4 (Theorem 6.9 in [10]). Let F be a set of functions from P to R≥0, and let ε ∈ (0, 1).
Let S be a sample of

|S| = c

ε2
(dim(F, P ) + log

1

δ
)

i.i.d items from P , where c is a sufficiently large constant. Then, with probability at least 1− δ, for
any f ∈ F and any r ≥ 0,∣∣∣∣∣

∑
p∈P,f(p)≤r f(p)

|P | −
∑
q∈S,f(q)≤r f(q)

|S|

∣∣∣∣∣ ≤ εr.
Lemma 1. Fix a set F of functions f : P → R≥0. Let S be a sample drawn i.i.d. from P according
to {mp ∈ R≥0 : p ∈ P}: for each q ∈ S and p ∈ P , q = p with probability mp∑

z∈P mz
. Let wp =∑

z∈P mz

mp|S| for p ∈ P . If for a sufficiently large c, |S| ≥ c
ε2

(
dim(F, P ) + log 1

δ

)
, then with probabil-

ity at least 1− δ, ∀f ∈ F :
∣∣∣∑p∈P f(p)−∑q∈S wqf(q)

∣∣∣ ≤ ε(∑p∈P mp

)(
maxp∈P

f(p)
mp

)
.
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Proof. Without loss of generality, assume mp ∈ N+. Define G as follows: for each p ∈ P , include
mp copies {pi}mp

i=1 of p in G and define f(pi) = f(p)/mp. Then S is equivalent to a sample draw
i.i.d. and uniformly at random fromG. We now apply Theorem 4 onG and r = maxf∈F,p′∈G f(p′).
By Theorem 4, we know that for any f ∈ F ,∣∣∣∣

∑
p′∈G f(p′)

|G| −
∑
q′∈S f(q′)

|S|

∣∣∣∣ ≤ εmax
p′∈G

f(p′). (1)

The lemma then follows from multiplying both sides of (1) by |G| = ∑
p∈P mp. Also note that the

dimension dim(F,G) is the same as that of dim(F, P ) as pointed out by [10].

C Proof of Lemma 2

We have the following lemma for k-median with F = {fx : fx(p) = d(p,x) − d(bp,x) +
d(p, bp),x ∈ (Rd)k}.
Lemma 2. For k-median, the output of Algorithm 1 is an ε-coreset with probability at least 1 − δ,
if t ≥ c

ε2

(
dim(F, P ) + log 1

δ

)
for a sufficiently large constant c.

Proof. We want to show that for any set of centers x the true cost for using these centers is well
approximated by the cost on the weighted coreset. Note that our coreset has two types of points:
sampled points p ∈ S = ∪ni=1Si with weight wp :=

∑
z∈P mz

mp|S| and local solution centers b ∈ B =

∪ni=1Bi with weight wb := |Pb| −
∑
p∈S∩Pb

wp. We use bp to represent the nearest center to p in
the local approximation solution. We use Pb to represent the set of points having b as their closest
center in the local approximation solution.

As mentioned above, we construct fx to be the difference between the cost of p and the cost of bp
on x so that Lemma 1 can be applied to fx. Note that 0 ≤ fx(p) ≤ 2d(p, bp) by triangle inequality,
and S is sufficiently large and chosen according to weights mp = d(p, bp), so the conditions of
Lemma 1 are met. Then we have

D =

∣∣∣∣∣∑
p∈P

fx(p)−
∑
q∈S

wqfx(q)

∣∣∣∣∣ ≤ 2ε
∑
p∈P

mp = 2ε
∑
p∈P

d(p, bp) = 2ε

n∑
i=1

d(Pi, Bi) ≤ O(ε)
∑
p∈P

d(p,x)

where the last inequality follows from the fact that Bi is a constant approximation solution for Pi.

Next, we show that the coreset is constructed such that D is exactly the difference between the true
cost and the weighted cost of the coreset, which then leads to the lemma.

Note that the centers are weighted such that∑
b∈B

wbd(b,x) =
∑
b∈B

|Pb|d(b,x)−
∑
b∈B

∑
q∈S∩Pb

wqd(b,x) =
∑
p∈P

d(bp,x)−
∑
q∈S

wqd(bq,x). (2)

Also note that
∑
p∈P mp =

∑
q∈S wqmq , so

D =

∣∣∣∣∣∑
p∈P

[d(p,x)− d(bp,x) +mp]−
∑
q∈S

wq [d(q,x)− d(bq,x) +mq]

∣∣∣∣∣
=

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
q∈S

wqd(q,x)−
[∑
p∈P

d(bp,x)−
∑
q∈S

wqd(bq,x)

]∣∣∣∣∣. (3)

By plugging (2) into (3), we have

D =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑
q∈S

wqd(q,x)−
∑
b∈B

wbd(b,x)

∣∣∣∣∣ =

∣∣∣∣∣∑
p∈P

d(p,x)−
∑

q∈S∪B
wqd(q,x)

∣∣∣∣∣
which implies the lemma.
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D Proof of Theorem 1

Theorem 1. For distributed k-means and k-median clustering on a graph, there exists an algorithm
such that with probability at least 1 − δ, the union of its output on all nodes is an ε-coreset for
P =

⋃n
i=1 Pi. The size of the coreset isO( 1

ε4 (kd+log 1
δ )+nk log nk

δ ) for k-means, andO( 1
ε2 (kd+

log 1
δ ) + nk) for k-median. The total communication cost is O(mn).

For k-median, the statement follows from Lemma 2 and the fact that dim(F, P ) = O(kd) (Theorem
4.8 in [10]).

For k-means, we have a similar lemma that when t = O( 1
ε4 (kd+log 1

δ )+nk log nk
δ )), the algorithm

constructs an ε-coreset with probability at least 1− δ. The key idea is the same as that for k-median:
we use centers bp from the local approximation solutions as an approximation to the original data
points p, and show that the error between the total cost and the weighted sample cost is approxi-
mately the error between the cost of p and its sampled cost (compensated by the weighted centers),
which is shown to be small by Lemma 1.

The key difference between k-means and k-median is that triangle inequality applies directly to
the k-median cost. In particular, for the k-median problem note that cost(bp, p) = d(bp, p) is an
upper bound for the error of bp on any set of centers, i.e. ∀x ∈ (Rd)k, d(bp, p) ≥ |d(p,x) −
d(bp,x)| = |cost(p,x) − cost(bp,x)| by triangle inequality. Then we can construct fx(p) :=
cost(p,x) − cost(bp,x) + d(bp, p) such that hp(x) is bounded. In contrast, for k-means, the error
|cost(p,x) − cost(bp,x)| = |d(p,x)2 − d(bp,x)2| does not have such an upper bound. The main
change to the analysis is that we divide the points into two categories: good points whose costs
approximately satisfy the triangle inequality (up to a factor of 1/ε) and bad points. The good points
for a fixed set of centers x are defined as

G(x) = {p ∈ P : |cost(p,x)− cost(bp,x)| ≤ ∆p}

where the upper bound is ∆p =
cost(p,bp)

ε . Good points we can bound as before. For bad points we
can show that while the difference in cost may be larger than cost(p, bp)/ε, it must still be small,
namely O(εmin{cost(p,x), cost(bp,x)}).

Formally, the functions fx(p) are restricted to be defined only over good points:

fx(p) =

{
cost(p,x)− cost(bp,x) + ∆p if p ∈ G(x),

0 otherwise.

Then
∑
p∈P cost(p,x)−∑q∈S∪B wqcost(q,x) is decomposed into three terms:

∑
p∈P

fx(p)−
∑
q∈S

wqfx(q) (4)

+
∑

p∈P\G(x)

[cost(p,x)− cost(bp,x) + ∆p] (5)

−
∑

q∈S\G(x)

wq[cost(q,x)− cost(bq,x) + ∆q] (6)

Lemma 1 bounds (4) by O(ε)cost(P,x), but we need an accuracy of ε2 to compensate for the 1/ε
factor in the upper bound, resulting in a O(1/ε4) factor in the sample complexity.

We begin by bounding (5). Note that for each term in (5), |cost(p,x) − cost(bp,x)| > ∆p since
p 6∈ G(x). Furthermore, p 6∈ G(x) only when p and bp are close to each other and far away from x.
In Lemma 3 we use this to show that |cost(p,x)−cost(bp,x)| ≤ O(ε) min{cost(p,x), cost(bp,x)}.
The details are presented in the appendix.

Using Lemma 3, (5) can be bounded by O(ε)
∑
p∈P\G(x) cost(p,x) ≤ O(ε)cost(P,x).
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Similarly, by the definition of ∆q and Lemma 3, (6) is bounded by

(6) ≤
∑

q∈S\G(x)

2wq|cost(q,x)− cost(bq,x)| ≤ O(ε)
∑

q∈S\G(x)

wq cost(bq,x)

≤ O(ε)
∑
b∈B

 ∑
q∈Pb∩S

wq

 cost(b,x).

Note that the expectation of
∑
q∈Pb∩S wq is |Pb|. By a sampling argument (Lemma 4), if t ≥

O(nk log nk
δ ), then

∑
q∈Pb∩S wq ≤ 2|Pb|. Then (6) is bounded by O(ε)

∑
b∈B cost(b,x)|Pb| =

O(ε)
∑
p∈P cost(bp,x) where

∑
p∈P cost(bp,x) is at most a constant factor more than the optimum

cost.

Since each of (4),(5), and (6) is O(ε)cost(P,x), we know that their sum is the same magnitude.
Combining the above bounds, we have

∣∣∣cost(P,x)−∑q∈S∪B wqcost(q,x)
∣∣∣ ≤ O(ε)cost(P,x).

The proof is then completed by choosing a suitable ε, and bounding dim(F, P ) = O(kd) as in [10].
Lemma 3. If d(p, bp)

2/ε ≤ |d(p,x)2 − d(bp,x)2|, then

|d(p,x)2 − d(bp,x)2| ≤ 8εmin{d(p,x)2, d(bp,x)2}.

Proof. We first have by triangle inequality

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)].

Then by d(p, bp)
2/ε ≤ |d(p,x)2 − d(bp,x)2|,

d(p, bp) ≤ ε[d(p,x) + d(bp,x)].

Therefore, we have

|d(p,x)2 − d(bp,x)2| ≤ d(p, bp)[d(p,x) + d(bp,x)] ≤ ε[d(p,x) + d(bp,x)]2

≤ 2ε[d(p,x)2 + d(bp,x)2] ≤ 2ε[d(p,x)2 + (d(p,x) + d(p, bp))
2]

≤ 2ε[d(p,x)2 + 2d(p,x)2 + 2d(p, bp)
2] ≤ 6εd(p,x)2 + 4εd(p, bp)

2

≤ 6εd(p,x)2 + 4ε2|d(p,x)2 − d(bp,x)2|
for sufficiently small ε. Then

|d(p,x)2 − d(bp,x)2| ≤ 6ε

1− 4ε2
d(p,x)2 ≤ 8εd(p,x)2.

Similarly, |d(p,x)2 − d(bp,x)2| ≤ 8εd(bp,x)2. The lemma follows from the last two inequalities.

Lemma 4 (Corollary 15.4 in [10]). Let 0 < δ < 1/2, and t ≥ c|B| log |B|δ for a sufficiently large c.
Then with probability at least 1− δ, ∀b ∈ Bi,

∑
q∈Pb∩S wq ≤ 2|Pb|.

E Complete Experimental Results

Here we present the results of all the data sets over different network topologies and data partition
methods.

Figure 4 shows the results of all the data sets on random graphs. The first column of Figure 4 shows
that our algorithm and COMBINE perform nearly the same in the uniform data partition. This is
not surprising since our algorithm reduces to the COMBINE algorithm when each local site has the
same cost and the two algorithms use the same amount of communication. In this case, since in
our algorithm the sizes of the local samples are proportional to the costs of the local solutions, it
samples the same number of points from each local data set. This is equivalent to the COMBINE
algorithm with the same amount of communication. In the similarity-based partition, similar results
are observed as this partition method also leads to balanced local costs. However, in the weighted
partition where local sites have significantly different contributions to the total cost, our algorithm
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outperforms COMBINE. It improves the k-means cost by 2% − 5%, and thus saves 10% − 30%
communication cost to achieve the same approximation ratio.

Figure 5 shows the results of all the data sets on grid and preferential graphs. Similar to the results
on random graphs, our algorithm performs nearly the same as COMBINE in the similarity-based
partition and outperforms COMBINE in the weighted partition and degree-based partition. Further-
more, Figure 4 and 5 also show that the performance of our algorithm merely changes over different
network topologies and partition methods.

Figure 6 shows the results of all the data sets on the spanning trees of the random graphs and Figure 7
shows those on the spanning trees of the grid and preferential graphs. Compared to the algorithm
of Zhang et al., our algorithm consistently shows much better performance on all the data sets in
different settings. It improves the k-means cost by 10%− 30%, and thus can achieve even better ap-
proximation ratio with only 10% communication cost. This is because the algorithm of Zhang et al.
constructs coresets from component coresets and needs larger coresets to prevent the accumulation
of errors. Figure 6 also shows that although their costs decrease with the increase of the communi-
cation, the decrease is slower on larger graphs (e.g., as in the experiments for YearPredictionMSD).
This is due to the fact that the spanning tree of a larger graph has larger height, leading to more
accumulation of errors. In this case, more communication is needed to prevent the accumulation.
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graph with similarity-based partition, and random graph with weighted partition. Rows: Spam,
Pendigits, Letter, synthetic, ColorHistogram, and YearPredictionMSD.
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Figure 5: k-means cost on grid and preferential graphs. Columns: grid graph with similarity-based
partition, grid graph with weighted partition, and preferential graph with degree-based partition.
Rows: Spam, Pendigits, Letter, synthetic, ColorHistogram, and YearPredictionMSD.
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Figure 6: k-means cost on the spanning trees of the random graphs. Columns: random graph with
uniform partition, random graph with similarity-based partition, and random graph with weighted
partition. Rows: Spam, Pendigits, Letter, synthetic, ColorHistogram, and YearPredictionMSD.
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Figure 7: k-means cost on the spanning trees of the grid and preferential graphs. Columns: grid
graph with similarity-based partition, grid graph with weighted partition, and preferential graph with
degree-based partition. Rows: Spam, Pendigits, Letter, synthetic, ColorHistogram, and YearPredic-
tionMSD.
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