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1 Optimization Algorithm

The goal of our method is to find a projection V ∈ RD×d to a subspace of dimensionality d < D
that maximizes a sum of divergences. Following [1] we decompose the projection into three parts,
namely V> = IdRP where Id is an identity matrix truncated to the first d rows, R is a rotation
matrix with RR> = I and P is the whitening matrix that projects the data onto an unit sphere. The
optimization process then boils down to finding the rotation R that maximizes the sum of symmetric
divergences

L(R) =
∑
i

D̃
(
(IdRP)Σi

1(P>R>I>d ) || (IdRP)Σi
2(P>R>I>d )

)
.

Note that although R is a D ×D rotation matrix, we only evaluate the first d rows of it. The opti-
mization is performed by gradient descend on the manifold of orthogonal matrices. More precisely,
we start with an (random) orthogonal matrix R0 and find an orthogonal update U in the k-th step
such that Rk+1 = URk. This way we stay on the manifold of orthogonal matrices at each step.

Note that the manifold of orthogonal matrices is connected to the set of skew-symmetric matrices
M = −M> via the exponential map [2]. Therefore we can express the orthogonal update matrix as
U = eM. The author of [3] provides a formula for the gradient of f(U) = f(eM) at U = I = e0

∇M f(U)|M=0 = (∇U f(U)|U=I) U> −U (∇U f(U)|U=I)
>
.

With this we can determine the search direction H = −H> in the set of skew symmetric matrices
by computing the gradient of the loss function w.r.t. M at M = 0. The update matrix can then be
written as U = etH where the optimal parameter t is determined by performing a line-search.

Note that the divergence optimizes the whole subspace and the basis within the subspace is arbitrary.
In order to extract uncorrelated sources1 that maximally separate the two classes (as done by CSP),
we select the principal axes of the data distribution of one class as basis .

1Spatial filters vi and vj (i 6= j) extract uncorrelated source s as v>i Σvj = v>i XX>vj = s>s = 0.
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2 Derivation of Kullback-Leibler Divergence CSP

The objective function of sumkl-divCSP (and kl-divCSP) can be written as

Lsumkl(R) =
∑
i

D̃kl

(
(IdRP)Σi

1(P>R>I>d ) || (IdRP)Σi
2(P>R>I>d )

)
=

1

2

∑
i

(
tr
[
((IdRP)Σi

1(P>R>I>d ))−1((IdRP)Σi
2(P>R>I>d ))

]
+

tr
[
((IdRP)Σi

2(P>R>I>d ))−1((IdRP)Σi
1(P>R>I>d ))

]
− 2d

)
=

1

2

∑
i

(
tr
[
(Σ̄i

1)−1Σ̄i
2

]
+ tr

[
(Σ̄i

2)−1Σ̄i
1

]
− 2d

)
.

Note that Σ̄i
1 = (IdRP)Σi

1(P>R>I>d ) and Σ̄i
2 = (IdRP)Σi

2(P>R>I>d ) denote the projected
covariance matrices.

The gradient with respect to R can be computed as follows. Let us rewrite

∇R tr
[
((IdRP)Σi

1(P>R>I>d ))−1((IdRP)Σi
2(P>R>I>d ))

]
as

I>d

[
∇G tr

[(
G>CG

)−1 (
G>DG

)]]>
with G = R̃> and R̃ is the d×D matrix consisting of the first d rows of R and C = PΣi

1P
> and

D = PΣi
2P
> are the whitened covariance matrices.

According to the matrix codebook [4] this gives

I>d
[
−2CG(G>CG)−1G>DG(G>CG)−1 + 2DG(G>DG)−1

]>
.

Using this fact gives the following derivative∇R Lsumkl(R)

I>d

(∑
i

(Σ̄i
2)−1IdΣ̃

i
2 − (Σ̄i

1)−1Σ̄i
2(Σ̄i

1)−1IdΣ̃
i
1 + (Σ̄i

1)−1IdΣ̃
i
1 − (Σ̄i

2)−1Σ̄i
1(Σ̄i

2)−1IdΣ̃
i
2

)
R

where Σ̃i
1 = PΣi

1P
> and Σ̃i

2 = PΣi
2P
>.

3 Derivation of Beta Divergence CSP

The objective function of β-divCSP can be written as

Lβ(R) =
∑
i

D̃β

(
(IdRP)Σi

1(P>R>I>d ) || (IdRP)Σi
2(P>R>I>d )

)
=

1

β

∑
i

(∫
gβ+1
i (x)dx +

∫
fβ+1
i (x)dx −

∫
fβi (x)gi(x)dx −

∫
fi(x)gβi (x)dx

)
,

with fi ∼ N
(
0, Σ̄i

1

)
and gi ∼ N

(
0, Σ̄i

2

)
being the zero-mean Gaussian distributions with pro-

jected covariances Σ̄i
1 = (IdRP)Σi

1(P>R>I>d ) ∈ Rd×d and Σ̄i
2 = (IdRP)Σi

2(P>R>I>d ) ∈
Rd×d, respectively.

The integral
∫
fβ+1
i (x)dx (and

∫
gβ+1(x)dx) can be expressed in explicit form as∫

fβ+1
i (x)dx =

1

(2π)
(β+1)d

2 |Σ̄i
1|
β+1
2

∫
e−

1
2x
T ( 1

β+1 Σ̄i
1)−1xdx

=
1

(2π)
(β+1)d

2 |Σ̄i
1|
β+1
2

(2π)
d
2

(
1

β + 1

) d
2

|Σ̄i
1|

1
2

=
1

(2π)
βd
2 (β + 1)

d
2

|Σ̄i
1|−

β
2

2



The integral
∫
gβi (x)fi(x)dx (and

∫
fi(x)gβi (x)dx) can be expressed in explicit form as

∫
gβi (x)fi(x)dx =

1

(2π)
βd
2 |Σ̄i

2|
β
2

1

(2π)
d
2 |Σ̄i

1|
1
2

∫
e−

1
2x
T (β(Σ̄i

2)−1+(Σ̄i
1)−1)xdx

=
1

(2π)
βd
2 |Σ̄i

2|
β
2

1

(2π)
d
2 |Σ̄i

1|
1
2

(2π)
d
2

∣∣β(Σ̄i
2)−1 + (Σ̄i

1)−1
∣∣− 1

2

=
1

(2π)
βd
2 |Σ̄i

2|
β
2 |Σ̄1|

1
2

∣∣β(Σ̄i
2)−1 + Σ−1

1

∣∣− 1
2

=
1

(2π)
βd
2

|Σ̄i
2|

1−β
2

∣∣Σ̄i
2(β(Σ̄i

2)−1 + (Σ̄i
1)−1)Σ̄i

1

∣∣− 1
2

=
1

(2π)
βd
2

|Σ̄i
2|

1−β
2

∣∣βΣ̄i
1 + Σ̄i

2

∣∣− 1
2

Thus the objective function Lβ(R) has the following explicit form

γ
∑
i

(
|Σ̄i

1|−
β
2 + |Σ̄i

2|−
β
2 − (β + 1)

d
2

(
|Σ̄i

2|
1−β
2 |βΣ̄i

1 + Σ̄i
2|−

1
2 + |Σ̄i

1|
1−β
2 |βΣ̄i

2 + Σ̄i
1|−

1
2

))
,

with γ = 1
β

√
1

(2π)βd(β+1)d
.

The gradient of |Σ̄i
1|−

β
2 with respect to R can be computed as

∇R

∣∣(IdRP)Σi
1(P>R>I>d )

∣∣− β2 = I>d

[
∇G |G>CG|−

β
2

]>
with G = R̃T and R̃ is the d × D matrix consisting of the first d rows of R and C = PΣi

1P
>.

According to matrix codebook [4] this is

−βI>d |G>CG|−
β
2 ·
(
CG(G>CG)−1

)>
.

Writing it back gives

−βI>d |Σ̄i
1|−

β
2 (Σ̄i

1)−1IdΣ̃1R.

where Σ̃1 = PΣ1P
>.

The gradient of the other term |Σ̄i
2|

1−β
2 |βΣ̄i

1 + Σ̄i
2|−

1
2 can be computed as

∇R |(I>d RP)Σi
2(P>R>I>d )|

1−β
2 · |β(IdRP)Σi

1(P>R>I>d ) + (IdRP)Σi
2(P>R>I>d )|− 1

2

= I>d

[
∇G

(
|G>DG|

1−β
2 · |βG>CG + G>DG|− 1

2

)]T
with G = R̃T and R̃ is the d×D matrix consisting of the first d rows of R and C = PΣi

1P
> and

D = PΣi
2P
>. According to the product rule this is

−I>d

[
(β − 1)|G>DG|−

β+1
2 · |G>DG| ·

(
GD(G>DG)−1

)> · |βG>CG + G>DG|− 1
2 +

|G>DG|
1−β
2 · |G>(βC + D)G|− 3

2 · |G>(βC + D)G| · ((βC + D)G(G>(βC + D)G)−1)>
]>

Writing it back gives

−I>d

(
(β − 1)|Σ̄i

2|
1−β
2 · |βΣ̄i

1 + Σ̄i
2|−

1
2 · (Σ̄i

2)−1IdΣ̃
i
2 +

|Σ̄i
2|

1−β
2 · |βΣ̄i + Σ̄i

2|−
1
2 · (βΣ̄i

1 + Σ̄i
2)−1Id(βΣ̃i

1 + Σ̃i
2)
)>

R
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The total gradient is

∇R Lβ(IdRP) = I>d

(
γ
∑
i

−β|Σ̄i
1|−

β
2 (Σ̄i

1)−1IdΣ̃
i
1 − β|Σ̄i

2|−
β
2 (Σ̄i

2)−1IdΣ̃
i
2 +

(β + 1)
d
2 |Σ̄i

2|
1−β
2 · |βΣ̄i

1 + Σ̄i
2|−

1
2 ·
[
(β − 1)(Σ̄2)−1IdΣ̃

i
2 + (βΣ̄i

1 + Σ̄i
2)−1Id(βΣ̃i

1 + Σ̃i
2)
]

+

(β + 1)
d
2 |Σ̄i

1|
1−β
2 · |βΣ̄i

2 + Σ̄i
1|−

1
2 ·
[
(β − 1)(Σ̄1)−1IdΣ̃

i
1 + (βΣ̄i

2 + Σ̄i
1)−1Id(βΣ̃i

2 + Σ̃i
1)
])

R.

4 Detailed Proof of Theorem 1

Note that [5] has provided a proof for the special case of one spatial filter. Let R̃ ∈ Rd×D denote
the orthogonal projection onto a subspace of dimension d and let Σ̃1 and Σ̃2 represent the whitened
covariance matrices with Σ̃1 + Σ̃2 = I. Without loss of generality2 we assume that R̃Σ̃1R̃

> = ∆1

and R̃Σ̃2R̃
> = I−∆1 with ∆1 are diagonal matrices.

The KL divergence divCSP algorithm (λ = 0) optimizes the following objective function Lkl(R̃)
(ignoring constant terms)

tr
(

(R̃Σ̃1R̃
>)−1(R̃Σ̃2R̃

>)
)

+

tr
(

(R̃Σ̃2R̃
>)−1(R̃Σ̃1R̃

>)
)

= tr
(
∆−1

1 (I−∆1)
)

+ tr
(
(I−∆1)−1∆1

)
=

d∑
i=1

1− νi
νi

+

d∑
i=1

νi
1− νi

,

where νi is the i-th diagonal element of ∆1.

Let us decompose R̃ =

[
U

V

]
into two matrices U ∈ Rk×D and V ∈ Rd−k×D as follows

U =

{
ri :

1− νi
νi

>
νi

1− νi

}
=⇒ νi < 0.5

V =

{
ri :

1− νi
νi

≤ νi
1− νi

}
=⇒ νi ≥ 0.5.

Thus we can rewrite the objective function Lkl(R̃) as
k∑
i=1

1− νi
νi

+
νi

1− νi︸ ︷︷ ︸
U

+

d∑
i=k+1

1− νi
νi

+
νi

1− νi︸ ︷︷ ︸
V

.

We prove that the top d CSP filters W, i.e. the top d eigenvectors vi (i = 1 . . . d) of Σ̃1 sorted by
αi = max{µi, 1−µi} where µi denotes the i-th eigenvalue of Σ̃1, maximize Lkl(R̃). Let us divide
W into Ũ and Ṽ as done above.

Case 1: Assume R̃ maximizes Lkl(R̃) and it consists of eigenvectors vi of Σ̃1, but there exist
vj ∈ R̃ with j > d (i.e. it is not among the top (according to the above sorting) d eigenvectors).
Thus vj 6∈W and there exist wl ∈W (which is among the top d eigenvectors) with wl 6∈ R̃.

Without loss of generality assume vj ∈ U. In the following we prove
1− νj
νj

+
νj

1− νj
<

1− νl
νl

+
νl

1− νl
,

2Because the basis in the projected subspace is arbitrary, i.e. the Kullback-Leibler divergence is invariant to
right multiplication of any non-singular matrix G ∈ Rd×d with Lkl(V) = Lkl(VG).
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where νl and νj denote the diagonal element when applying wl and vj , respectively. Note that
the function f(ν) = 1−ν

ν + ν
1−ν is maximized at the borders (one can show this by taking the

derivative).

Assume wl ∈ Ũ. Then νl < νj < 0.5 because wl is selected before vj (remember vj 6∈ W)
according to above sorting. Thus f(νj) < f(νl) as f(ν) is maximized for the smallest argument ν
(if ν < 0.5).

Assume wl ∈ Ṽ. Then 1 − νl < νj < 0.5 because wl is selected before vj according to above
sorting. Thus f(νj) < f(1− νl) = f(νl).

Let us define B as R̃, but with wl instead of vj . Thus Lkl(R̃) < Lkl(B). This is a contradiction to
the assumption that R̃ is the optimal solution.

Case 2: Assume R̃ maximizes Lkl(R̃) and there exist (at least one) rj ∈ R̃ with rj is not an
eigenvector of Σ̃1. Without loss of generality assume rj ∈ U. Let us define a new solution

B =

[
Ũ

Ṽ

]
as follows:

Ũ consists of k eigenvectors of Σ̃1 with smallest eigenvalues.
Ṽ consists of d− k eigenvectors of Σ̃1 with largest eigenvalues.

Let us denote the diagonal elements (eigenvalues) of UΣ̃1U
T as ν1 < . . . < νk < 0.5 and those

obtained with ŨΣ̃1Ũ
T as u1 < . . . < uk < 0.5. Note that ui = µi where µ1 < . . . < µD are the

eigenvectors of Σ̃1 (because Ũ consists of the smallest eigenvectors of Σ̃1). Cauchy’s interlacing
theorem [6] establishes the following relation between νi and ui, namely ui ≤ νi. Note that equality
only holds if U and Ũ are the same, i.e. if U consists of the eigenvectors of Σ̃1 (irrespectively of
permutation). Cauchy’s theorem implies that there are no νi and νj with uk < νi < νj < uk+1.
Together with the fact that f(ν) = 1−ν

ν + ν
1−ν is maximized at the borders (i.e. for smallest ν in

this case) this for all i implies

1− νi
νi

+
νi

1− νi
≤ 1− ui

ui
+

ui
1− ui

,

Since ∃i where this relation is strictly positive (because we assumed rj ∈ U), we obtain Lkl(U) <

Lkl(Ũ).

Let us denote the diagonal elements (eigenvalues) of VΣ̃1V
T as ν1 > . . . > νd−k ≥ 0.5 and those

obtained with ṼΣ̃1Ṽ
T as u1 > . . . > ud−k ≥ 0.5. Note that ui = µi where µ1 > . . . > µD are

the eigenvectors of Σ̃1 (because Ṽ consists of the largest eigenvectors of Σ̃1). Cauchy’s interlacing
theorem establishes the following relation between the νi and ui, namely νi ≤ ui. Note that equality
only holds if V and Ṽ are the same (irrespectively of permutation). Together with the fact that
f(ν) = 1−ν

ν + ν
1−ν is maximized at the borders (i.e. for largest ν in this case) this implies

1− νi
νi

+
νi

1− νi
≤ 1− ui

ui
+

ui
1− ui

,

ThusLkl(V) ≤ Lkl(Ṽ) and consequentlyLkl(R̃) = Lkl(Ũ) + Lkl(Ṽ) < Lkl(Ũ) + Lkl(Ṽ) = Lkl(B̃).

This contradicts the assumption that R̃ maximizes Lkl(R̃).
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