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Abstract

I present a new online learning algorithm that extends the exponentiated gradient
framework to infinite dimensional spaces. My analysis shows that the algorithm is
implicitly able to estimate the L2 norm of the unknown competitor, U , achieving
a regret bound of the order of O(U log(U T + 1))

√
T ), instead of the standard

O((U2 + 1)
√
T ), achievable without knowing U . For this analysis, I introduce

novel tools for algorithms with time-varying regularizers, through the use of local
smoothness. Through a lower bound, I also show that the algorithm is optimal up
to
√

log(UT ) term for linear and Lipschitz losses.

1 Introduction

Online learning provides a scalable and flexible approach for solving a wide range of prediction
problems, including classification, regression, ranking, and portfolio management. These algorithms
work in rounds, where at each round a new instance is given and the algorithm makes a prediction.
After the true label of the instance is revealed, the learning algorithm updates its internal hypothesis.
The aim of the classifier is to minimize the cumulative loss it suffers due to its prediction, such as
the total number of mistakes.

Popular online algorithms for classification include the standard Perceptron and its many variants,
such as kernel Perceptron [8], and p-norm Perceptron [9]. Other online algorithms, with properties
different from those of the standard Perceptron, are based on multiplicative (rather than additive)
updates, such as Winnow [12] for classification and Exponentiated Gradient (EG) [11] for regres-
sion.

Recently, Online Mirror Descent (OMD)1 and has been proposed as a general meta-algorithm for
online learning, parametrized by a regularizer [20]. By appropriately choosing the regularizer, most
online learning algorithms are recovered as special cases of OMD. Moreover, performance guaran-
tees can also be derived simply by instantiating the general OMD bounds to the specific regularizer
being used. So, for all the first-order online learning algorithms, it is possible to prove regret bounds
of the order of O(f(u)

√
T ), where T is the number of rounds and f(u) is the regularizer used in

OMD, evaluated on the competitor vector u. Hence, different choices of the regularizer will give
rise to different algorithms and guarantees. For example, p-norm algorithms can be derived from
the squared Lp-norm regularization, while EG can be derived from the entropic one. In particular
for the Euclidean regularizer η

√
T‖u‖2, we have a regret bound ofO(

√
T (‖u‖2/η+η)). Knowing

‖u‖ it is possible to tune η to have a O(‖u‖
√
T ) bound, that is optimal [1]. On the other hand, EG

has a regret bound of O(
√
T log d), where d is the dimension of the space.

In this paper, I use OMD to extend EG to infinite dimensional spaces, through the use of a carefully
designed time-varying regularizer. The algorithm, that I call Dimension-Free Exponentiated Gradi-

1The algorithm should be more correctly called Follow the Regularized Leader, however here I follow
Shalev-Shwartz in [20], and I will denote it by OMD.
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ent (DFEG), does not need direct access to single components of the vectors, rather it only requires
to access them through inner products. Hence, DFEG can be used with kernels too, extending for the
first time EG to the kernel domain. I prove a regret bound ofO(‖u‖ log(‖u‖T +1)

√
T ). Up to log-

arithmic terms, the bound of DFEG is equal to the optimal bound obtained through the knowledge
of ‖u‖, but it does not require the tuning of any parameter.

I built upon ideas of [23], but I designed my new algorithm as an instantiation of OMD, rather than
using an ad-hoc analysis. I believe that this route increases the comprehension of the inner working
of the algorithm, its relation to other algorithms, and it makes easier to extend it in other directions
as well. In order to analyze DFEG, I also introduce new and general techniques to cope with time-
varying regularizers for OMD, using the local smoothness of the dual of the regularization function,
that might be of independent interest. I also extend and improve the lower bound in [23], to match
the upper bound of DFEG up to a

√
log T term, and to show an implicit trade-off on the regret versus

different competitors.

1.1 Related works

Exponentiated gradient algorithms have been proposed by [11]. The algorithms have multiplicative
updates and regret bounds that depend logarithmically on the dimension of the input space. In
particular, they proposed a version of EG where the weights are not normalized, called EGU.

A closer algorithm to mine is the epoch-free in [23]. Indeed, DFEG is equivalent to theirs when used
on one dimensional problems. However, the extension to infinite dimensional spaces is nontrivial
and very different in nature from their extension to d-dimensional problems, that consists on run-
ning a copy of the algorithm independently on each coordinate. Their regret bound depends on the
dimension of the space and can neither be used with infinite dimensional spaces nor with kernels.

Vovk proposed two algorithms for square loss, with regret bounds of O((‖u‖ + Y )
√
T ) and

O(‖u‖
√
T ) respectively, where Y is an upper bound on the range of the target values [24]. A

matching lower bound is also presented, proving the optimality of the second algorithm. However,
the algorithms seem specific to the square loss and it is not possible to adapt them to other losses.
Indeed, the lower bound I prove shows that for linear and Lipschitz losses a

√
log(‖u‖T ) term

is unavoidable. Moreover, the second algorithm, being an instantiation of the Aggregating Algo-
rithm [25], does not seem to have an efficient implementation.

My algorithm also shares similarities in spirit with the family of self-confident algorithms [2, 9, 19],
in which the algorithm self-tunes its parameters based on internal estimates.

From the point of view of the proof technique, the primal-dual analysis of OMD is due to [19,
21]. Starting from the work of [10], it is now clear that OMD can be easily analyzed using only
a few basic convex duality properties. See the recent survey [20] for a lucid description of these
developments. The time-varying regularization for OMD has been explored in [6, 16, 19], but in
none of these works does the negative terms in the bound due to the time-varying regularizer play a
decisive role. The use of the local estimates of strong smoothness is new, as far as I know. A related
way to have a local analysis is through the local norms [20], but my approach is better tailored to
my needs.

2 Problem setting and definitions

In the online learning scenario the learning algorithms work in rounds [5]. Let X a Euclidean vector
space2, at each round t, an instance xt ∈ X, is presented to the algorithm, which then predicts a label
ŷt ∈ R. Then, the correct label yt is revealed, and the algorithm pays a loss `(ŷt, yt), for having
predicted ŷt, instead of yt. The aim of the online learning algorithm is to minimize the cumulative
sum of the losses, on any sequence of data/labels {(xt, yt)}Tt=1. Typical examples of loss functions
are, for example, the absolute loss, |ŷt − yt|, and the hinge loss, max(1 − ŷtyt, 0). Note that the
loss function can change over time, so in the following I will denote by `t : R→ R the generic loss

2All the theorems hold also in general Hilbert spaces, but for simplicity of exposition I consider a Euclidean
setting.
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Algorithm 1 Dimension-Free Exponentiated Gradient.
Parameters: 0.882 ≤ a ≤ 1.109, L > 0, δ > 0.
Initialize: θ1 = 0 ∈ X, H0 = δ
for t = 1, 2, . . . do

Receive ‖xt‖, where xt ∈ X
Set Ht = Ht−1 + L2 max

(
‖xt‖, ‖xt‖2

)
Set αt = a

√
Ht, βt = H

3
2
t

if ‖θt‖ == 0 then choose wt = 0

else choose wt = θt

βt‖θt‖ exp
(
‖θt‖
αt

)
Suffer loss `t(〈wt,xt〉)
Update θt+1 = θt − ∂`t(〈wt,xt〉)xt

end for

function received by the algorithm at time t. In this paper I focus on linear prediction of the form
ŷt = 〈wt,xt〉, where wt ∈ X represents the hypothesis of the online algorithm at time t.

We strive to design online learning algorithms for which it is possible to prove a relative regret
bound. Such analysis bounds the regret, that is the difference between the cumulative loss of the
algorithm,

∑T
t=1 `t(〈wt,xt〉), and the one of an arbitrary and fixed competitoru,

∑T
t=1 `t(〈u,xt〉).

We will consider L-Lipschitz losses, that is |`t(y)− `t(y′)| ≤ L|y − y′|, ∀y, y′.
I now introduce some basic notions of convex analysis that are used in the paper. I refer to [18] for
definitions and terminology. I consider functions f : X → R that are closed and convex. Given a
closed and convex function f with domain S ⊆ X, its Fenchel conjugate f∗ : X → R is defined as
f∗(u) = supv∈S

(
〈v,u〉−f(v)

)
. The Fenchel-Young inequality states that f(u)+f∗(v) ≥ 〈u,v〉

for all v,u. A vector x is a subgradient of a convex function f at v if f(u) − f(v) ≥ 〈u − v,x〉
for any u in the domain of f . The differential set of f at v, denoted by ∂f(v), is the set of all
the subgradients of f at v. If f is also differentiable at v, then ∂f(v) contains a single vector,
denoted by∇f(v), which is the gradient of f at v. Strong convexity and strong smoothness are key
properties in the design of online learning algorithms, they are defined as follows. A function f is
γ-strongly convex with respect to a norm ‖·‖ if for any u,v in its domain, and any x ∈ ∂f(u),

f(v) ≥ f(u) + 〈v − u,x〉+
γ

2
‖u− v‖2 .

The Fenchel conjugate f∗ of a γ-strongly convex function f is everywhere differentiable and 1
γ -

strongly smooth [10], this means that for all u,v ∈ X,

f∗(v) ≤ f∗(u) + 〈v − u,∇f∗(u)〉+
1

2γ
‖u− v‖2∗ .

In the remainder of the paper all the norms considered will be the L2 ones.

3 Dimension-Free Exponentiated Gradient

In this section I describe the DFEG algorithm. The pseudo-code is in Algorithm 1. It shares some
similarities with the exponentiated gradient with unnormalized weights algorithm [11], to the self-
tuning variant of exponentiated gradient in [19], and to the epoch-free algorithm in [23]. However,
note that it does not access to single coordinates ofwt and xt, but only their inner products. Hence,
we expect the algorithm not to depend on the dimension of X, that can be even infinite. In other
words, DFEG can be used with kernels as well, on contrary of all the mentioned algorithms above.

For the DFEG algorithm we have the following regret bound, that will be proved in Section 4.
Theorem 1. Let 0.882 ≤ a ≤ 1.109, δ > 0, then, for any sequence of input vectors {xt}Tt=1, any
sequence of L-Lipschitz convex losses {`t(·)}Tt=1, and any u ∈ X, the following bound on the regret
holds for Algorithm 1

T∑
t=1

`t(〈wt,xt〉)−
T∑
t=1

`t(〈u,xt〉) ≤
4 exp(1 + 1

a )

L
√
δ

+ a‖u‖
√
HT

(
ln
(
H

3
2

T ‖u‖
)
− 1
)
,
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where HT = δ +
∑T
t=1 L

2 max(‖xt‖, ‖xt‖2).

The bound has a logarithmic part, typical of the family of exponentiated gradient algorithms, but
instead of depending on the dimension, it depends on the norm of the competitor, ‖u‖. Hence, the
regret bound of DFEG holds for infinite dimensional spaces as well, that is, it is dimension-free.

It is interesting to compare this bound with the usual bound for online learning using an L2 regular-
izer. Using a time-varying regularizer ft(w) =

√
t
η ‖w‖

2 it is easy to see, e.g. [19], that the bound

would be3 O((‖u‖2/η + η)
√
T ). If an upper bound U on ‖u‖ is known, we can use it to tune η to

obtain an upper bound of the order of O(U
√
T ). On the other hand, we obtain for DFEG a bound

of O(‖u‖ log(‖u‖T + 1)
√
T ), that is optimal bound, up to logarithmic terms, without knowing U .

So my bound goes to constant if the norm of the competitor goes to zero. However, note that, for
any fixed competitor, the gradient descent bound is asymptotically better.

The lower bound on the range of a we get comes from technical details of the analysis. The param-
eter a is directly linked to the leading constant of the regret bound; therefore, it is intuitive that the
range of acceptable values must have a lower bound different from zero. This is also confirmed by
the lower bound in Theorem 2 below.

Notice that the bound is data-dependent because it depends on the sequence of observed input vec-
tors xt. A data-independent bound can be easily obtained from the upper bound on the norm of the
input vectors. The use of the function max(‖xt‖, ‖xt‖2) is necessary to have such a data-dependent
bound and it seems that it cannot be avoided in order to prove the regret bound.

It is natural to ask if the log term in the bound can be avoided. Extending Theorem 7 in [23], we can
reply in the negative to this question. In particular, the following theorem shows that the regret of any
online learning algorithm has a satisfy to a trade-off between the guarantees against the competitor
with norm equal to zero and the ones against other competitors. A similar trade-off has been proven
in the expert settings [7].
Theorem 2. Fix a non-trivial vector space X , a specific online learning algorithm, and let the
sequence of losses be composed by linear losses. If the algorithm guarantees a zero regret against
the competitor with zero L2 norm, then there exists a sequence of T vectors in X , such that the
regret against any other competitor is Ω(T ). On the other hand, if the algorithm guarantees a regret
at most of ε > 0 against the competitor with zero L2 norm, then, for any 0 < η < 1, there exists a
T0 and a sequence of T ≥ T0 unitary norm vectors zt ∈ X , and a vector u ∈ X such that

T∑
t=1

〈u, zt〉 −
T∑
t=1

〈wt, zt〉 ≥ (1− η)‖u‖
√

1

log 2

√√√√T log

(
η‖u‖

√
T

3ε

)
− 2 .

The proof can be found in the supplementary material. It is possible to show that the optimal η is of
the order of 1

log T , so that the leading constant approaches
√

1
log 2 ≈ 1.2011 when T goes to infinity.

It is also interesting to note that an L2 regularizer suffers a loss ofO(
√
T ) against a competitor with

zero norm, that cancels the
√

log T term.

4 Analysis

In this section I prove my main result. I will first briefly introduce the general OMD algorithm with
time-varying regularizers on which my algorithm is based.

4.1 Online mirror descent and local smoothness

Algorithm 2 is a generic meta-algorithm for online learning. Most of the online learning algorithms
can be derived from it, choosing the functions ft and the vectors zt. The following lemma, that is
a generalization of Corollary 4 in [10], Corollary 3 in [6], and Lemma 1 in [16], is the main tool to
prove the regret bound for the DFEG algorithm. The proof is in the supplementary material.

3Despite what claimed in Section 1 of [23], the use of the time-varying regularizer ft(w) =
√
t
η
‖w‖2

guarantees a sublinear regret for unconstrained online convex optimization, for any η > 0.
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Algorithm 2 Time-varying Online Mirror Descent
Parameters: A sequence of convex functions f1, f2, . . . defined on S ⊆ X.
Initialize: θ1 = 0 ∈ X
for t = 1, 2, . . . do

Choose wt = ∇f∗t (θt)
Observe zt ∈ X
Update θt+1 = θt + zt

end for

Lemma 1. Assume Algorithm 2 is run with functions f1, f2, . . . defined on a common domain
S ⊆ X. Then for any w′t,u ∈ S we have

T∑
t=1

〈zt,u−w′t〉 ≤ fT (u) +

T∑
t=1

(
f∗t (θt+1)− f∗t−1(θt)− 〈w′t, zt〉

)
,

where we set f∗0 (w′1) = 0. Moreover, if f∗1 , f
∗
2 , . . . are twice differentiable, and

max0≤τ≤1 ‖∇2f∗t (θt + τzt)‖ ≤ λt, then we have

f∗t (θt+1)− f∗t−1(θt)− 〈wt, zt〉 ≤ f∗t (θt)− f∗t−1(θt) +
λt
2
‖zt‖2 .

Note that the above Lemma is usually stated assuming the strong convexity of ft, that is equivalent
to the strong smoothness of f∗t , that in turns for twice differentiable functions is equivalent to a
global bound on the norm of the Hessian of f∗t (see Theorem 2.1.6 in [15]). Here I take a different
route, assuming the functions f∗t to be twice differentiable, but using the weaker hypothesis of local
boundedness of the Hessian of f∗t . Hence, for twice differentiable conjugate functions, this bound is
always tighter than the ones in [6, 10, 16]. Indeed, in our case, the global strong smoothness cannot
be used to prove any meaningful regret bound.

We derive the Dimension-Free Exponentiated Gradient from the general OMD above. Set in Al-
gorithm 2 ft(w) = αt‖w‖(log(βt‖w‖) − 1), where αt and βt are defined in Algorithm 1, and
zt = −∂`t(〈wt,xt〉)xt. The proof idea of my theorem is the following. First, assume that we
are on a round where we have a local upper bound on the norm of the Hessian f∗t . The usual ap-
proach in these kind of proof is to have a regularizer that is growing over time as

√
t, so that the

terms f∗t (θt)− f∗t−1(θt) are negative and can be safely discarded. At the same time the sum of the
squared norms of the gradients will typically be of the order of O(

√
T ), giving us a O(

√
T ) regret

bound (see for example the proofs in [6]). However, following this approach in DFEG we would
have that the sum of norms of the squared gradients grows much faster than O(

√
T ). This is due to

the fact that the global strong smoothness is too small. Hence I introduce a different proof method.
In the following, I will show the surprising result that with my choice of the regularizers ft, the
terms f∗t (θt) − f∗t−1(θt) and the squared norm of the gradient cancel out. Notice that already in
[16, 17] it has been advocated not to discard those terms to obtain tighter bounds. Here the same
terms play a major role in the proof and they are present thanks to the time-varying regularization.
This is in agreement with Theorem 9 in [23] that rules out algorithms with a fixed regularizer to
obtain regret bounds like Theorem 1.

It remains to bound the regret in the rounds where we do not have an upper bound on the norm of
the Hessian. In these rounds I show that the norm of wt (and θt) is small enough so that the regret
is still bounded, thanks to the choice of βt.

4.2 Proof of the main result

We start defining the new regularizer and show its properties in the following Lemma (proof
in the supplementary material). Note the similarities with EGU, where the regularizer is∑d
i=1 wi(log(wi)− 1), w ∈ Rd, wi ≥ 0 [11].

Lemma 2. Define f(w) = α‖w‖(ln(β‖w‖)− 1), for α, β > 0. The following properties hold

• f∗(θ) = α
β exp ‖θ‖α .
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• ∇f∗(θ) = θ
β‖θ‖ exp ‖θ‖α .

• ‖∇2f∗(θ)‖2 ≤ 1
βmin(‖θ‖,α) exp(‖θ‖α ).

Equipped with a local upper bound on the Hessian of f∗, we can now use Lemma 1. We notice
that Lemma 1 also guides us in the choice of the sequences αt. In fact if we want the regret to be
Õ(
√
T ), αt must be Õ(

√
T ) too.

In the proof of Theorem 1 we also use the following three technical lemmas, whose proofs are in
the supplementary material. The first two are used to upper bound the exponential function with
quadratic functions.

Lemma 3. Let M > 0, then for any exp(M)
M2+1 ≤ p ≤ exp(M), and 0 ≤ x ≤ M , we have exp(x) ≤

p+ exp(M)−p
M2 x2 .

Lemma 4. Let M > 0, then for any 0 ≤ x ≤M , we have exp(x) ≤ 1 + x+ exp(M)−1−M
M2 x2.

Lemma 5. For any p, q > 0 we have that 2√
p −

2√
p+q
≥ q

(p+q)
3
2

.

Proof of Theorem 1. In the following denote by n(x) := max(‖x‖, ‖x‖2). We will use Lemma 1
to upper bound the regret of DFEG. Hence, using the notation in Algorithm 1, set zt =
−∂`t(〈wt,xt〉)xt, and ft(w) = αt‖w‖(log(βt‖w‖) − 1). Observe that, by the hypothesis on
`t, we have ‖zt‖ ≤ L‖xt‖. We first consider two cases, based on the norm of θt.

Case 1: ‖θt‖ > αt + ‖zt‖.
With this assumption, and using the third property of Lemma 2, we have

max
0≤τ≤1

‖∇2f∗t (θt + τzt)‖ ≤ max
0≤τ≤1

exp
(
‖θt+τzt‖

αt

)
βt min(‖θt + τzt‖, αt)

≤
exp

(
‖θt‖+‖zt‖

αt

)
βtαt

.

We now use the second statement of Lemma 1. We have that λt‖zt‖2
2 + f∗t (θt) − f∗t−1(θt) can be

upper bounded by
‖zt‖2

2αtβt
exp

(
‖θt‖+ ‖zt‖

αt

)
+
αt
βt

exp

(
‖θt‖
αt

)
− αt−1
βt−1

exp

(
‖θt‖
αt−1

)
≤ ‖zt‖

2

2αtβt
exp

(
‖θt‖+ ‖zt‖

αt

)
+
αt
βt

exp

(
‖θt‖
αt

)
− αt−1
βt−1

exp

(
‖θt‖
αt

)
= exp

(
‖θt‖
αt

)(
‖zt‖2

2aH2
t

exp

(
‖zt‖
αt

)
+

a

Ht
− a

Ht−1

)
. (1)

We will now prove that the term in the parenthesis of (1) is negative. It can be rewritten as

‖zt‖2

2aH2
t

exp

(
‖zt‖
αt

)
+
a

Ht
− a

Ht−1
=
‖zt‖2Ht−1 exp

(
‖zt‖
αt

)
− 2a2Ht−1L

2n(xt)− 2a2L4(n(xt))
2

2aH2
tHt−1

,

and from the expression of αt we have that ‖zt‖
αt
≤ 1

a , so we now use Lemma 3 with p = 2a2 and

M = 1/a. These are valid settings because exp( 1
a )

1
a2 +1

≤ 2a2 ≤ exp( 1
a ), ∀ 0.825 ≤ a ≤ 1.109, as it

can be verified numerically.
‖zt‖2

2aH2
t

exp

(
‖zt‖
αt

)
+

a

Ht
− a

Ht−1

≤
‖zt‖2Ht−1

(
2a2 + a2(exp( 1

a )− 2a2)‖zt‖2
α2

t

)
− 2a2Ht−1L

2n(xt)− 2a2L4(n(xt))
2

2aH2
tHt−1

≤
L2‖xt‖2Ht−1

(
2a2 + a2(exp( 1

a )− 2a2)L
2‖xt‖2
a2Ht

)
− 2a2Ht−1L

2‖xt‖2 − 2a2L4‖xt‖2

2aH2
tHt−1

≤
L4‖xt‖4(exp( 1

a )− 4a2)

2aH2
tHt−1

≤ 0, (2)
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where in last step we used the fact that exp( 1
a ) ≤ 4a2,∀ a ≥ 0.882, as again it can be verified

numerically.

Case 2: ‖θt‖ ≤ αt + ‖zt‖.
We use the first statement of Lemma 1, setting w′t = wt if ‖θ‖ 6= 0, and w′t = 0 otherwise. In this
way, from the second property of Lemma 2, we have that ‖w′t‖ ≤ 1

βt
exp(‖θt‖

αt
). Note that any other

choice of w′t satisfying the the previous relation on the norm of w′t would have worked as well.

f∗t (θt+1)− f∗t−1(θt) =
αt
βt

exp

(
‖θt+1‖
αt

)
− αt−1
βt−1

exp

(
‖θt‖
αt−1

)

≤ exp

(
‖θt‖
αt

)(
αt
βt

exp

(
‖zt‖
αt

)
− αt−1
βt−1

)
= a exp

(
‖θt‖
αt

) exp
(
‖zt‖
a
√
Ht

)
Ht−1 −Ht

Ht−1Ht
. (3)

Remembering that ‖zt‖
αt
≤ 1

a , and using Lemma 4 with M = 1
a , we have

Ht−1 exp

(
‖zt‖
a
√
Ht

)
−Ht−1 − L2n(xt) ≤ Ht−1 exp

L‖xt‖
a
√
Ht

−Ht−1 − L2‖xt‖2

≤ Ht−1

(
1 +

L‖xt‖
a
√
Ht

+ a2
(

exp

(
1

a

)
− 1− 1

a

)
L2‖xt‖2

a2Ht

)
−Ht−1 − L2‖xt‖2

=
LHt−1‖xt‖
a
√
Ht

+

(
exp

(
1

a

)
− 1− 1

a

)
L2Ht−1‖xt‖2

Ht
− L2‖xt‖2

≤ LHt−1‖xt‖
a
√
Ht

+ L2‖xt‖2
(

exp

(
1

a

)
− 2− 1

a

)
≤ LHt−1‖xt‖

a
√
Ht

, (4)

where in the last step we used the fact that exp( 1
a )− 2− 1

a ≤ 0,∀ a ≥ 0.873, verified numerically.
Putting together (3) and (4), we have

f∗t (θt+1)− f∗t−1(θt)− 〈w′t, zt〉 ≤ exp

(
‖θt‖
αt

)
L‖xt‖

H
3
2
t

− 〈w′t, zt〉

≤ exp

(
‖θt‖
αt

)
L‖xt‖

H
3
2
t

+ L‖w′t‖‖xt‖ ≤ exp

(
‖θt‖
αt

)
L‖xt‖

H
3
2
t

+ exp

(
‖θt‖
αt

)
L‖xt‖
βt

= 2 exp

(
‖θt‖
αt

)
L‖xt‖

H
3
2
t

≤
2 exp(1 + 1

a )L‖xt‖

H
3
2
t

, (5)

where in the second inequality we used the Cauchy-Schwarz inequality and the Lipschitzness of `t,
in the third the bound on the norm of w′t, and in the last inequality the fact that ‖θt‖ ≤ αt + ‖zt‖
implies exp(‖θt‖

αt
) ≤ exp(1 + 1

a ). Putting together (2) and (5) and summing over t, we have

T∑
t=1

(
f∗t (θt+1)− f∗t−1(θt)− 〈w′t, zt〉

)
≤

T∑
t=1

2 exp(1 + 1
a )L‖xt‖

H
3
2
t

≤ 2

L

T∑
t=1

exp(1 + 1
a )L2‖xt‖

(
∑t
j=1 L

2‖xt‖+ δ)
3
2

≤
4 exp(1 + 1

a )

L

T∑
t=1

 1√∑t−1
j=1 L

2‖xt‖+ δ
− 1√∑t

j=1 L
2‖xt‖+ δ

 ≤ 4 exp(1 + 1
a )

L
√
δ

,

where in the third inequality we used Lemma 5.

The stated bound can be obtained observing that `t(〈wt,xt〉) − `t(〈u,xt〉) ≤ 〈u −wt, zt〉, from
the convexity of `t and the definition of zt.

5 Experiments

A full empirical evaluation of DFEG is beyond the scope of this paper. Here I just want to show the
empirical effect of some of its theoretical properties. In all the experiments I used the absolute loss,
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Figure 1: Left: regret versus number of input vectors on synthetic dataset. Center and Right: total loss for
DFEG and Kernel GD on the cadata and cpusmall dataset respectively.

so L = 1, a is set to the minimal value allowed by Theorem 1 and δ = 1. I denote by Kernel GD
the OMD with the regularizer

√
t
η ‖w‖

2.

First, I generated synthetic data as in the proof of Theorem 2, that is the input vectors are all the same
and the yt is equal to 1 for the t even and −1 for the others. In this case we know that the optimal
predictor has norm equal to zero and we can exactly calculate the value of the regret. Figure 1(left)
I have plotted the regret as a function of the number of input vectors. As predicted by the theory,
DFEG has a constant regret, while Kernel GD has a regret of the form O(η

√
T ). Hence, it can have

a constant regret only when η is set to zero, and this can be done only with prior knowledge of ‖u‖,
that is impossible in practical applications.

For the second experiment, I analyzed the behavior of DFEG on two real word regression datasets,
cadata and cpusmall4. I used the Gaussian kernel with variance equal to the average distance be-
tween training input vectors. I have plotted in Figure 1(central) the final cumulative loss of DFEG
and the ones of GD with varying values of η. We see that, while the performance of Kernel GD can
be better of the one of DFEG, as predicted by the theory, its performance varies greatly in relation
to η. On the other hand the performance of DFEG is close to the optimal one without the need to
tune any parameters. It is also worth noting the catastrophic result we can get from a wrong tuning
of η in GD. Similar considerations hold for the cpusmall dataset in Figure 1(right).

6 Discussion

I have presented a new algorithm for online learning, the first one in the family of exponentiated
gradient to be dimension-free. Thanks to new analysis tools, I have proved that DFEG attains a
regret bound of O(U log(U T + 1))

√
T ), without any parameter to tune. I also proved a lower

bound that shows that the algorithm is optimal up to
√

log T term for linear and Lipschitz losses.

The problem of deriving a regret bound that depends on the sequence of the gradients, rather than

on the xt, remains open. Resolving this issue would result in the tighter O(
√∑T

t=1 `t(〈wt,xt〉))
regret bounds in the case that the `t are smooth [22]. The difficulty in proving these kind of bounds
seem to lie in the fact that (2) is negative only because Ht −Ht−1 is bigger than ‖zt‖2.
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[13] J. Matoušek and J. Vondrák. The Probabilistic Method: Lecture Notes. KAM-DIMATIA series. Charles
Univ., 2001.

[14] B. D. McKay. On Littlewoods estimate for the binomial distribution. Advanced Applied Probability,
21:475–478, 1989.

[15] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer, 2003.

[16] F. Orabona and K. Crammer. New adaptive algorithms for online classification. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Process-
ing Systems 23, pages 1840–1848. 2010.

[17] F. Orabona, K. Crammer, and N. Cesa-Bianchi. A generalized online mirror descent with applications to
classification and regression, 2013. arXiv:1304.2994.

[18] R. T. Rockafellar. Convex Analysis (Princeton Mathematical Series). Princeton University Press, 1970.

[19] S. Shalev-Shwartz. Online learning: Theory, algorithms, and applications. Technical report, The Hebrew
University, 2007. PhD thesis.

[20] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine
Learning, 4(2), 2012.

[21] S. Shalev-Shwartz and Y. Singer. A primal-dual perspective of online learning algorithms. Machine
Learning Journal, 2007.

[22] N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and fast rates. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems 23, pages 2199–2207. 2010.

[23] M. Streeter and B. McMahan. No-regret algorithms for unconstrained online convex optimization. In
P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 2411–2419. 2012.

[24] V. Vovk. On-line regression competitive with reproducing kernel hilbert spaces. In Jin-Yi Cai, S.Barry
Cooper, and Angsheng Li, editors, Theory and Applications of Models of Computation, volume 3959 of
Lecture Notes in Computer Science, pages 452–463. Springer Berlin Heidelberg, 2006.

[25] V. G. Vovk. Aggregating strategies. In COLT, pages 371–386, 1990.

9



7 Appendix

7.1 Proof of Lemma 1

Proof. Let ∆t = f∗t (θt+1)− f∗t−1(θt). The Fenchel-Young inequality implies

T∑
t=1

∆t = f∗T (θT+1)− f∗0 (θ1) = f∗T (θT+1) ≥ 〈u,θT+1〉 − fT (u) =

T∑
t=1

〈u, zt〉 − fT (u) .

Hence, for any sequence of vectors w′t we have

T∑
t=1

〈u−w′t, zt〉 ≤ fT (u) +

T∑
t=1

(∆t − 〈w′t, zt〉) .

For the second statement, using the multivariate version of the Taylor’s theorem, and recalling that
θt+1 = θt + zt and wt = ∇f∗t (θt), we have that

f∗t (θt+1)− f∗t (θt) ≤ 〈∇f∗t (θt), zt〉+
max0≤τ≤1 ‖∇2f∗t (θt + τzt)‖

2
‖zt‖2

≤ 〈wt, zt〉+
λt
2
‖zt‖2 .

Hence

∆t = f∗t (θt+1)− f∗t (θt) + f∗t (θt)− f∗t−1(θt) ≤ f∗t (θt)− f∗t−1(θt) + 〈wt, zt〉+
λt
2
‖zt‖2 .

7.2 Proof of Lemma 2

Proof. The first two results comes directly from the definition of Fenchel dual.

To prove the second result, it is sufficient to prove that 〈∇2f∗(θ)x,x〉 ≤
1

βmin(‖θ‖,α) exp(‖θ‖α )‖x‖2, ∀x ∈ X. For simplicity of exposition and w.l.o.g. assume the

space X = Rd. Hence, we define Ψ(x) = α
β exp(

√
x
α ), and φ(x) = x2, so that

〈∇2f∗(θ)x,x〉 = Ψ′′

(
d∑
r=1

φ(θr)

)(
d∑
r=1

φ′(θr)xr

)2

+ Ψ′

(
d∑
r=1

φ(θr)

)
d∑
r=1

φ′′(θr)x
2
r .

The first and second derivatives of Ψ(x) and φ(x) are

Ψ′(x) =
1

2β
√
x

exp

(√
x

α

)
, Ψ′′(x) =

√
x− α

4αβx
3
2

exp

(√
x

α

)
,

φ′(x) = 2x, φ′′(x) = 2,

hence we have

〈∇2f∗(θ)x,x〉 =

(
2

d∑
r=1

θrxr

)2

‖θ‖ − α
4αβ‖θ‖3

exp

(
‖θ‖
α

)
+

1

β‖θ‖
exp

(
‖θ‖
α

) d∑
r=1

x2r .

If ‖θ‖ > α we can use Cauchy-Schwarz inequality to have

〈∇2f∗(θ)x,x〉 ≤ ‖x‖2 ‖θ‖ − α
αβ‖θ‖

exp

(
‖θ‖
α

)
+

1

β‖θ‖
exp

(
‖θ‖
α

)
‖x‖2 =

1

αβ
exp

(
‖θ‖
α

)
‖x‖2 .

On the other hand, if ‖θ‖ ≤ α, we get 〈∇2f∗(θ)x,x〉 ≤ 1
β‖θ‖ exp(‖θ‖α )‖x‖2. Putting together

these two upper bounds, we have the stated result.
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7.3 Proof of Lemma 3

The lemma upper bounds the exponential function with a quadratic form without the linear term.

Proof. Define f(x) = x − log
(
p+ exp(M)−p

M2 x2
)

, we will prove the equivalent statement f(x) ≤
0, ∀0 ≤ x ≤ M . We have that f(x) is equal to 0 for x = M , hence it is enough to prove that the
derivative of f(x) is non-negative for 0 ≤ x ≤M . The derivative of f(x) is

1−
2x exp(M)−p

M2

p+ exp(M)−p
M2 x2

=
p+ exp(M)−p

M2 x2 − 2x exp(M)−p
M2

p+ exp(M)−p
M2 x2

,

that is always non-negative with the stated conditions on p.

7.4 Proof of Lemma 4

The lemma is a generalization of the well-known bound exp(x) ≤ 1 +x+ (e− 2)x2, ∀ 0 ≤ x ≤ 1.

Proof. Define f(x) = x − log
(

1 + x+ exp(M)−1−M
M2 x2

)
, we will prove the equivalent statement

f(x) ≤ 0, ∀0 ≤ x ≤ M . We have that the f(x) is equal to 0 for x = M and x = 0, hence it is
enough to prove that f(x) has only one minimum 0 < x < M . The derivative of f(x) is

1−
1 + 2x exp(M)−1−M

M2

1 + x+ exp(M)−1−M
M2 x2

=
x
(

1− 2 exp(M)−1−M
M2 + exp(M)−1−M

M2 x
)

1 + x+ exp(M)−1−M
M2 x2

.

Note that 2 − M2

exp(M)−1−M = 2
exp(M)−1−M−M2

2

exp(M)−1−M ≥ 0 because exp(M) ≥ 1 + M + M2

2 , by
the Taylor expansion of exp. Hence, we have that the function f(x) has a minimum in x = 2 −

M2

exp(M)−1−M .

7.5 Proof of Lemma 5

Proof.

2
√
p
− 2√

p+ q
= 2

√
p+ q −√p
√
p
√
p+ q

≥ q
√
p(p+ q)

≥ q

(p+ q)
3
2

, (6)

where in the first inequality we used the concavity of the square root function, and in the second we
upper bounded p with p+ q.

7.6 Proof of Theorem 2

We first present a new tight lower bound on the Bernoulli distribution’s tail, to allow to improve the
leading constant of the regret lower bound and that has the right dependency in the denominator on
k . A similar bound has been used in the proof of the lower bound in [23], but their proof does not
explain how they numerically calculated the global minimum of function with an infinite number
of local minima. We recover essentially their same bound for k =

√
T , and greatly improves it for

bigger values. We also improve over similar known results, e.g. Proposition 7.3.2 in [13]. A similar
bound for k =

√
T for a Bernoulli with arbitrary probability appears also in [4], but they present a

lower bound that is worse by a factor of about 2 compared to mine.
Lemma 6. Let T ≥ 2 an even number of Bernoulli random variables zi. Then for any k ∈ N0 such
that k ≤ 1

2T − 1, we have

P

(
T∑
i=1

zi ≥
1

2
T + k

)
≥

√
2π

2 exp
(
1
6

) 2−y
2

(π − 1)y +
√
y2 + 2π

,

where y = 2k√
T

.
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Proof. We use Theorem 2 in [14], that specialized to our case says that

P

(
T∑
i=1

zi ≥
1

2
T + k

)
≥ 1

2

√
T

(
T − 1

1
2T + k − 1

)
21−T

Q(y)

φ(y)
, (7)

where φ(x) is the unit variance, zero mean Gaussian, 1√
2π

exp(−x
2

2 ) and Q(x) is its CDF,∫ +∞
x

φ(u)du.

We start lower bounding the ratio Q(y)
φ(y) using the inequality in [3], that says

exp

(
x2

2

)∫ +∞

x

exp

(
− t

2

2

)
dt ≥ π

(π − 1)x+
√
x2 + 2π

.

To bound the binomial coefficient we make use of the following Stirling approximation, for any
n ≥ 1,

√
2πnnn exp(−n) < n! < exp

(
1

12

)√
2πnnn exp(−n) .

Hence, for any n > 1 and p ∈ (0, 1) such that n− pn ≥ 1, after some algebra we obtain(
n

pn

)
≥ 2

2nh(p)

exp
(
1
6

)√
2πn

,

where h(p) is the binary entropy−p log2 p−(1−p) log2(1−p). Using the well-known lower bound
for the binary entropy

−p log2 p− (1− p) log2(1− p) ≥ 1− 4

(
p− 1

2

)2

,

and some overapproximation, we obtain(
T − 1

1
2T + k − 1

)
=

(
T

1
2T + k

) 1
2T + k

T
≥ 1

2

(
T

1
2T + k

)
≥ 2T−

4k2

T

exp
(
1
6

)√
2πT

, (8)

where we assumed that 1
2T − k ≥ 1. Putting together (7)-(8), and using the definition of y we have

P

(
T∑
i=1

zi ≥
1

2
T + k

)
≥

√
2π

2 exp
(
1
6

) 2−y
2

(π − 1)y +
√
y2 + 2π

.

Proof of Theorem 2. The first part of the theorem is proved observing that, if the algorithm guaran-
tees a zero regret against a null competitor, this implies that

∑T
t=1〈wt,xt〉 ≥ 0 for any sequence

of xt. This implies that wt must be equal to the null vector, for all the t, hence the regret against
competitors different from the null ones must be Ω(T ).

For the second part of the theorem, we proceed similarly as in proof of Theorem 7 in [23], extending
it to arbitrary vector spaces. Set zt = btq, where q is a fixed arbitrary vector in X with unitary
norm, and bt are independent random variable that assumes the value of 1 with probability 0.5 and
-1 with probability 0.5. Hence, we have that E[

∑T
t=1〈wt, zt〉] = 0, and also

∑T
t=1〈wt, zt〉 ≥ −ε

for the hypothesis on the regret. For any k > 0, it follows that

0 = E

[
T∑
t=1

〈wt, zt〉

]
= E

[
T∑
t=1

〈wt, zt〉
∣∣∣∣
∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ < 2k

]
P

(∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ < 2k

)

+ E

[
T∑
t=1

〈wt, zt〉
∣∣∣∣
∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

]
P

(∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

)

≥ −ε+ E

[
T∑
t=1

〈wt, zt〉
∣∣∣∣
∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

]
P

(∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

)
,
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hence

E

[
T∑
t=1

〈wt, zt〉
∣∣∣∣
∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

]
≤ ε

P
(∥∥∥∑T

t=1 zt

∥∥∥ ≥ 2k
) =

ε

P
(∣∣∣∑T

t=1 bt

∣∣∣ ≥ 2k
)

=
ε

2P
(∑T

t=1 bt ≥ 2k
) .

Using the fact that P
(∑T

t=1 bt ≥ 2k
)

= P
(∑T

t=1
bt+1
2 ≥ 1

2T + k
)

, where bt+1
2 are Bernoulli

random variables, we can apply Lemma 6, to obtain

P

(
T∑
t=1

bt ≥ 2k

)
≥

√
2π

2 exp
(
1
6

) 2−y
2

(π − 1)y +
√
y2 + 2π

≥
√

2π

2 exp
(
1
6

) 2−y
2

πy +
√

2π
≥ 1

3

2−y
2

y + 1
,

where y = 2k√
T

. Set k =

⌊
1
2

√
T

log 2 log
(
η‖u‖

√
T

3ε

)⌋
, where 0 < η < 1. There exists a T0 such that

for T ≥ T0 we have that y = 2k√
T
≥ 1, hence y + 1 ≤ 2y, so we have

E

[
T∑
t=1

〈wt, zt〉
∣∣∣∣
∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥ ≥ 2k

]
≤ 3 ε 2y

2

y ≤ 2ηk‖u‖

From the above inequality we can infer that there exists a sequence of zt, and u = α
∑T
t=1 zt with

α > 0, such that

Regret(u) = ‖u‖

∥∥∥∥∥
T∑
t=1

zt

∥∥∥∥∥−
T∑
t=1

〈wtzt〉 ≥ (1− η)‖u‖2k .
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