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1 EP Updates for the Horseshoe Prior

In this section we derive the EP updates of the approximate factors g̃j . For simplicity, we focus ex-
clusively on the updates without any damping effect. The inclusion of damping is straight-forward.
It simply consists in setting for j = 1, . . . , d, g̃j = g̃εnewg̃

1−ε
old , where ε ∈ [0, 1] is the parameter that

controls the amount of damping. In our experiments we set ε = 0.5 and progressively decreased
its value by 1% after each EP iteration.

We will consider the following form for the approximate factors g̃j :

g̃j(wj , uj , vj) = Z̃j exp

{
− 1

2η̃j
(wj − m̃j)

2

}
exp

{
− 1

2ν̃j
u2j

}
exp

{
− 1

2ξ̃j
v2j

}
. (1)

That is, g̃j is a factorizing un-normalized Gaussian distribution with free parameters Z̃j , m̃j , η̃j ,

ν̃j and ξ̃j to be adjusted by EP.
The first step in the parallel EP algorithm is to compute the marginals of the current approxi-

mate posterior distribution. For this, the formulas for the product of Gaussian distributions have
to be used. These formulas are found in the appendix of [1]. Denote by q the posterior approxima-
tion, and by µ and Vw the mean vector and covariance matrix of the Gaussian approximation for
w, respectively. Similarly, denote by Vu and Vv the covariance matrices of the Gaussian approx-
imation for u and v, respectively. Then, we have that q(z) = N (w|µ,Vw)N (u|0,Vu)N (v|0,Vv)
and from the definition of q(z) ∝ f(w)hu(u)hv(v)

∏
j g̃j we have that

V−1w = Πη̃ +
1

σ2
XTX , µ = Vw

(
1

σ2
XTy + Πη̃m̃

)
,

V−1u = Πν̃ +
1

ρ2
C−1 , V−1v = Πξ̃ +

1

γ2
C−1 (2)

where Πη̃, Πν̃ and Πξ̃ are diagonal matrices whose j-th entries are equal to η̃−1j , ν̃−1j and ξ̃−1j ,
respectively, and where m̃ is a vector whose j-th entry is equal to m̃j . From these expressions
Vw, Vu and Vv can be efficiently computed using the Woodbury matrix identity formula. In
particular,

Vw = Π−1η̃ −Π−1η̃ XT
(
Iσ2 + XΠ−1η̃ XT

)−1
XΠ−1η̃ . (3)

(4)

Recall that C = ∆D∆ + ∆PPT∆, with ∆ and D diagonal matrices. Then,

C−1 = ∆−1D−1∆−1 −∆−1D−1P
(
I + PTD−1P

)−1
PTD−1∆−1 (5)
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and

V−1u = Πν̃ +
1

ρ2
∆−1D−1∆−1 −∆−1D−1P

(
Iρ2 + ρ2PTD−1P

)−1
PTD−1∆−1 , (6)

V−1v = Πξ̃ +
1

γ2
∆−1D−1∆−1 −∆−1D−1P

(
Iγ2 + γ2PTD−1P

)−1
PTD−1∆−1 , (7)

Define

Gρ = (Πν̃ +
1

ρ2
∆−1D−1∆−1)−1 = ρ2∆D∆(ρ2Πν̃∆D∆ + I)−1 , (8)

Gγ = (Πξ̃ +
1

γ2
∆−1D−1∆−1)−1 = γ2∆D∆(γ2Πξ̃∆D∆ + I)−1 . (9)

Using again the Woodbury matrix identity formula we have that

Vu = Gρ + Gρ∆
−1D−1P

(
Iρ2 + ρ2PTD−1P−PTD−1∆−1Gρ∆

−1D−1P
)−1

PTD−1∆−1Gρ

= Gρ + Lρ
(
I + PTBρP

)−1
LT
ρ , (10)

Vv = Gγ + Gγ∆
−1D−1P

(
Iγ2 + γ2PTD−1P−PTD−1∆−1Gγ∆

−1D−1P
)−1

PTD−1∆−1Gγ

= Gγ + Lγ
(
I + PTBγP

)−1
LT
γ , (11)

where we have defined

Lρ = ρ∆(ρ2Πν̃∆D∆ + I)−1P , Bρ =
(
ρ−2∆−1Π−1ν̃ ∆−1 + D

)−1
, (12)

Lγ = γ∆(ρ2Πν̃∆D∆ + I)−1P , Bγ =
(
γ−2∆−1Π−1

ξ̃
∆−1 + D

)−1
. (13)

Lρ and Lγ are matrices of size d ×m. Similarly,
(
I + PTBγP

)
and

(
I + PTBρP

)
are matrices

of size m ×m. The consequence is that if n < d and m < d the diagonals of the matrices Vw,
Vv and Vu, which are required to compute the marginal variances of q can be obtained with
cost O(n2d), O(m2d) and O(m2d), respectively. Computing the vector µ has a cost O(n2d) using
similar arguments.

Given the marginals of q, we compute for each g̃j the corresponding q\j distribution as q\j ∝
q/g̃j , where all the latent variables that are different from wj , uj and vj have been marginalized
in q. Consider q\j(wj , vj , uj) = N (wj |mj , ηj)N (uj |0, νj)N (vj |0, ξj). Using the formulas for the
quotient of Gaussian distributions, the parameters of q\j are:

ηj =
(
V −1w(j,j) − η̃

−1
j

)−1
, mj = ηj

(
V −1w(j,j)µj − η̃

−1
j m̃j

)
,

νj =
(
V −1u(j,j) − ν̃

−1
j

)−1
, ξj =

(
V −1v(j,j) − ξ̃

−1
j

)−1
. (14)

Given these parameters for each dimension j we compute the optimal parameters of each approx-
imate factor g̃j using the formulas described in the appendix of [1]. For this, we first compute the
normalization constant sj of gjq

\j . This is done as follows:

sj =

∫ +∞

−∞

∫ +∞

0

N
(
wj |0,

νj
ξj
λ2j

)
C+ (λj |0, 1)N (wj |mj , ηj)dλjdwj

=

∫ +∞

0

N
(
mj |0,

νj
ξj
λ2j + ηj

)
C+ (λj |0, 1) dλj

=

√
νj
ξj

∫ +∞

0

N
(
mj |0, λ2j + ηj

) 2

π
(
νj
ξj

+ λ2j

)dλj , (15)

where we have used the convolution of Gaussians and C+(·|0, 1) is a truncated Cauchy distribution
with zero location and unit scale. Furthermore, we have observed that the change of variables
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performed provides more robust computations, since this integral, and also the following ones, are
computed using quadrature techniques.

Next, we compute the expectation of wj under gjq
\j . This is done as follows:

Egjq\j [wj ] =
2

sj

√
νj
ξj

∫ +∞

0

N
(
mj |0, λ2j + ηj

) 1

π
(
νj
ξj

+ λ2j

)
( 1

λ2j
+

1

ηj

)−1
mj

ηj

 dλj , (16)

where the right factor inside the integral is the mean of wj resulting from the following product

N
(
wj |0, νjξj λ

2
j

)
N (wj |mj , ηj) for a fixed value of λj . The formulas for the product of Gaussians

described in the appendix of [1] have been employed and we have performed the same change of
variable as the one employed in the previous equation. When we do the marginzalization over λj ,
we obtain the exact mean.

The second moment of wj can be computed similarly. Namely,

Egjq\j [w2
j ] =

2

sj

√
νj
ξj

∫ +∞

0

N
(
mj |0, λ2j + ηj

)
π
(
νj
ξj

+ λ2j

)

( 1

λ2j
+

1

ηj

)−1
mj

ηj

2

+

[
1

λ2j
+

1

ηj

]−1 dλj ,

(17)

where the right factor inside the integral is the second moment of wj resulting from the following

product N
(
wj |0, νjξj λ

2
j

)
N (wj |mj , ηj) for a fixed value of λj . Again, when we do the marginzal-

ization over λj , we obtain the exact value of the moment.
Another possibility to obtain the first and second moments of wj under gjq

\j is to compute
the derivatives of log sj with respect to mj and ηj as indicated in the appendix of [1]. However,
although they provide similar results, we have observed that the last two equations above give
more robust computations.

For the computation of the variances of vj and uj under gjq
\j we employ the gradient of log sj ,

with respect to νj and ξj , as indicated in the appendix of [1]. In particular, since Eqjq\j [uj ] =
Eqjq\j [vj ] = 0 we have that

Eqjq\j [u2j ] = νj + 2ν2j
∂ log sj
∂νj

= νj

(
1 + 2νj

∂ log sj
∂νj

)
, (18)

Eqjq\j [v2j ] = ξj + 2ξ2j
∂ log sj
∂ξj

= ξj

(
1 + 2ξj

∂ log sj
∂ξj

)
. (19)

The gradients of ∂ log sj are then computed as:

∂ log sj
∂νj

=
1

2

1

νj
+

1

sj

√
νj
ξj

∫ +∞

0

N
(
mj |0, λ2j + ηj

) −2(
π
(
νj
ξj

+ λ2j

))2 πξj dλj , (20)

∂ log sj
∂ξj

= −1

2

1

ξj
+

1

sj

√
νj
ξj

∫ +∞

0

N
(
mj |0, λ2j + ηj

) 2(
π
(
νj
ξj

+ λ2j

))2π νjξ2j dλj . (21)

In consequence, ξj
∂ log sj
∂ξj

= −νj ∂ log sj
∂νj

and only one quadrature is required to evaluate Eqjq\j [u2j ]

and Eqjq\j [v2j ]. Thus, in total only four quadratures are required instead of five to compute the

moments of gjq
\j .

These moments are used to compute an updated distribution qnew. Then, we update the
corresponding approximate factor g̃j by setting g̃j = sjq

new/q\j . The formulas for the ratio of
Gaussian distributions have to be used. These formulas are found in the appendix of [1]. This
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results in the following updates for the parameters of g̃j :

η̃j =

((
Egjq\j [w2

j ]− Egjq\j [wj ]
2
)−1
− η−1j

)−1
, (22)

m̃j = η̃j

((
Egjq\j [w2

j ]− Egjq\j [wj ]
2
)−1

Egjq\j [wj ]− η−1j mj

)
, (23)

ν̃j =

((
Egjq\j [u2j ]

)−1
− ν−1j

)−1
, (24)

ξ̃j =

((
Egjq\j [v2j ]

)−1
− ξ−1j

)−1
, (25)

Z̃j = sj

√
ηj

Egjq\j [w2
j ]− Egjq\j [wj ]2

√
νj

Egjq\j [u2j ]

√
ξj

Egjq\j [v2j ]

exp

{
−1

2

(
Egjq\j [wj ]

2

Egjq\j [w2
j ]− Egjq\j [wj ]2

−
m2
j

ηj
−
m̃2
j

η̃j

)}
. (26)

In our code we have further assumed that EP has converged for the computation of Z̃j .
Once all approximate factors g̃j have been updated, we recompute q as the product of all the

factors, the exact ones and the approximate. For this, (2) and following derivations can be used.

2 EP Approximation of the Marginal Likelihood

Once EP has converged we evaluate the logarithm of the approximation to the marginal likelihood
of the model, Z̃. This is done using the formulas for the product of Gaussians described in the
appendix of [1]:

log Z̃ = log

∫
f(w)hu(u)hv(v)

∏
j

g̃j(z)dz

=

∑
j

log Z̃j

− n

2
log(2πσ2)− 1

2σ2
yTy +

d

2
log(2π) +

1

2
log |Vw|+

1

2
log |Vu| −

1

2
log |ρ2C|

+
1

2
log |Vv| −

1

2
log |γ2C| − 1

2
m̃TΠη̃m̃ +

1

2
µTV−1w µ , (27)

where m̃ is a vector whose j-th component is equal to m̃j , n is the number of instances, d is the
number of features and σ2 the variance of the Gaussian additive noise. We next describe how to
efficiently compute some of the required quantities. In particular,

log |Vw| = − log |Πη̃ +
1

σ2
XTX| = − log |Πη̃| − log |I +

1

σ2
Π−1η̃ XTX|

= − log |Πη̃| − log |I +
1

σ2
XΠ−1η̃ XT| , (28)

log |Vu| = log |Gρ + Lρ
(
I + PTBρP

)−1
LT
ρ |

= log |Gρ|+ log |I + G−1ρ Lρ
(
I + PTBρP

)−1
LT
ρ |

= log |Gρ|+ log |I +
(
I + PTBρP

)−1
LT
ρG−1ρ Lρ| , (29)

log |Vv| = log |Gγ + Lγ
(
I + PTBγP

)−1
LT
γ |

= log |Gγ |+ log |I + G−1γ Lγ
(
I + PTBγP

)−1
LT
γ |

= log |Gγ |+ log |I +
(
I + PTBγP

)−1
LT
γG−1γ Lγ | , (30)
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where we have used Sylvester’s determinant theorem and all computations have cost in O(n2d) if
m = n. Furthermore,

log |ρ2C| = d log ρ2 + log |∆D∆ + ∆PPT∆| = d log ρ2 + 2 log |∆|+ log |D + PPT|
= d log ρ2 + 2 log |∆|+ log |D|+ log |I + D−1PPT|
= d log ρ2 + 2 log |∆|+ log |D|+ log |I + PTD−1P| , (31)

where again we have used Sylvester’s determinant theorem. log |γ2C| can be similarly computed.
Finally,

µTV−1w µ = υTVwυ

= υTΠ−1η̃ υ − υTΠ−1η̃ XT
(
Iσ2 + XΠ−1η̃ XT

)−1
XΠ−1η̃ υ , (32)

where we have defined υ =
(

1
σ2 XTy + Πη̃m̃

)
.

3 Computation of the Gradients of the Approximation

In this section we compute the gradient of log Z̃ with respect to the different hyper-parameters of
the model, i.e., σ2, ρ2, γ2 and P. This is done as follows:

∂ log Z̃

∂σ2
= −n

2

1

σ2
+

1

2σ4
yTy +

1

2

∂ log |Vw|
∂σ2

+
1

2

∂

∂σ2
µTV−1w µ , (33)

where we have that

∂ log |Vw|
∂σ2

= −tr

(
Vw

∂V−1w

∂σ2

)
= tr

(
Vw

1

σ4
XTX

)
=

1

σ4
tr
(
VwXTX

)
=

1

σ4
tr
(
XVwXT

)
,

∂

∂σ2
µTV−1w µ =

∂

∂σ2
υTVwυ = 2υTVw

(
∂

∂σ2
υ

)
+ υT

(
∂

∂σ2
Vw

)
υ . (34)

which can be easily computed in O(n2d) steps using the special representation for Vw described
at the beginning of this document, if n� d. In particular,

∂υ

∂σ2
= − 1

σ4
XTy ,

∂Vw

∂σ2
= Π−1η̃ XTM−1M−1XΠ−1η̃ , (35)

where we have defined M =
(
Iσ2 + XΠ−1η̃ XT

)
. Thus, the gradient with respect to σ2 can be

computed in O(n2d) steps, under the assumption that m = n and n� d.
We now compute the gradient with respect to ρ2 and γ2. That is,

∂ log Z̃

∂ρ2
=

1

2

∂ log |Vu|
∂ρ2

− 1

2

d

ρ2
, (36)

where we have that

∂ log |Vu|
∂ρ2

= −tr

(
Vu

∂V−1u

∂ρ2

)
= tr

(
Vu

1

ρ4
C−1

)
=

1

ρ4
tr
(
VuC−1

)
=

1

ρ2
tr
((

CΠν̃ρ
2 + I

)−1)
=

1

ρ2
tr
(
I− ρ2

(
C−1 + ρ2Πν̃

)−1
Πν̃

)
=

1

ρ2
tr
(
I−

(
C−1ρ−2 + Πν̃

)−1
Πν̃

)
=

1

ρ2
tr (I−VuΠν̃) =

d

2

1

ρ2
− 1

ρ2
tr (VuΠν̃) . (37)

In the last expression we have used the Woodbury formula and the definition of Vu. The conse-
quence is that

∂ log Z̃

∂ρ2
=

1

2ρ2
tr (VuΠν̃) , (38)
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which can be easily computed in O(n2d) steps if m = n and n� d. Specifically, for this we only
need the marginal posterior variances of u.

The gradient with respect to γ2 can be computed similarly. The result is:

∂ log Z̃

∂γ2
=

1

2γ2
tr
(
VvΠξ̃

)
. (39)

Finally, we compute the gradient with respect to each entry of P, Pi,j . This is done as follows:

∂ log Z̃

∂Pi,j
=

1

2

∂ log |Vu|
∂Pi,j

− 1

2

∂ log |ρ2C|
∂Pi,j

+
1

2

∂ log |Vv|
∂Pi,j

− 1

2

∂ log |γ2C|
∂Pi,j

, (40)

where we have that

∂ log |Vu|
∂Pi,j

= −tr

(
Vu

∂V−1u

∂Pi,j

)
= tr

(
Vu

1

ρ2
C−1

∂C

∂Pi,j
C−1

)
. (41)

Furthermore,

∂C

∂Pi,j
= 2∆D

∂∆

∂Pi,j
+

∂∆

∂Pi,j
PPT∆ + ∆PPT ∂∆

∂Pi,j
+ ∆δiδ

T
j PT∆ + ∆Pδjδ

T
i ∆ , (42)

where δi and δj are two vectors of sizes d and m, respectively with all components equal to zero,
except for components i-th and j-th, respectively, which are equal to one. In addition,

∂∆

∂Pi,j
= −δiδTi ∆∆∆Pδjδ

T
j δjδ

T
i . (43)

Thus, the previous gradient is:

∂ log |Vu|
∂Pi,j

= −2tr

(
Vu

1

ρ2
C−1∆Dδiδ

T
i ∆∆∆Pδjδ

T
j δjδ

T
i C−1

)
− tr

(
Vu

1

ρ2
C−1δiδ

T
i ∆∆∆Pδjδ

T
j δjδ

T
i PPT∆C−1

)
− tr

(
Vu

1

ρ2
C−1∆PPTδiδ

T
i ∆∆∆Pδjδ

T
j δjδ

T
i C−1

)
+ tr

(
Vu

1

ρ2
C−1∆δiδ

T
j PT∆C−1

)
+ tr

(
Vu

1

ρ2
C−1∆Pδjδ

T
i ∆C−1

)
= −2tr

(
Vu

1

ρ2
C−1∆Dδiδ

T
i ∆∆∆Pδjδ

T
j δjδ

T
i C−1

)
− 2tr

(
Vu

1

ρ2
C−1δiδ

T
i ∆∆∆Pδjδ

T
j δjδ

T
i PPT∆C−1

)
+ 2tr

(
Vu

1

ρ2
C−1∆δiδ

T
j PT∆C−1

)
= −2tr

(
δTj δjδ

T
i C−1Vu

1

ρ2
C−1∆Dδiδ

T
i ∆∆∆Pδj

)
− 2tr

(
δTj δjδ

T
i PPT∆C−1Vu

1

ρ2
C−1δiδ

T
i ∆∆∆Pδj

)
+ 2tr

(
δTj PT∆C−1Vu

1

ρ2
C−1∆δi

)
. (44)
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In addition we have that:

∂ log |ρ2C|
∂Pi,j

=
∂ log |C|
∂Pi,j

= tr

(
C−1

∂C

∂Pi,j

)
= −2tr

(
δTj δjδ

T
i C−1∆Dδiδ

T
i ∆∆∆Pδj

)
− 2tr

(
δTj δjδ

T
i PPT∆C−1δiδ

T
i ∆∆∆Pδj

)
+ 2tr

(
δTj PT∆C−1∆δi

)
. (45)

Furthermore, we can write(
C−1

1

ρ2
VuC−1 −C−1

)
=

(
C−1

1

ρ2

(
Πν̃ +

1

ρ2
C−1

)−1
C−1 −C−1

)
=
(
C−1

(
ρ2Πν̃ + C−1

)−1
C−1 −C−1

)
= −

(
C +

1

ρ2
Π−1ν̃

)−1
= −Πν̃

(
Πν̃CΠν̃ +

1

ρ2
Πν̃

)−1
Πν̃

= −Πν̃

(
ρ2Π−1ν̃ − ρ

2
(
C−1 + ρ2Πν̃

)−1
ρ2
)

Πν̃

= −

(
ρ2Πν̃ − ρ2Πν̃

(
C−1

1

ρ2
+ Πν̃

)−1
Πν̃

)
= −ρ2 (Πν̃ −Πν̃VuΠν̃) (46)

where we have employed several times the Woodbury formula and the definition of Vu in (2).
In consequence,

1

2

∂ log |Vu|
∂Pi,j

− 1

2

∂ log |ρ2C|
∂Pi,j

= ρ2tr
(
δTj δjδ

T
i (Πν̃ −Πν̃VuΠν̃) ∆Dδiδ

T
i ∆∆∆Pδj

)
+ ρ2tr

(
δTj δjδ

T
i PPT∆ (Πν̃ −Πν̃VuΠν̃) δiδ

T
i ∆∆∆Pδj

)
− ρ2tr

(
δTj PT∆ (Πν̃ −Πν̃VuΠν̃) ∆δi

)
= ρ2tr

(
δTi (Πν̃ −Πν̃VuΠν̃) ∆Dδiδ

T
i ∆∆∆Pδj

)
+ ρ2tr

(
δTi PPT∆ (Πν̃ −Πν̃VuΠν̃) δiδ

T
i ∆∆∆Pδj

)
− ρ2tr

(
δTj PT∆ (Πν̃ −Πν̃VuΠν̃) ∆δi

)
. (47)

A similar derivation can be done for the remaining terms. This gives

1

2

∂ log |Vv|
∂Pi,j

− 1

2

∂ log |γ2C|
∂Pi,j

= γ2tr
(
δTi

(
Πξ̃ −Πξ̃VvΠξ̃

)
∆Dδiδ

T
i ∆∆∆Pδj

)
+ γ2tr

(
δTi PPT∆

(
Πξ̃ −Πξ̃VvΠξ̃

)
δiδ

T
i ∆∆∆Pδj

)
− γ2tr

(
δTj PT∆

(
Πξ̃ −Πξ̃VvΠξ̃

)
∆δi

)
. (48)
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In summary, the total gradient with respect to P is:

∂Z̃

∂P
=
(
ρ2Hν̃ + ρ2Fν̃ + γ2Hξ̃ + γ2Fξ̃

)
∆∆∆P−∆

(
ρ2Πν̃ − ρ2Πν̃VuΠν̃ + γ2Πξ̃ − γ

2Πξ̃VvΠξ̃

)
∆P

=
(
ρ2Hν̃ + ρ2Fν̃ + γ2Hξ̃ + γ2Fξ̃

)
∆∆∆P− ρ2∆Πν̃∆P− γ2∆Πξ̃∆P

+ ρ2∆Πν̃VuΠν̃∆P + γ2∆Πξ̃VvΠξ̃∆P

=
[(
ρ2Hν̃ + ρ2Fν̃ + γ2Hξ̃ + γ2Fξ̃

)
∆∆∆− ρ2∆Πν̃∆− γ2∆Πξ̃∆

]
P

+ ρ2∆Πν̃VuΠν̃∆P + γ2∆Πξ̃VvΠξ̃∆P

=
[(
ρ2Hν̃ + ρ2Fν̃ + γ2Hξ̃ + γ2Fξ̃

)
∆∆∆− ρ2∆Πν̃∆− γ2∆Πξ̃∆

]
P

+ ρ2∆Πν̃GρΠν̃ + ∆Πν̃Lρ
(
I + PTBρP

)−1
LT
ρΠν̃∆P

+ γ2∆Πξ̃GγΠξ̃ + γ2∆Πξ̃Lγ
(
I + PTBγP

)−1
LT
γΠξ̃∆P , (49)

where we have defined the diagonal matrices

Hν̃ = diag ((Πν̃ −Πν̃VuΠν̃) ∆D) , Hξ̃ = diag
((

Πξ̃ −Πξ̃VvΠξ̃

)
∆D

)
,

Fν̃ = diag
(
PPT∆ (Πν̃ −Πν̃VuΠν̃)

)
, Fξ̃ = diag

(
PPT∆

(
Πξ̃ −Πξ̃VvΠξ̃

))
. (50)

Furthermore, the required values can be obtained with cost O(n2d) if m = n and n� d. For this,
the form of Vu and Vv given in (10) and (11) has been used. Note also that most matrices are
diagonal.
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