
Reservoir Boosting : Between Online and Offline
Ensemble Learning

Leonidas Lefakis
Idiap Research Institute
Martigny, Switzerland

leonidas.lefakis@idiap.ch

François Fleuret
Idiap Research Institute
Martigny, Switzerland

francois.fleuret@idiap.ch

Abstract

We propose to train an ensemble with the help of a reservoir in which the learning
algorithm can store a limited number of samples.
This novel approach lies in the area between offline and online ensemble approaches
and can be seen either as a restriction of the former or an enhancement of the latter.
We identify some basic strategies that can be used to populate this reservoir and
present our main contribution, dubbed Greedy Edge Expectation Maximization
(GEEM), that maintains the reservoir content in the case of Boosting by viewing
the samples through their projections into the weak classifier response space.
We propose an efficient algorithmic implementation which makes it tractable in
practice, and demonstrate its efficiency experimentally on several compute-vision
data-sets, on which it outperforms both online and offline methods in a memory
constrained setting.

1 Introduction

Learning a boosted classifier from a set of samples S = {X,Y }N ∈ RD × {−1, 1} is usually
addressed in the context of two main frameworks. In offline Boosting settings [10] it is assumed that
the learner has full access to the entire dataset S at any given time. At each iteration t, the learning
algorithm calculates a weight wi for each sample i – the derivative of the loss with respect to the
classifier response on that sample – and feeds these weights together with the entire dataset to a
weak learning algorithm, which learns a predictor ht. The coefficient at of the chosen weak learner
ht is then calculated based on its weighted error. There are many variations of this basic model,
too many to mention here, but a common aspect of these is that they do not explicitly address the
issue of limited resources. It is assumed that the dataset can be efficiently processed in its entirety at
each iteration. In practice however, memory and computational limitations may make such learning
approaches prohibitive or at least inefficient.

A common approach used in practice to deal with such limitations is that of sub-sampling the data-set
using strategies based on the sample weights W [9, 13]. Though these methods address the limits
of the weak learning algorithms resources, they nonetheless assume a) access to the entire data-set
at all times, b) the ability to calculate the weights W of the N samples and to sub-sample K of
these, all in an efficient manner. The issues with such an approach can be seen in tasks such as
computer vision, where samples need not only be loaded sequentially into memory if they do not
all fit which in itself may be computationally prohibitive, but furthermore once loaded they must
be pre-processed, for example by extracting descriptors, making the calculation of the weights
themselves a computationally expensive process.

For large datasets, in order to address such issues, the framework of online learning is frequently
employed. Online Boosting algorithms [15] typically assume access solely to a Filter() function, by
which they mine samples from the data-set typically one at a time. Due to the their online nature

1

such approaches typically treat the weak learning algorithm as a black box, assuming that it can be
trained in an online manner, and concentrate on different approaches to calculating the weak learner
coefficients [15, 4]. A notable exception is the works of [11] and [14], where weak learner selectors
are introduced, one for each weak learner in the ensemble, which are capable of picking a weak
learner from a predetermined pool. All these approaches however are similar in the fact that they are
forced to predetermine the number of weak learners in the boosted strong classifier.

We propose here a middle ground between these two extremes in which the boosted classifier can
store some of the already processed samples in a reservoir, possibly keeping them through multiple
rounds of training. As in online learning we assume access only to a Filter() through which we can
sample Qt samples at each Boosting iteration. This setting is related to the framework proposed
in [2] for dealing with large data-sets, the method proposed there however uses the filter to obtain
a sample and stochastically accepts or rejects the sample based on its weight. The drawback of
this approach is a) that after each iteration all old samples are discarded, and b) the algorithm must
process an increasing number of samples at each iteration as the weights become increasingly smaller.
We propose to acquire a fixed number of samples at each iteration and to add these to a persistent
reservoir, discarding only a subset. The only other work we know which trains a Boosting classifier
in a similar manner is [12], where the authors are solely concerned with learning in the presence of
concept drift and do not propose a strategy for filling this reservoir. Rather they use a simple sliding
window approach and concentrate on the removal and adding of weak learners to tackle this drift.

A related concept to the work presented here is that of learning on a budget [6], where, as in the
online learning setting, samples are presented one at a time to the learner, a perceptron, which builds
a classification model by retaining an active subset of these samples. The main concern in this context
is the complexity of the model itself and its effect via the Gramm matrix computation on both training
and test time. Subsequent works on budget perceptrons has led to tighter budgets [16] (at higher
computational costs), while [3] proved that such approaches are mistake-bound.

Similar work on Support Vector Machines [1] proposed LaSVM, a SVM solver which was shown
to converge to the SVM QP solution by adopting a scheme composed of two alternating steps,
which consider respectively the expansion and contraction of the support vector set via the SMO
algorithm. SVM budgeted learning was also considered in [8] via an L1-SVM formulation which
allowed users to specifically set a budget parameter B, and subsequently minimized the loss on the B
worst-classified examples.

As noted, these approaches are concerned with the complexity of the classification model, that is the
budget refers to the number of samples which have none-zero coefficients in the dual representation
of the classifier. In this respect our work is only loosely related to what is often referred to as budget
learning, in that we solve a qualitatively different task, namely addressing the complexity of the
parsing and processing the data during training.

Table 1: Notation
Rt the contents of the reservoir at iteration t
|Rt| the size of the reservoir
Qt the fresh batch of samples at iteration t

ΣAA the covariance matrix of the edges h ◦ y
µA the expectation of the edges of samples in set A
yA the vector of labels {−1, 1}|A| of samples in A
wt the vector of Boosting weights at iteration t
Ft(x) the constructed strong classifier at iteration t
F ilter() a filter returning samples from S
ht the weak learner chosen at iteration t
H the family of weak learners
◦ component-wise (Hadamard) product
T number of weak learners in the strong classifier

2

Table 2: Boosting with a Reservoir
Construct R0 and Q0 with r and q calls to Filter().
for t = 1, . . . , T do

Discard q samples from Rt−1 ∪Qt−1 samples to obtain Rt
Select ht using the samples in Rt
Compute at using Rt
Construct Qt with q calls to Filter()

end for
Return FT =

∑T
t=1 ath

t

2 Reservoir of samples

In this section we present in more detailed form the framework of learning a boosted classifier with
the help of a reservoir. As mentioned, the batch version of Boosting consists of iteratively selecting a
weak learner ht at each iteration t, based on the loss reduction they induce on the full training set
S. In the reservoir setting, weak learners are selected solely from the information provided by the
samples contained in the reservoir Rt.

Let N be the number of training samples, and S = {1, . . . , N} the set of their indexes. We
consider here one iteration of a Boosting procedure, where each sample is weighted according to its
contribution to the overall loss. Let y ∈ {−1, 1}Nbe the sample labels, andH ⊂ {−1, 1}N the set
of weak-learners, each identified with its vector of responses over the samples. Let ω ∈ RN+ be the
sample weights at that Boosting iteration.

For any subset of sample indexes B ⊂ {1, . . . , N} let yB ∈ {−1, 1}|B| be the “extracted” vector.
We define similarly ωB , and for any weak learner h ∈ H let hB ∈ {−1, 1}|B| stands for the vector
of the |B| responses over the samples in B.

At each iteration t, the learning algorithm is presented with a batch of fresh samples Qt ⊂ S, |Qt| =
q, and must choose r samples from the full set of samples Rt ∪Qt at its disposal, in order to build
Rt+1 with |Rt+1| = r, which it subsequently uses for training.

Using the samples fromRt, the learner chooses a weak learner ht ∈ H to maximize 〈htRt
◦yRt , w

t
Rt
〉,

where ◦ stands for the Hadamard component-wise vector product. Maximizing this latter quantity
corresponds to minimizing the weighted error estimated on the samples currently in Rt. The weight
at of the selected weak learner can also be estimated with Rt.

The learner then receives a fresh batch of samples Qt+1 and the process continues iteratively. See
algorithm in Table 2. In the following we will address the issue of which strategy to employ to discard
the q samples at each time step t. To our knowledge, no previous work has been published in this or a
similar framework.

3 Reservoir Strategies

In the following we present a number of strategies for populating the reservoir, i.e. for choosing which
q samples from Rt ∪Qt to discard. We begin by identifying three basic and rather straightforward
approaches. Max Weights (Max) At each iteration t the weight vector wtRt∪Qt

is computed for the
r + q samples and the r samples with the largest weights are kept. Weighted Sampling (WSam) As
above wtRt∪Qt

is computed, then normalized to 1, and used as a distribution to sample r samples
to keep without replacement. Random Sampling (Rand) The reservoir is constructed by sampling
uniformly r samples from the r + q available, without replacement.

These will serve mainly as benchmark baselines against which we will compare our proposed method,
presented below, which is more sophisticated and, as we show empirically, more efficient. These
baselines are presented to highlight that a more sophisticated reservoir strategy is needed to ensure
competitive performance, rather than to serve as examples of state-of-the-art baselines.

Our objective will be to populate the reservoir with samples that will allow for an optimal selection
of weak learners, as close as possible to the choice we would make if we could keep all samples.

3

The issue at hand is similar to that of feature selection: The selected samples should be jointly
informative for choosing the good weak learners. This forces to find a proper balance between the
individual importance of the kept samples (i.e. choosing those with large weights) and maximizing
the heterogeneity of the weak learners responses on them.

3.1 Greedy Edge Expectation Maximization

In that reservoir setting, it makes sense that given a set of samples A from which we must discard
samples and retain only a subset B, what we would like is to retain a training set that is as representa-
tive as possible of the entire set A. Ideally, we would like B to be such that if we pick the optimal
weak-learner according to the samples it contains

h∗ = argmax
h∈H

〈hB ◦ yB , wB〉 (1)

it maximizes the same quantity estimated on all the samples in A. i.e. we want 〈h∗A ◦ yA, wA〉 to be
large.

There may be many weak-learners in H that have the exact same responses as h∗ on the samples
in B, and since we consider a situation where we will not have access to the samples from A \ B
anymore, we model the choice among these weak-learners as a random choice. In which case, a good
h∗ is one maximizing

EH∼U(H) (〈HA ◦ yA, ωA〉 | HB = h∗B) , (2)
that is the average of the scores on the full set A of the weak-learners which coincide with h∗ on the
retained set B.

We propose to model the distribution U(H) with a normal law. If H is picked uniformly inH, under
a reasonable assumption of symmetry, we propose

H ◦ y ∼ N (µ,Σ) (3)
where µ is the vector of dimension N of the expectations of weak learner edges, and Σ is a covariance
matrix of size N × N . Under this model, if B̄ = A \ B, and with ΣA,B denoting an extracted
sub-matrix, we have

EH∼U(H) (〈HA ◦ yA, ωA〉 | HB = h∗B) (4)

= EH◦y∼N (µ,Σ) (〈HA ◦ yA, ωA〉 | HB = h∗B) (5)

= 〈h∗B ◦ yB , ωB〉 + EH◦y∼N (µ,Σ) (〈HB̄ ◦ yB̄ , ωB̄〉 | HB = h∗B) (6)

= 〈(h∗B ◦ yB), wB〉 + 〈µB̄ + ΣB̄BΣ−1
BB(h∗B ◦ yB − µB), wB̄〉 (7)

Though the modeling of the discrete variables H ◦ y by a continuous distribution may seem awkward,
we point out two important aspects. Firstly the parametric modeling allows for an analytical expression
for the calculation of (2). Given that we seek to maximize this value over the possible subsets B of
A, an analytic approach is necessary for the algorithm to retain tractability. Secondly, for a given
vector of edges h∗B ◦ yB in B, the vector µB̄ + ΣB̄BΣ−1

BB(h∗B ◦ yB − µB) is not only the conditional
expectation of h∗

B̄
◦ yB̄ , but also its optimal linear predictor in a least squares error sense.

We note that choosingB based on (7) requires estimates of three quantities: the expected weak-learner
edges µA, the co-variance matrix ΣAA, and the weak learner h∗ trained on B. Given these quantities,
we must also develop a tractable optimization scheme to find the B maximizing it.

3.2 Computing Σ and µ

As mentioned, the proposed method requires in particular an estimate of the vector of expected edges
µA of the samples in A, as well as the corresponding covariance matrix ΣAA.

In practice, the estimation of the above depends on the nature of the weak learner family H . In
the case of classification stumps, which we use in the experiments below, both these values can be
calculated with small computational cost.

A classification stump is a simple classifier hθ,α,d which for a given threshold θ ∈ R, polarity
α ∈ {−1, 1}, and feature index d ∈ {1, . . . , D}, has the following form:

∀x ∈ RD, hθ,α,d(x) =

{
1 if αxd ≥ α θ
−1 otherwise

(8)

4

where xd refers to the value of the dth component of x.

In practice when choosing the optimal stump for a given set of samples A, a learner would sort all the
samples according to each of the D dimensions, and for each dimension d it would consider stumps
with thresholds θ between two consecutive samples in that sorted list.

For this family of stumps H and given that we shall consider both polarities, Eh(hAyA) = 0.

The covariance of the edge of two samples can also be calculated efficiently, with O(|A|2D) com-
plexity. For two given samples i,j we have

∀h ∈ H, yihiyjhj ∈ {−1, 1}. (9)

Having sorted the samples along a specific dimension d we have that for α = 1, yihiyjhj 6= yiyj
for those weak learners which disagree on those samples i.e. with min(xdi , x

d
j) < θ < max(xdi , x

d
j).

If Idj , I
d
i are the indexes of the samples in the sorted list then there are (|Idj − Idi |) such disagreeing

weak learners for α = 1 (plus the same quantity for α = −1), given that for each dimension d there
correspond 2(|A| − 1) weak-learners in H , we reach the following update rule ∀d,∀{i, j} :

ΣAA(i, j)+ = yiyj(2 ∗ (|A| − 1)− 4 ∗ |Idj − Idi |) (10)

where ΣAA(i, j) refers to the i, j element of Σ. As can be seen, this leads to a cost of O(|A|2D).
Given that commonly D � |A|, this cost should not be much higher than O(D|A| log |A|) the cost
of sorting along the D dimensions.

3.3 Choice of h∗

As stated, the estimation of h∗ for a given B must be computationally efficient. We could further
commit to the Gaussian assumption by defining p(h∗ = h),∀h ∈ H i.e. the probability that a weak
learner h will be the chosen one given that it will be trained on B and integrating over H , this
however, though consistent with the Gaussian assumption, is computationally prohibitive. Rather, we
present here two cheap alternatives both of which perform well in practice.

The first and simplest strategy is to use ∀B, h∗ ◦ yB = (1, . . . , 1) which is equivalent to making the
assumption that the training process will results in a weak learner which performs perfectly on the
training data B. This is exactly what the process will strive to achieve, however unlikely it may be.

The second is to generate a number |HLattice| of weak learner edges by sampling on the {−1, 1}|B|
lattice using the Gaussian H ◦ y ∼ N (µB ,ΣBB) restricted to this lattice and to keep the optimal
h∗ = argmaxh ∈ HLattice〈(hB ◦yB), wB〉. We can further simplify this process by considering the
whole set A and the lattice {−1, 1}|A| and simply extracting the values h∗B for the different subsets B.
Though much more complex, this approach can be implemented extremely efficiently, experiments
showed however that the simple rule of ∀B, h∗ ◦ yB = (1, . . . , 1) works just as well in practice and
is considerably cheaper. In the following experiments we present results solely for this first rule.

3.4 Greedy Calculation of argmaxB

Despite the analytical formulation offered by our Gaussian assumption, an exact maximization over
all possible subsets remains computationally intractable. For these reason we propose a greedy
approach to building the reservoir population which is computationally bounded.

We initialize the set B = A, i.e. initially we assume we are keeping all the samples, and calculate
Σ−1
BB . The greedy process then iteratively goes through the |B| samples in B and finds the sample j

such that for B
′

= B \ {j} the value

〈ΣB̄′B′ Σ−1
B′B′ (h

∗
B′ ◦ yB′), wB̄′ 〉+ 〈h∗

B′ ◦ yB′ , wB′ 〉 (11)

is maximized, where, in this context, h∗ refers to the weak learner chosen by training on B
′
. This

process is repeated q times, i.e. until |B̄| = q, discarding one sample at each iteration.

In the experiments presented here, we stop the greedy subset selection after these q steps. However in
practice the subset selection can continue by choosing pairs k,j to swap between the two steps. In
our experiments however we did not notice any gain from further optimization of the subset B.

5

3.5 Evaluation of E(〈h∗A, wA〉|B)

Each step in the above greedy process requires going through all the samples j in the current B and
calculating E(〈h∗A, wA〉|B′) for B′ = B \ {j}.
In order for our method to be computationally tractable we must be able to compute the above value
with a limited computational cost. The naive approach of calculating the value from scratch for each
j would cost O(|B′|3 + |B̄′||B|) . The main computational cost here is the first factor, incurred
in calculating the inverse of the covariance matrix ΣB′B′ which results from the matrix ΣBB by
removing a single row and column. It is thus important to be able to perform this calculation with a
low computational cost.

3.5.1 Updating Σ−1
B′B′

For a given matrix M and its inverse M−1 we would like to efficiently calculate the inverse of M−j
which is results from M by the deletion of row and column j.

It can be shown that the inverse of the matrix Mej which results from M by the substitution of row
and column j by the basis vector ej is given by the following formula:

M−ej1 = M−1 − 1

Mii
M−1
j∗ M

−1
∗j + eTj ej (12)

where M∗j stands for the vector of elements of the jth column of matrix M and Mj∗ stand for the
vector of elements of its jth row. We omit the proof (a relatively straightforward manipulation of the
Sherman-Morrison formulas) due to space constraints. The inverse M−1

−j can be recovered by simply
removing the jth row and column of M−1

ej .

Based on this we can compute Σ−1
B′B′ in O(|B|2). We further exploit the fact that the matrices

ΣB̄′B′ and Σ−1
B′B′ enter into the calculations through the products Σ−1

B′B′h∗B′ and wT
B̄

ΣB̄′B′ . Thus by
pre-calculating the products Σ−1

BBh
∗
B and wT

B̄
ΣB̄Bonce at the beginning of each greedy optimization

step, we can incur a cost of O(|B|) for each sample j and an O(|B|2) cost overall.

3.6 Weights w̃B

GEEM provides a method for selecting which samples to keep and which to discard. However in
doing so it creates a biased sampleB of the setA, and consequently weightswB are not representative
of the weight distribution wA. It is thus necessary to alter the weights wB to obtain a new weight
vector w̃B which will takes this bias into account. Based on the assumption (3) and (7), and the fact
that µA = 0, we set

w̃B = wB + wTB̄ΣB̄BΣ−1
BB (13)

The resulting weight vector w̃B used to pick the weak-learner h∗ correctly reflects the entire set
A = Rt ∪Qt (under the Gaussian assumption)

3.7 Overall Complexity

The proposed method GEEM comprises, at each boosting iteration, three main steps: (1) The
calculation of ΣAA, (2) The optimization of B, and (3) The training of the weak learner ht

The third step is common to all the reservoir strategies presented here. In the case of classification
stumps by presorting the samples along each dimension and exploiting the structure of the hypothesis
space H , we can incur a cost of O(D|B| log |B|) where D is the dimensionality of the input space.

The first step, as mentioned, incurs a cost of O(|A|2D) if we go through all dimensions of the
data. However the minimum objective of acquiring an invertible matrix ΣAA by only looking at
|A| dimensions and incurring a cost of O(|A|3). Finally the second step as analyzed in the previous
section, incurs a cost of O(q|A|2).

Thus the overall complexity of the proposed method is O(|A|3 + D|A|log|A|) which in practice
should not be significantly larger than O(D|B|log|B|), the cost of the remaining reservoir strategies.
We note that this analysis ignores the cost of processing incoming samples Qt which is also common
to all strategies, dependent on the task this cost may handily dominate all others.

6

4 Experiments

In order to experimentally validate both the framework of reservoir boosting as well as the proposed
method GEEM, we conducted experiments on four popular computer vision datasets.

In all our experiments we use logitboost for training. It attempts to minimize the logistic loss which
is less aggressive than the exponential loss. Original experiments with the exponential loss in a
reservoir setting showed it to be unstable and to lead to degraded performance for all the reservoir
strategies presented here. In [14] the authors performed extensive comparison in an online setting and
also found logitboost to yield the best results. We set the number of weak learners T in the boosted
classifier to be T = 250 common to all methods. In the case of the online boosting algorithms this
translates to fixing the number of weak learners.

Finally, for the methods that use a reservoir – that is GEEM and the baselines outlined in 3 – we set
r = q. Thus at every iteration, the reservoir is populated with |Rt| = r samples and the algorithm
receives a further |Qt| = r samples from the filter. The reservoir strategy is then used to discard r of
these samples to build Rt+1.

4.1 Data-sets

We used four standard datasets: CIFAR-10 is a recognition dataset consisting of 32 × 32 images
of 10 distinct classes depicting vehicles and animals. The training data consists of 5000 images
of each class. We pre-process the data as in [5] using code provided by the authors. MNIST is
a well-known optical digit recognition dataset comprising 60000 images of size 28 × 28 of digits
from 0 − 9. We do not preprocess the data in anyway, using the raw pixels as features. INRIA is
a pedestrian detection dataset. The training set consists of 12180 images of size 64× 128 of both
pedestrians and background images from which we extract HoG features [7]. STL-10 An image
recognition dataset consisting of images of size 96× 96 belonging to 10 classes, each represented by
500 images in the training set. We pre-process the data as for CIFAR.

4.2 Baselines

The baselines for the reservoir strategy have already been outlined in 3, and we also benchmarked
three online Boosting algorithms: Oza [15], Chen [4], and Bisc [11]. The first two algorithms treat
weak learners as a black-box but predefine their number. We initiate the weak learners of these
approaches by running Logitboost offline using a subset of the training set as we found that randomly
sampling the weak learners led to very poor performance; thus though they are online algorithms,
nonetheless in the experiments presented here they are afforded an offline initialization step. Note
that these approaches are not mutually exclusive with the proposed method, as the weak learners
picked by GEEM can be combined with an online boosting algorithm optimizing their coefficients.

For the final method [11], we initiated the number of selectors to be K = 250 resulting in the same
number of weak learners as the other methods. We also conducted experiments with [14] which is
closely related to [11], however as it performed consistently worse than [11], we do not show those
results here.

Finally we compared our method against two sub-sampling methods that have access to the full
dataset and subsample r samples using a weighted sampling routine. At each iteration, these methods
compute the boosting weights of all the samples in the dataset and use weighted sampling to obtain
a subset Rt. The first method is a simple weighted sampling method (WSS) while the second is
Madaboost (Mada) which combines weighted sampling with weight adjustment for the sub-sampled
samples. We furthermore show comparison with a fixed reservoir baseline (Fix), this baseline
subsamples the dataset once prior to learning and then trains the ensemble using offline Adaboost,
the contents of the reservoir in this case do not change from iteration to iteration.

5 Results and Discussion

Table 3, 4, and 5, list respectively the performance of the reservoir baselines, the online Boosting
techniques, and the sub-sampling methods. Each table also presents the performance of our GEEM
approach in the same settings.

7

Max Rand WSam GEEM
Dataset r=100 r=250 r=100 r=250 r=100 r=250 r=100 r=250
CIFAR 29.59 (0.59) 29.16 (0.71) 46.02 (0.35) 45.88 (0.24) 48.92 (0.34) 50.09 (0.24) 50.96 (0.36) 54.87 (0.28)

STL 30.20 (0.75) 30.72 (0.82) 39.25 (0.32) 39.40 (0.25) 41.60 (0.39) 42.93 (0.30) 42.40 (0.65) 45.70 (0.38)
INRIA 95.57 (0.49) 96.31 (0.37) 91.54 (0.49) 91.72 (0.35) 94.29 (0.23) 94.63 (0.30) 97.21 (0.21) 97.52 (0.13)
MNIST 66.74 (1.45) 68.25 (0.81) 79.97 (0.24) 79.59 (0.22) 83.96 (0.29) 84.07 (0.23) 84.66 (0.30) 84.33 (0.33)

Table 3: Test Accuracy on the four datasets for the different reservoir strategies

Online Boosting GEEM
Dataset Chen Bisc Oza (r=250)
CIFAR 39.40 (1.91) 45.03 (0.93) 49.16 (0.40) 54.87 (0.28)

STL 33.09 (1.49) 36.35 (0.49) 39.98 (0.56) 45.70 (0.38)
INRIA 94.23 (0.97) 95.65 (0.38) 95.50 (0.49) 97.53 (0.13)
MNIST 80.99 (1.11) 85.25 (0.82) 84.85 (0.54) 84.33 (0.33)

Table 4: Comparison of GEEM with online boosting algorithms

WSS Mada Fix GEEM
Dataset r=100 r=250 r=100 r=250 r=1,000 r=2,500 r=100 r=250
CIFAR 50.38 (0.38) 51.66 (0.30) 48.87 (0.26) 49.44 (0.33) 48.41 (0.88) 52.40 (0.77) 50.96(0.36) 54.87 (0.28)

STL 42.54 (0.35) 44.07 (0.31) 41.36 (0.32) 42.34 (0.24) 42.04 (0.19) 46.07 (0.41) 42.40 (0.65) 45.70 (0.38)
INRIA 94.24 (0.30) 94.65 (0.16) 94.26 (0.27) 94.65 (0.10) 92.46 (0.67) 93.82 (0.74) 97.21 (0.21) 97.53 (0.13)
MNIST 84.21 (0.27) 84.51 (0.16) 79.00 (0.33) 78.99 (0.31) 85.37 (0.33) 88.02 (0.15) 84.66 (0.30) 84.33 (0.33)

Table 5: Comparison of GEEM with subsampling algorithms

As can be seen, GEEM outperforms the other reservoir strategies on three of the four datasets and
performs on par with the best on the fourth (MNIST). It also outperforms the on-line Boosting
techniques on three data-sets and on par with the best baselines on MNIST. Finally, GEEM performs
better than all the sub-sampling algorithms. Note that the Fix baseline was provided with ten times
the number of samples to reach a similar level of performance.

These results demonstrate that both the reservoir framework we propose for Boosting, and the specific
GEEM algorithm, provide performance greater or on par with existing state-of-the-art methods. When
compared with other reservoir strategies, GEEM suffers from larger complexity which translates to
a longer training time. For the INRIA dataset and r = 100 GEEM requires circa 70 seconds for
training as opposed to 50 for the WSam strategy, while for r = 250 GEEM takes approximately 320
seconds to train compared to 70 for WSam. We note however that even when equating training time,
which translates to using r = 100 for GEEM and r = 250 for WSam, GEEM still outperforms the
simpler reservoir strategies. The timing results on the other 3 datasets were similar in this respect.

Many points can still be improved. In our ongoing research we are investigating different approaches
to modeling the process of evaluating h∗, of particular importance is of course that it is both reasonable
and fast to compute, one approach is to consider the maximum a posteriori value of h∗ by drawing on
elements in extreme value theory.

We have further plans to adapt this framework, and the proposed method, to a series of other settings.
It could be applied in the context of parallel processing, where a dataset can be split among CPUs
each training a classifier on a different portion of the data.

Finally, we are also investigating the method’s suitability for active learning tasks and dataset creation.
We note that the proposed method GEEM is not given information concerning the labels of the
samples, but simply the expectation and covariance matrix of the edges.

Acknowledgments

This work was supported by the European Community’s Seventh Framework Programme FP7 -
Challenge 2 - Cognitive Systems, Interaction, Robotics - under grant agreement No 247022 - MASH.

8

References

[1] Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with
online and active learning. J. Mach. Learn. Res., 6:1579–1619, December 2005.

[2] Joseph K. Bradley and Robert E. Schapire. Filterboost: Regression and classification on large
datasets. In NIPS, 2007.

[3] Nicol Cesa-Bianchi and Claudio Gentile. Tracking the best hyperplane with a simple budget
perceptron. In In Proc. of Nineteenth Annual Conference on Computational Learning Theory,
pages 483–498. Springer-Verlag, 2006.

[4] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In John Langford and Joelle Pineau, editors, ICML, ICML ’12, pages 1007–1014,
New York, NY, USA, July 2012. Omnipress.

[5] Adam Coates and Andrew Ng. The importance of encoding versus training with sparse coding
and vector quantization. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning (ICML-11), ICML ’11, pages 921–928, New
York, NY, USA, June 2011. ACM.

[6] Koby Crammer, Jaz S. Kandola, and Yoram Singer. Online classification on a budget. In
Sebastian Thrun, Lawrence K. Saul, and Bernhard Schlkopf, editors, NIPS. MIT Press, 2003.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 886–893 vol. 1, 2005.

[8] Ofer Dekel and Yoram Singer. Support vector machines on a budget. In NIPS, pages 345–352,
2006.

[9] Carlos Domingo and Osamu Watanabe. Madaboost: A modification of adaboost. In Proceedings
of the Thirteenth Annual Conference on Computational Learning Theory, COLT ’00, pages
180–189, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[10] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

[11] Helmut Grabner and Horst Bischof. On-line boosting and vision. In CVPR (1), pages 260–267,
2006.

[12] Mihajlo Grbovic and Slobodan Vucetic. Tracking concept change with incremental boosting
by minimization of the evolving exponential loss. In ECML PKDD, ECML PKDD’11, pages
516–532, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Weighted sampling for large-scale boosting.
In BMVC, 2008.

[14] C. Leistner, A. Saffari, P.M. Roth, and H. Bischof. On robustness of on-line boosting -
a competitive study. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th
International Conference on, pages 1362 –1369, 27 2009-oct. 4 2009.

[15] Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In In Artificial Intelligence
and Statistics 2001, pages 105–112. Morgan Kaufmann, 2001.

[16] Bordes Antoine Weston Jason and Léon Bottou. Online (and offline) on an even tighter budget.
In In Artificial Intelligence and Statistics 2005, 2005.

9

