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A Estimation of the noise parameter o>

If we assume that 02 ~ InvGammal(a,, b, ), then at each iteration of the algorithm we can maxi-
mize w.r.t. o2 given Z(*) in the E step to obtain
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B Proof of Eq. (13)
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C Generalization to other mixing distributions

Although we focused on a gamma mixing distribution for its simplicity, it is possible to use other
mixing distributions p(+;), such as inverse Gaussian or improper Jeffreys distributions. More gen-
erally, one can consider the three parameters generalized inverse Gaussian distribution [1], which
includes the gamma, inverse gamma, inverse Gaussian and Jeffreys distributions as special cases.
Table provides the weights w; depending on the choice of p(~;).



Table 1: Expressions of various mixing densities and associated weights. K, denotes the modified
Bessel function of the third kind.
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D Binary matrix completion

We have considered real valued matrices X. We now show how it is possible to apply the same
methodology to binary, incomplete matrices of entries Y;; € {—1,1}. Similarly to [2], we assume

the following probit model
Zij
Y;J‘Z”NBGY (@( )>
o

where ®(z) = [*_ ¢(u)du is the cumulative distribution function of the standard Gaussian distri-

bution with ¢(u) = \/% exp(f“;). The model can be alternatively written using Gaussian latent

variables X;

Xij| Zij ~ N(Zij,0°)
E —1 otherwise

We will use the variables X;; as additional latent variables in the EM. We have
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where we use the shorter notation YLQJ = Po(Y)(i,7). We will now derive the EM algorithm, by
using latent variables «; and X. The E step is given by
Q(2,27) = Ellog(p(Pa(Y), X, Z,7))|Z", Po(Y)]
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where the matrix X * is defined as

Z;“
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Again, the maximum of the function (1)) is obtained analytically using a weighted soft thresholded
SVD on the matrix X *.
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