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A Optimization Convergence Rate for CLIME ADMM

All norms in this section are defined elementwise. To recap, we solve the following problem:
min | X[|; st |Z-E[o <N\CX=7Z.
The Lagrangian of (1) is
L(X,Z,Y) = |X]ls + p(Y,CX — Z),
where | Z — E|loo < A. Assume that {X*, Z*, Y*} satisfies the KKT conditions of (2), i.e.,
—pCTY" € 9||X"|1 ,
(Y, 2" ~2Z) >0,
CX*=7Z".
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where (4) holds for any Z satisfying |Z — E|| < A. {X*,Z*,Y*} is an optimal solution, which

has the following property.

Lemma 1 Let {X' Z' Yt} be generated by ADMM and {X*,Z*,Y*} be a KKT point. We have

X1 = X < p(Y7, CX -2

(6)

Proof:  Assume {X*,Z* Y*} is a KKT point. Using the convexity of ¢; norm and (3), we have

X7 = X1 < —p(CY™, X — X)) = —p(Y*, C(X* — XPH1)) |
Setting Z = Z!*! in (4) yields
0<(Y* Z* - Zy .
Multiplying by p and adding to (7) complete the proof.

In CLIME ADMM, we have the following iterates:
X"+ = argming X1 +n(V", X) + X = X'[3

Z'! = argmin B||CXtJrl - Z+YY3,
1Z—Elloo <A

Yt+1 _ Yt 4 Cxt+1 _ Zt+1 )
where V¥ = 2C(Y' + CX' - Z).

Throughout the proof of convergence rate, we need the following lemma.
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Lemma 2 Let A, B, C, D be matrices of the same size. The following equalities hold:

(A-B,B-C)=_(JA-C|;-|A-B|; - [B-C|3). (12)
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(A-B,C-D)=(|D-Al;-[D-B|+[/C-B|; - C— Al). (13)

A.0.1 O(1/T) Convergence Rate for Objective Function

In this section, we establish the iteration complexity for inexact ADMM (9)-(11). We begin with the
following lemma for the X update (9).

Lemma 3 Let {X? 7', Y} be generated by (9)-(11). For any X, we have
X = Xl < =p(Y™, C(X = X)) + g(HCX = Z'3 - |CX — Z*HH 3 + [CX*H — 23

1
—1EX = Z13) + S (X = X1 pee = X = XA e = X = X502 -
(14)

Proof: Let 9||X**1||; be the subgradient of | X'™!||;. Since X**! is a minimizer of (9), we have
0 € X | +n(VE+ XM - X1 . (15)

Rearranging the terms gives —n(V?! + X1 — X*) € || X1 ||;. Using the convexity of /1 norm,
we have

XL = [ X[ < —p(VF + X - X X - X)

“p(C(Y! + CXF — Z), X! - X) — (Xt - Xt X - X) (16)
_p(Y! 4 CXP — Z!, C(XMH — X)) — (X — X, X X)

= —P(Yt+1, C(Xt+1 — X)) — p(C(X* — XtJrl)7 C(X”l — X)) + p(Zt — yARS C(Xt+1 — X))
Cop(XH X X X)) an
where the last equality uses (11). Using (12), the second term can be written as

IN N

—(C(X' = X", C(X™ = X)) = S (|C(X = X[ — |[C(X = X3 — |[C(X" = X*H]3) .

(18)

1
2
Note [|C(X — X)[|3 = [|X — X*||Z.. Using (13), the third term of (17) can be written as

1
(2! =2, C(X™ = X)) = S(|CX = 2|3 — |CX = Z"H|[3 + [|OX"T — 275 — | X — Z')5) .

19
Applying (12) on the last term of (17) gives "
—(XF XX - X) = %(IIX = XI5 = X = XS — X - X) . 0)
Substituting (18)-(20) into (17) and rearraning the terms complete the proof. [ ]
The Z update (10) has the following lemma.
Lemma 4 Let {X' Z! Yt} be generated by (9)-(11). For any Z satisfying ||Z — E| oo <\,
0< (Y Z -7ty | 1)

Proof:  Since Z'*! is a minimizer of (10), for any Z satisfying the infinity norm constraint, then
—(CX!T _ztH Lyt Z -7 > 0. (22)
Using (11) completes the proof. ]

Combining the results in Lemma 3 and 4 yields the O(1/T) convergence rate for the objective of
inexact ADMM (9)-(11).



Theorem 1 Let {X',Z', Y} be generated by (10)-(11) and X™ = 1 Zf:l X*t. Assume X0 =
Z° =Y"=0andn > 2, (C). For any CX = Z, we have
WIX[E

X7, — 11Xy <
X = 1X]l: < 5T

(23)

Proof: Assume CX = Z. Multiplying (21) by p and adding (14) yields

1
X = Xl < =p(Y, CXP =27 4 S (|12 = 2|5 - |12 = 2775 + [ CXTT = 23

1
—ICX = Z13) + S (X = X1 pee = 1X = XA e = X = X502 -
(24)
Using (11), the first term can be written as
_ <Yt+1, Cxt-i-l _ Zt+1> _ —<Yt+1,Yt+1 _ Yt>
1
= SUYIE = IIYFHE = 1Y = Y5
1
= SUY'IE = IIYFHE = [CXTE = Z205) . (25)

Substituting back into (24) gives
P P
I = Xl < 2QY8 - 1Y) + L1z - 2003 - 12— 20713 - loXt - 2¢))

1
+ S UK =Xy = 1X = X e = X = X5 02) - (26)

Assuming > A2 (C), nI — pC? is positive semidefinite. Summing over ¢ from 0 to 7' — 1 and

ignoring some negative terms, we have the following telescoping sum

T-1

p p 1
Z X — X < 5||Y0H§ + 5||Z — 702+ §||X - X2 e
=0

p 1
= 2121+ X oo
= I3 - )

where the first equality is due to X? = Z° = Y° = 0 and the second equality uses CX = Z.
Applying the Jensen’s inequality on the left hand side completes the proof. ]

A.0.2 O(1/T) Convergence Rate for the Optimality Conditions

For the X update (9), we have the following lemma.

Lemma 5 Let {X! Z', Y*} be generated by (9)-(11). We have
ICXI = 2[5 + X = X%y e < ICX =215+ 127 = 25+ X" = X3y o -
(28)

Proof: Setting X = X' in (16) gives
X~ X < —p(¥* + X! — 2!, C(XH = X)) — p(XH - X, X - X
p
< —p(Y',C(X" - X)) + Z(lexX’ — Z'3 +|lC(X = XT3 — [CX = ZP)3) — nl| X
(29)
At t, (17) becomes
Xl = X[l < =p(Y!, C(X' = X)) — p(C(X'™ = X),C(X' — X))

+p(Z -7 C(X! - X)) — (Xt - XL X - X) . (30)

- X'



Setting X = X**1 gives
X7 = X < =p{Y", C(X* = X)) = p(C(X~! = XT), C(X* = X))
+p(Z -7t C(XE - X)) — (X - XL XE XY D (31
Using (12), the second term becomes
— p(C(X'! = X'), C(X" — X))
= —2(let = X - eX T - X3 - [eX - X E) . ()
Similarly, applying (12) on the fourth term of (31) gives

_ n _ _
=X = XX X = (X = X - X = X - X - X

(33)
Adding (32) and (33) together yields
— pC(XI! = XT), O(X! = X)) — (X! — X1, X! - X
1 _ _
= ST =X e = X = XA o — X = X c2)
1 -
< SUX" =X o + X = X ce) s (34)

where the last inequality uses ||A — B||3 < 2(]]A — C||3 + ||B — CJ|3). Using the inequality
(A,B) < 1(||A13 + [|B]|3), the third term of (31) can be written as

Pz~ 2! CX =X < Lz — 2B+ CX - X))
Substituting (34) and (35) back to (31), we have
J——
X = X < —p(Y*, C(XF — X)) + g\lzt Al

1 -
+ (X = X R oe + X = XTH3) (36)

Adding (29) and (36) together yields
0< g(I\CXt = Z'3 + X = XY)|5 — [CXT = ZF3) — | X - XT3
£ 0120~ 2 SOIX X oo X~ X R)
= g(IICXt —Z'3+ 127 = 2|3 — |lCX — Z21)3)
SO =X — X = X e). a7)

Dividing both sides by £ and rearranging the terms complete the proof. ]

For the Z update (10), we have the following lemma.

Lemma 6 Let {X' Z' Yt} be generated by (9)-(11). We have
[CXH — ZPHY 3 + (|2 - Z°||5 < ||CX*H - 23 (38)

Proof: Setting Z = Z! in (21) gives
0< (Y™ zt -zt | (39)
At t, (21) becomes
0< —(Y'Z-7Z". (40)



Setting Z = Z!*! yields
0<—(Y'ZH -7 . (41)
Adding (39) and (41) yields
0 S <Yt+1 o Yt7 Zt+1 _ Zt> _ <Cxt+l o Zt+17 Zt+1 o Zt>
1
=5 (X - Z'|3 - lCX** = ZHH ) — (|2 - Z27)3) - 42)

Rearranging the terms complete the proof. ]

Define R, (t + 1) as follows:
Ry(t+1) = CXP - 2P 4 20— g X0 - X

dce (43)
We now show that R () is non-increasing by combining the results in Lemma 5 and 6 .

Lemma 7 Let Ry (t) be defined in (43). We have
Ry (t =+ 1) < R; (t) . 44)

Proof: Adding (28) and (38) yields

ICX* T = Z7H 5 + (|27 = 275 + X = Xy

<CXF = ZY3 + 112 = 205+ X = XA e (45)
(44) follows from the definition of Ry in (43). [ ]

Lemma 8 Let {X! Z' Y} be generated by (9)-(11) and {X*,Z*,Y*} be a KKT point. We have
Ri(t+1) < Y =Y~ Y =Y+ (|27 - 2|5 — ||2" — 2713
HIX =X — X = X (46)
p p

where Ry (t + 1) is defined in (43).

Proof: Adding (24) and (6) yields
0<p(Y* =Y CXH -z + g(IIZ* = Z'[3 = 2" = Z")3 + |CXMT - Z| 3

| x t , :
—IEX = Z13) + S (X" = XM pee = X7 = X e = X = X R pce) -
(47)
Using (11) and applying (12) on the first term, we have
<Y* o Yt+1, Cxt+1 o Zt+1> _ <Y* o Yt+1,Yt+1 o Yt>
1 * *
= S = Y5 = Y = Y™ = Y™ = Y'5)
1 * *
= S = Y3 = [Y" = Y5 — |loX™ - 271 5) . (48)

Plugging into (47) yields
P * * 4 * *
0 < SNV = Y5 = Y™ = Y5 + (112" = 2'[15 — 127 = 275 — |[CX"*F — Z|[3)
1 * *
+ §(||X - Xt”?yprC? — X" - Xt+1H¢2717pc2 — X - Xth2717pC2) . 49)

Dividing both sides by £ and rearraning the terms, we have (46) by using (38) and the definition of
Ry (t) in (43). m



Theorem 2 Let {X*? Z!, Y} be generated by (9)-(11) and {X*,Z*,Y*} be a KKT point. Assume
X0 =Z=Y%=0andn > N2, (C). We have

max
Y713 + 211X13

Ry(T) < T ; (50)
where Ry (T) is defined in (43).
Proof: Summing (46) over ¢ from 0 to 7' — 1 and igonoring some negative terms yield
T—1
DR+ < Y=Y+ 27 - 205+ X - X0
t=0
= Y113 + 12713 + 11Xy 2
* 7] *
= Y715 + X3 (51)

where the first equality is due to X° = Z° = Y = 0 and the second equality uses CX* = Z*.
According to Lemma 7, R (t) is non-increasing. Therefore,

T
TRy(T) <) Ri(t+1). (52)
t=0
Dividing both sides by 7' completes the proof. ]

The optimality condition for (10) is given in Lemma 4, showing that KKT condition (4) is alway
satisfied. The optimality conditions for (9) is

(Vi 4+ X = XT) € 9| X, (53)
Expanding C and using (11), it can be rewritten as
—pC(Y! 4 X - X 7zt 7P (X - X)) € 9| X . (54)

If X!*! = X! and Z!*! = Z!, the KKT condition (3) will be satisfied. Therefore, R;(T') defines
the residuals of optimality conditions for (9)-(11). As Ry(T) — 0, CXT = 27 ZT = Z7~! and
XT = XT-1 and thus the KKT conditions (3)-(5) are satisfied.

B Statistical Convergence Rates with Covariance Perturbation

In this section, we analyze the statistical convergence of the CLIME estimator [1] under perturba-
tions of the sample covariance matrix. For the ease of reading, we first define some notations. Let
Ry, Rk, -+, R, € RP be n samples generated from a distribution with covariance matrix X
and true precision matrix €y. The estimated covariance matrix is denoted as 3 and the correspond-
ing estimated precision matrix is ). The pertubed covariance matrix is denoted as S. The covariance

matrix C in the main text can be either 3 or S. The i-th element of Ry, is denoted as R;;. For matrix,
we use 7 to index the ij-th element, e.g., §2;;. || - || and || - ||2 denote the elementwise norm. || - ||,
and || - ||z, denote the matrix L; norm and Ly norm. For the sake of completeness, we start with a
brief review of some of the main results for CLIME.

B.1 CLIME Estimator: Bounds in terms of \

For n samples Ry, ..., R, € RP, the sample covariance matrix S, is computed as:
1 n 1 n 1 1 n
2 e —_ R —_ R\T = - T —_— RRT R = — .
- > (R — R)(Rix — R) - > RyRj ~RR", where R=— > Rp. (55)
k=1 k=1 k=1
As aresult, an entry of the sample covariance matrix is given by:

- 1 — 1{1 1 —
=i (15 (T m) 0



The analysis for CLIME [1] considers the following family of precision matrices:
p
U=UM,q s0(p) =L Q:Q=0,]9Q|, <M, lrg%zl 1917 < s0(p) ¢ (57)
j=

for 0 < q < 1. Then, the CLIME estimator has the following guarantees:

Theorem 3 Let Qy € U(M, q, so(p)). If A > ||Q0]| 1, max;; |iij — X0,

, then we have

1€ = Q|0 < 4)|0]l2, A, (58)
12 = Qoll L, < esolp)(Al|]lz, ) "IN, (59)
1.

];HQ — Qolf5 < eso(p)(4]€ll,)* "IN, (60)

where ¢ < 2(1 + 2179 + 3'79) is a constant.

Note that the deterministic bounds in Theorem 3 for precision estimation relies on ||% — X||oe =
max; ;j |X;; — Xo;|. In the next subsection, we establish tail bounds for the scenario where we

(intentionally) perturb each entry of the sample covariance matrix, i.e., we work with S’ij = f]ij +
A;; where A;; has a sub-exponential tail.

B.2 Bounds for \

The following two norms will play a role in our analysis: For a scalar random variable v, let

[0llg, = sup p~/2(E[|")/? | and ||v[|y, =sup p~ (E[v|")"/?. (61)
p>1 p>1

Then, v is called a sub-Gaussian random variable if ||v||y, < K for a constant K, and v is called
a sub-exponential random variable if ||v||,, < K; for a constant K. In the literature, ||v||,, is
referred to as the sub-Gaussian norm and ||v||y, is referred to as the sub-exponential norm. Note
that, ignoring constants, sub-exponential tails decay at exp(—t) whereas sub-Gaussian tails decay
as exp(—t2/2) so that sub-exponential tails are heavier than sub-Gaussian tails.

The following result will be used in our analysis:
Lemma 9 Let v;,v; be sub-Gaussian random variables with max{||vi||y,, [|Vj|lw, } < K. Then
viv; — Ev;v;] is a sub-exponential random variable with ||v;v; — E[v;v;] ||y, < 4K3.
Proof: By definition,
[E[viv;]lly, = [Elviv;]] < Elogv;| < llvivsly, - (62)
Using triangle inequality, we have
[viv; = Elvivs]llg, < llvivsllp, + [Eloivs]lly, < 2[vivglly, - (63)

Since v;, v; are sub-Gaussian random variables, for any p > 1,
Elvi[? < (K2y/p)” and  Elv;[” < (K2y/p)” . (64)
Then, using Cauchy-Schwartz inequality
1/2
Elowvy[” = Bl |o; " < (BloElo; )" < ((Ka/2p) (K2/2)7) " = K3P27p .
Hence,

vivilly, = Sgl;p_l(Elijl”)l/p <2Kj3 .
b=

The result then follows from (63). [ |

We also need the following Bernstein-type inequality for sums of independent sub-exponential ran-
dom variables [2]:



Theorem 4 Let vy, ..., v, be independent centered sub-exponential random variables, and K| =
max; ||v;||ly,. Then, for everyb = (by,...,b,) € R™ and every t > 0, we have

n t2 t
P brvg| >ty < 2exp {—co min ( , ) } ) (65)
{Z } KEIE K bl

k=1
where cy > 0 is an absolute constant.

We will be also using the following form of the above result:

Corollary 1 Let vy, ..., v, be independent centered sub-exponential random variables, and K, =
max; ||v; ||y, . Then, for every e > 0, we have

1 & . e €
IP’{ ﬁka 26} < 2exp{—comln (K%’K1> n} , (66)

k=1
where cog > 0 is an absolute constant.

Next, we consider perturbing the covariance matrix by using independent zero-mean sub-exponential
random variables. First, we illustrate that the nature of the tail bounds stay unchanged under such
perturbations. Then, we show that one can do deterministic perturbations to get coarser and/or
truncated representations of the sample covariance matrix, saving on the memory foot-print of the
covariance matrix without affecting the statistical guarantees.

Let A;; be independent zero mean sub-exponential random variables, and we consider the modified
covariance matrix with entries:

R 1 n 1 1 n 1 n
p—— G R —— | = ; el . A
7 nZRkRJk n (nZRk> (n ZRJ]“> + Aij (67)
k=1 k=1 k=1
Then, we have the following result:
Theorem 5 Let Ko = max; ||R;. ||y, and K1 = max;; || Ay, Assuming K1 < 4K3, we have
P 1G5 — Do > eb <6 i & € (68)
max |S;; — Xoi] > €p <bexps —comin | —5—5,——= |, ,
TR PO\ 367K3 126, K3
for suitable positive constant cg, c1.
Proof: By definition, for any 1, 7,

P{lgu — ZO,ij‘ Z 6}

:

(69)

1 n
~ YRRk — Yo
k=1

I 1(1$ 1<
=P || =Y RiRj — Zo,ij> +A—— ( > Rik) ( > Rjk)
{ (n k=1 AN "=
> 6/3} +P{lAy] = €/2}
1 1 n 1 n
k=1 k=1

s
. -}

where the last inequality follows from the union bound. Each term in the summation considers a
large deviation bound for a sub-exponential random variable. For the first term, from Lemma 9,
Ki1 = ||[R;R; — E[R;R;]||y, < 4K3. For the second term, from the assumption regarding A;;,
K1 = ||Aijlly, < 4K2. Now, we focus on the third term. Recall that the sub-Gaussian norm of
the sum of sub-Gaussian random variables satisfy the following inequality [2]:

Z Rik
k=1

2 n
< Y ||Rill3, (70)
P2 k=1




for an absolute constant ¢;. In our context, since || Rz, < K2, we have
n
> R < \/ng < Vak,. (71)
k=1 P2 P2
From Lemma 9, we have
1o I
oo ()

Then, considering all three terms, using Corollary 1 for the first two terms and Theorem 4 for the
third term, we have

P {|S’” — Zo,ij| Z 6}

< 2exp {—co min (62 6) n} + 2 exp {—co min (62 €> n}
91(12,17 3K1,1 9K1212, 3K172
+ 2exp {—co min (W en) }
9K12’3’ 3K 3
§46Xp{comin <€2 6) n}+2exp{comin< en ¢ >n}
36K5 " 12K3 36c2K1 120, K2

62 €
<6 —comi .
= eXp{ co thitt <36C§K§’ 1201[(22) ”}

That completes the proof. ]

1 n
< /cinKs = Hn;le

<4c, K3 . (72)

P1

In particular, for sufficient number of samples such that c+/log p/n < 3c; K3, we have

2
4 cc
P { max|S;; — Xo,;j] > cy/logp/n » < 6exp —% logpp < 6p~ (73)
ij ' 36¢1 K5
where c3 is a suitable constant. Note that the above corresponds to the result discussed in the main
text.
A special case of such perturbations arise by choosing constant A;; for each (7, j) with |A;;| <

cy/ k’% in order to truncate or coarsen entries in the sample covariance matrix. In particular,

(1) if |XAJ”\ < cy/ 105” , then it can be safely truncated to 0; and

.. . . & 1 .
(ii) numeric representation of any X;; can be coarsened to the level cy/ =22, e.g., one can rewrite

¥ = 1.29317542365  as  Si; = 1.29
N—_———
Sey/ER

without affecting the statistical properties of the estimated precision matrix ). Such truncation and
coarsening can lead to significant savings in the memory foot-print of the sample covariance matrix.
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