
A Alternating Direction Method of Multipliers

We present here a brief overview of the alternating direction method of multipliers (ADMM), along
with a derivation of the algorithms presented in the text and details on the convergence criteria that
were omitted from the main text. Here Xi denotes the ith row of the matrix X .

ADMM is a method for solving problems of the form:

min
Y

f(Y) + g(Y) (16)

where f(·) and g(·) are both convex, but not necessarily differentiable everywhere. We introduce
an auxiliary variable Z, a Lagrange multiplier Λ, and an augmented term that depends on a learning
rate ρ to form the augmented Lagrangian:

Lρ(Y, Z,Λ) , f(Y) + g(Z) + 〈Λ, Y − Z〉+
ρ

2
||Y − Z||2F (17)

If we minimize Lρ with respect to Y and Z the result is a concave function of Λ (the convex
conjugate or Legendre-Fenchel transform), and the value of Y at the solution to maxΛ infY,Z Lρ is
also the solution to Eq. 16. At this solution the augmented term ρ

2 ||Y − Z||
2
F vanishes; it is there to

guarantee that infY,Z Lρ is well behaved before convergence.

ADMM does not directly maximize infY,Z Lρ. Instead, it alternates between minimizing Y , mini-
mizing Z, and gradient ascent on Λ:

Yk+1 = arg min
Y
Lρ(Y,Zk,Λk) (18)

Zk+1 = arg min
Z
Lρ(Yk+1, Z,Λk) (19)

Λk+1 = Λk + ρ(Yk+1 − Zk+1) (20)

This is guaranteed to converge to the global solution of Eq. 16.

A.1 Derivation and Algorithm for Nuclear Norm Minimization

When applied to Eq. 3, the augmented Lagrangian takes the form:

Lρ(Y,Z,Λ) = λ
√
nT ||Z||∗ −

∑
t

log p(st|yt) + 〈Λ,A(Y)− Z〉+
ρ

2
||A(Y)− Z||2F (21)

Note that our equality constraint is slightly different: A(Y) = Z instead of Y = Z. It turns out
that in this form, Eq. 19 has an exact solution. From Eq. 20, the update to Λ is clearly the simplest:
Λk+1 = Λk + ρ(A(Yk+1)− Zk+1). The Hessian of Eq. 21 with respect to Y is given by

∇2
Y Lρ = −∇2

Y

∑
t

log p(st|yt) + ρATA (22)

where AT (·) is the transpose of the operator A(·) and ATA is the product of the operator and its
transpose written in matrix form. The Newton search direction−(∇2

Y Lρ)−1∇Y Lρ can be computed
efficiently by exploiting the structure of the Hessian. The Hessian of the log likelihood term is
diagonal, since the likelihood of the data sit for neuron i at time t only depends on yit. Moreover, if
vec(·) denotes the vectorizing operator then the mean centering operator A(·) can be expressed as

vec(A(Y)) =

(
InT −

1

T
(1T ⊗ In)(1T ⊗ In)T

)
vec(Y), (23)

It follows that A is self-adjoint and idempotent, and the Hessian simplifies to

∇2
Y Lρ = −∇2

Y

∑
t

log p(st|yt) + ρInT − ρ
1

T
(1T ⊗ In)(1T ⊗ In)T (24)

which is the sum of a diagonal term, −∇2
Y

∑
t log p(st|yt) + ρInT , and the term, −ρ 1

T (1T ⊗
In)(1T ⊗ In)T , which is only rank n rather than nT . Let D be the diagonal part of the Hessian

D = −∇2
Y

∑
t

logp(st|yt) + ρInT . (25)

10

Using the Woodbury lemma we have

(∇2
Y Lρ)−1 = D−1+D−1(1T⊗In)((T/ρ)In−(1T⊗In)TD−1(1T⊗In))−1(1T⊗In)TD−1. (26)

Now let d = diag{D−1} and ∆ the n×T matrix such that vec(∆) = d. A quick calculation shows
that the matrix (1T ⊗ In)TD−1(1T ⊗ In) is diagonal, with its diagonal equal to ∆1T . It follows
that the Newton direction −(∇2

Y Lρ)−1∇Y Lρ can be computed efficiently in O(nT) time and with
O(nT) memory requirements, without having to explicitly construct the Hessian.

Algorithm 1 Alternating Direction Method of Multipliers for Nuclear Norm minimization without
connectivity (Eq. 3)

input Matrix of spike counts S, learning rate ρ, parameter λ
Y ← log(S + 1), Z ← 0,Λ← 0
while rp > εp and rd > εd do

while (∇Y Lρ)T (∇2
Y Lρ)−1(∇Y Lρ) > ε do

∇Y Lρ , −∇Y
∑
t logp(st|yt) + ρA(Y)−AT (ρZ − Λ)

∇2
Y Lρ , −∇2

Y

∑
t logp(st|yt) + ρInT − ρ 1

T (1T ⊗ In)(1T ⊗ In)T

Y ← Y − (∇2
Y Lρ)−1∇Y Lρ

end while
UΣV T , SVD(A(Y) + Λ/ρ)
Z ′ ← USλ√nT/ρ(Σ)V T

Λ← Λ + ρ(A(Y)− Z ′)
rp ← ||A(Y)− Z ′||F
rd ← ρ||AT (Z − Z ′)||F
εp ←

√
nTεabs + εrel max(||A(Y)||F , ||Z ′||F)

εd ←
√
nTεabs + εrel||AT (Λ)||F

Z ← Z ′

end while
return Y

A.2 Algorithms for Stable Principal Component Pursuit

Algorithm 2 Alternating Direction Method of Multipliers for Nuclear Norm minimization with
connectivity (Stable Principal Component Pursuit) (Eq. 12)

input Matrix of spike counts S and spike histories H , learning rate ρ, parameters λ, γ
Y ← log(S + 1), Z ← 0, D ← 0, Λ← 0
while rp > εp and rd > εd do

while (∇Y Lρ)T (∇2
Y Lρ)−1(∇Y Lρ) > ε do

∇Y Lρ , −∇Y
∑
t logp(st|yt) + ρA(Y)−AT (ρZ + ρA(DH)− Λ)

∇2
Y Lρ , −∇2

Y

∑
t logp(st|yt) + ρInT − ρ 1

T (1T ⊗ In)(1T ⊗ In)T

Y ← Y − (∇2
Y Lρ)−1∇Y Lρ

end while
D ← arg minD γ

T
n ||D||1 + ρ

2 ||A(DH) + Z −A(Y)− Λ/ρ||2F (See Alg. 3)
UΣV T , SVD(A(Y −DH) + Λ/ρ)
Z ′ ← USλ√nT/ρ(Σ)V T

Λ← Λ + ρ(A(Y)− Z ′)
rp ← ||A(Y −DH)− Z ′||F
rd ← ρ||AT (Z − Z ′)||F
εp ←

√
nTεabs + εrel max(||A(Y −DH)||F , ||Z ′||F)

εd ←
√
nTεabs + εrel||AT (Λ)||F

Z ← Z ′

end while
return Y

11

Algorithm 3 Alternating Direction Method of Multipliers for Updating D (Eq. 15)

input Variables from Alg. 2, learning rate α
E ← D, Γ← 0
while rp > εp and rd > εd do

for i = 1→ n do
Di ← (AT (A(Y i)− Zi + Λi/ρ)HT + αEi − Γi)(A(H)A(H)T + αInk)−1

end for
E′ ← SγT/nρα(D + Γ/α)
Γ← Γ + α(D − E′)
rp ← ||D − E′||F
rd ← α||E − E′||F
εp ←

√
n2kεabs + εrel max(||D||F , ||E′||F)

εd ←
√
n2kεabs + εrel||Γ||F

E ← E′

end while
return D

B Fitting Linear Dynamical Systems

It is not immediately obvious that we should fit linear dynamical systems by the particular subspace
method used in this paper, or that we should minimize the nuclear norm ofA(Y) instead of Y . Here
we show empirical results on model data with two methods for fitting linear dynamical systems, and
minimizing ||A(Y)||∗ versus ||Y ||∗, for a total of 4 combinations. The first method for fitting linear
dynamical systems is perhaps the easiest. Let X = (x1, . . . , xT) be the matrix of latent states, just
as Y = (y1, . . . , yT) is the matrix of natural rates, and suppose xt is generated by a linear dynamical
system:

xt+1 = Axt + εt (27)
E[εt] = 0

First we take the singular value decomposition of A(Y), so that UΣV T = A(Y). Since A(Y) =
CX , the left and right singular vectors should be equal to C and X up to some arbitrary rotation M :

U
√

Σ = CM√
ΣV T = M−1X (28)

where
√

Σ takes the element-wise square root of the diagonal matrix of singular values.

It is clear that X2:T = (x2, . . . , xT) = AX1:T−1 +E = A(x1, . . . , xT−1) + (ε1, . . . , εT−1), that is
each column of X is a noisy linear mapping of the column to the left of it. That suggests we could
estimate A by doing regression between past and future columns of X , or by proxy,

√
ΣV T :

Â =
(
V 2:T

√
ΣT
)(

V 1:T−1
√

ΣT
)†

(29)

here Xi:j denotes the ith to jth rows of X , while Xi:j denotes the ith to jth columns. We refer to
this method of fitting linear dynamical systems as past-future regression. While this estimate of A
is off by a change of coordinate, the eigenvalues should on average be the same as the true A if our
estimator is unbiased. We find that this is not the case.

Alternately, we use a variant of the Multivariable Output Error State sPace (MOESP) method for
fitting linear dynamical systems, a type of subspace identification [26]. Our implementation of
MOESP works as follows: take the covariance between Y one and two time steps into the past and
one and two time steps into the future:

Γ =

(
Y3:T−1

Y4:T

)(
Y1:T−3

Y2:T−2

)T
(30)

12

where the matrix on the left is known as the block-Hankel matrix of future outputs and the matrix
on the right is the block-Hankel matrix of past outputs in the terminology of subspace identification.
The number of block-rows can be greater than 2, but as long as the number of latent dimensions is
less than the number of observed dimensions, only two are needed.

From Eqs. 1 and 27 we can expand out yt as CAkxt−k +
∑k
τ=1 CA

k−τ εt−τ and plug this into the
true past-future covariance to find:

Cov

[(
yt
yt+1

)
,

(
yt−2

yt−1

)]
=

(
C
CA

)(
CCov[xt]A

2T

CACov[xt]A
2T + CCov[εt]A

T

)T
(31)

of which Γ/(T − 2) is the maximum likelihood estimate. We can then say the left singular values

of Γ should asymptotically be equal to
(

C
CA

)
up to a rotation, and we estimate Â by doing least

squares regression between the top n rows and bottom n rows of the left singular vectors of Γ. As
with the past-future regression method described above, we find it useful to scale the left singular
vectors by the square root of the singular values.

In the experiments on model data, we know the true dimensionality m, and truncated Σ so that
all singular values after the mth are set to 0. On real data we would use some heuristic, such as
truncating everything below the geometric mean of the first and last singular value. If we had access
to known input as well, we would also include a projection onto the orthogonal subspace of the
input, and include past inputs in the right-hand matrix in Eq. 30.

−0.2 −0.1 0 0.1 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

Imaginary Component

R
e

a
l
C

o
m

p
o

n
e

n
t

No Mean Centering, Past−Future Regression

True

NN

(a)

−0.2 −0.1 0 0.1 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

Imaginary Component

R
e

a
l
C

o
m

p
o

n
e

n
t

Mean Centering, Past−Future Regression

True

NN

(b)

−0.2 −0.1 0 0.1 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

Imaginary Component

R
e

a
l
C

o
m

p
o

n
e
n
t

No Mean Centering, MOESP

True

NN

(c)

−0.2 −0.1 0 0.1 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

Imaginary Component

R
e

a
l
C

o
m

p
o

n
e
n
t

Mean Centering, MOESP

True

NN

(d)

Figure 5: A comparison of the eigenvalues of the transition matrixA recovered by different methods
of fitting linear dynamical systems to model data. True eigenvalues in black, estimates over different
trials in red. 200 neurons, 10000 time bins, 8 latent dimensions, 10 trials. Top row: Results of
estimating A by past-future regression (Eq. 29). Bottom row: Results of estimating the transition
matrix by the MOESP subspace identification method. Left column: Nuclear norm minimization
directly on the matrix Y . Right column: Nuclear norm minimization on the mean-centered matrix
A(Y). In both cases the mean of Y was subtracted before estimating the transition matrix. Note that
both mean-centering and subspace identification are necessary to arrive at unbiased estimates of the
transition matrix.

13

C Optimizing Smoothing Parameters

The only free parameter in our minimization is λ, which controls the tradeoff between the data
likelihood and nuclear norm penalty. As λ→∞, the natural rates are forced to a low-rank solution,
and eventually to the mean of the data (after being passed through the inverse nonlinearity) if the
mean-centering operator is included, or zero if not. At the other extreme, the nuclear norm penalty
vanishes as λ→ 0 and the natural rates go to the maximum likelihood solution. We demonstrate the
effect of varying the nuclear norm penalty on the spectra of the natural rates and the eigenvalues of
the recovered transition matrix and show that the nuclear norm penalty leads to less biased estimates
of the transitions. As λ increases the quality of the estimates improves, until the rank of the natural
rates is forced to below the actual number of latent dimensions. In a nutshell, the solution should be
as low rank as possible, but no lower.

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 1e−06

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 3e−06

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 1e−05

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 3e−05

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.0001

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.0003

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.001

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.003

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.01

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.03

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.1

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.3

Figure 6: Effect of varying the smoothing parameter λ on the recovered transition matrix eigenval-
ues. True values in black, recovered in red. The nuclear norm term helps reduce the variance of the
estimates, but the results quickly degenerate when λ is too large. Note that the results are robust
across a wide range of values of λ, from roughly 0.001 to 0.03. Model data, 200 neurons, 1000 time
bins, 8 latent dimensions, 5 trials.

14

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 1e−06

0 5 10 15 20
0

200

400

600

800

1000

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 1e−05

0 5 10 15 20
0

200

400

600

800

1000

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.0001

0 5 10 15 20
0

200

400

600

800

1000

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.001

0 5 10 15 20
0

200

400

600

800

1000

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.01

0 5 10 15 20
0

200

400

600

800

1000

−0.2 0 0.2
0.8

0.9

1

1.1

Imaginary Component

R
e
a
l
C

o
m

p
o
n
e
n
t

λ = 0.1

0 5 10 15 20
0

200

400

600

800

1000

Figure 7: A simultaneous comparison of the eigenvalues of A and singular values of Y for various
values of λ on the same data as Fig. 6. Note that with no smoothing, the top singular values of the
recovered Y closely match the true values, but the noise leads to biases in the recovered A. At the
other extreme, the quality of the recovered A degrades rapidly if the smoothing forces the rank of Y
to be smaller than the true rank.

15

