A Proof of Regret Decompositions

Proposition 1. Fix any sequence {F; : t € N}, where F; C F is measurable with respect to o(Hy). Then for
anyT' € N, with probability 1,

T
R(T,n71) < Z[wamt +C1(fo & Fo)] ™)
T
E [R(T, WTS)] < EY [wr(A) +CL(fs ¢ Fo)). (8)

Proof. To reduce notation, define the upper and lower bounds U:(a) = sup{f(a) : f € Fi} and L.(a) =
inf{f(a) : f € Fi}. Whenever fy € Fi, the bounds L;(a) < fop(a) < U(a) hold for all actions. This
implies

fQ(A:)_fe(At) < Ut(A:)—Lt(At)-l-Cl(feg_fft) )
= wr,(A) + C1(fo & Fi) + [Ui(A}) — Ur(As))]. (10

Equation (7) follows almost immediately, since the policy 771> chooses an action A; that maximizes Ui(a).
This implies Uy (A;) > U (Af) by definition, and the last term in (10) is negative. The result (7) follows by
summing over ¢.

Now consider equation (8). Summing equation (10) over ¢ shows,
T
R(T,w™%) <> [wr (Ad) + C1(fo ¢ Fo)] + Mr (an
t=1

where Mz := 3| [U:(A7) — Us(A:)]. Now, by the definition of Thompson sampling P(A; € -|H;) =
P(A; € -|H:). Thatis A; and A} are identically distributed under the posterior. In addition, since the
confidence set F; is o(H:)-measurable, so is the induced upper confidence bound U:(-). This implies
E[U:(A¢)|H:) = E[U:(Af )| Hy], and therefore that E[Mr] = 0. O

B Proof of Confidence bound

B.1 Preliminaries: Martingale Exponential Inequalities

Consider random variables (Z,|n € N) adapted to the filtration (H, : n =0,1,...). Assume E [exp {\Z;}]
is finite for all A\. Define the conditional mean p; = E[Z; | H;—1]. We define the conditional cumulant
generating function of the centered random variable [Z; — p;] by ©; (A) = log E [exp (A [Z; — p]) | Hi—1].

Let
M, (N) = exp {Z AZi = pa] — i (A)} :
=1
Lemma 3. (M, (\)|n € N) is a Martinagale, and B [Mn ()] = 1.

Proof. By definition
E[M: (N)[Ho] = Elexp {A[Z1 — ] — ¢1 (A) [Ho}] = Elexp {A [Z1 — ]} [Ho]/ exp {¢1 (V)} = 1.
Then, for any n > 2,

E[Ma(A) | Hoo] = [exp{z AMZi = i) = (A)} exp {A [Zn — pn] — n (N} | Hos
— exp {Z Zi = ) = (A)} E [exp {A [Zn — fin] — ¥ (N} | Hono1]

= exp {iA[Zi — il = Ui ()\)} = Mp-1(N).

Lemmad. Forallz >0and X > 0,P (3 V' AZ; <ax+ Y7 A+ (N)] VneN)>1—e ®.
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Proof. For any A\, M, ()) is a martingale with EM,, (A\) = 1. Therefore, for any stopping time T,
E[M:an (A)] = 1. For arbitrary & > 0, define 7, = inf {n > 0| M,, (A) > x} and note that 7, is a stopping
time corresponding to the first time M, crosses the boundary at . Then, E[M,_A»(\)] = 1 and by Markov’s
inequality:

2P (Mrpan (A) > 2) < EMroan(X) = 1.

We note that the event { M-, an (X) > 2} = Up_; {Mr(X) > z}. So we have shown that for all z > 0 and
n>1

P (O (M) > x}) < i
k=1

Taking the limit as n — oo, and applying the monotone convergence theorem shows
P(Ure, {Me(\) > 2}) < %, Or, P(Upe, {Mk(X\) >€"}) < e “. This then shows, using the
definition of M} (), that

IF’(G {ZW:A[Z,- — ] — i (V) zx}) <e

B.2 Proof of Lemma 1

Lemma 1. Forany 6 > 0and f : A — R,

P (Laslh) 2 Laatho) 4 1 = Sl — 477w (1/6) vt e N[0) > 1

We will transform our problem in order to apply the general exponential martingale result shown above. since
we work conditionally on 6, to reduce notation we denote the conditional probability and expectation operators
Pyo(-) = P(-|0) and Eo(-) = E(-|0). We set H:—1 to be the o-algebra generated by (H¢, A¢+) and set Ho =
a(0, ). By previous assumptions, €; := Ry — fo(Ay) satisfies Eg[e;[Hi—1] = 0and Eg [exp {Ae; } | Hi—1] <

exp {A—?’E} a.s. for all \. Define Z; = (fo (As) — R:)® — (f (Ai) — Ry)>.

Proof. By definition ZT Zy = Lary1(fo) — Lor+1(f). Some calculation shows that 7, =

— (f(A) = fo(A)® + 2(f (As) — fo (Ar)) €. Therefore, the conditional mean and conditional cumulant
generating function satisfy:

o = Eo[Zi| Hia]=—(f(A) — fo (A))?
Pe(A) log Eg [exp (A [Z¢ — pue]) | He—1]

log Eg [exp (2A (f (Ar) — fo (Ar)) &) | Hi—1] <

(A LS (Ae) = fo (A)D*n?
2

Applying Lemma 4 shows that forallz > 0, A > 0

Py (ZAZk Sz —A> (F(A) = fo(AR)* + %2 (2f (Ax) — 2fs (AR))*n® Vte N) >1—e "
k=1 k=1

Or, rearranging terms

t
Py (ZZ)C §§+
k=1 k

Choosing A = 5., z = log 3, and using the definition of St Z, implies

t

(f (Ax) = fo (AK))? (20" —1) Vi e N) >1-e "

=1

Py (Lu(f) > Lot (fo) + % Ilf— f9||§1Et — 49’ log (1/6) Vit e N) >1-0.
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B.3 Least Squares Bound - Proof of Proposition 2

Proposition 2. For all § > 0 and o > 0, if F; = {f eF: Hf_beHZE <V (]:»&a)}for all
st
t €N, then

Py (nyﬁ]:t> >1—296.

t=1

Proof. Let F* C F be an a—cover of F in the sup-norm in the sense that for any f € F there exists f* € F
such that || f* — fl|,, < e. By a union bound, conditional on 6, with probability at least 1 — J,

(o3 1 {o% 03 o3
Lat(f*) = La(fo) 2 5 I/™ = follo g, — 40" log (IF| /6) VLEN, f € F*.
Therefore, with probability at least 1 — ¢, forall ¢ € Nand f € F:
1 a
Loo(f) = Las(fo) 2 5If = folls p, = 40’ log (1F°| /0)

feeFa

o min L30 = ole, = G1F — Bl + Laa() — Laa ()}

Discretization Error

Lemma 5, which we establish in the next section, asserts that with probability at least 1 — ¢ the discretization
error is bounded for all ¢t by aD; where Dy := ¢ [80 + /8n? In(4¢2/ 5)] . Since the least squares estimate

f£° has lower squared error than fy by definition, we find with probability at least 1 — 2§

1 - 2
5| F2 = sl|, < an*rog (171 /8) + ab.
2 2,B¢

Taking the infimum over the size of « covers implies:

1755 =10, < \/sn1og (N(F, @ I11.0)/8) +2aD: & /B; (F 6, a).
st

B.4 Discretization Error

Lemma 5. If f satisfies || f — f°||., < a, then, conditional on 0, with probability at least 1 — 6,

U7 = Bl = 517 = ol + Eaa() = L)

<at [80 + /872 In(422 /5)] Vte N (12)

Proof. Since any two functions in f, f* € F satisfy || f — ||, < C, it is enough to consider o < C. We
find

() (@ = (N (@] < _max |(f(@)+9)" = f(@)°] = 2f(a)a+ 0’ <2Ca + o’
which implies

|(*(a) = fol@))® = (f(a) = fo(@))’|
(B = £(2)” = (B = £*(@))]

[[(f*) (@)* = f(a)’] +2fo(a) (f(a) = f*(a))] < 4Ca + o

|2R: (f*(a) = f(a)) + f(@)® = £*(a)?] < 2a|Ry| + 2Ca + o

Summing over ¢, we find that the left hand side of (12) is bounded by
t—1 1 t—1
> (5 [4Ca + o®] + [2|Ri| + 2Ca + aQ]) <a) (6C+2|Ry|)
k=1 k=1

Because ¢, is sub-Gaussian, Py (|ek|> 27721n(2/6)) < 4. By a union bound,

P, <Elks.t. lex| > 27721n(4k2/5)) < S L < 6 Since |[Re| < C + |ex this shows
that with probability at least 1 — ¢ the discretization error is bounded for all ¢ by aD; where
D=t [80+2 22 ln(4t2/5)]. o
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C Bounding the sum of widths

Proposition 3. If (8, > 0|t € N) is a nondecreasing sequence and Fy := {f € F : |f — f£5 2.5 < VBi}
then

T 18
Zl wr, (A¢) > €) < <—T + 1) dimg(F,€)
t=1

forallT € Nande > 0.

Proof. We begin by showing that, for ¢ < T, if w¢(A:) > € then A; is e-dependent on fewer than 437 /€
disjoint subsequences of (A1, .., A¢—1). To see this, note that if wz,(A:) > e there are f, f € F; such

that f(A4;) — f(As) > e. By definition, since F(Ay) — f(As) > e, if Ay is e-dependent on a subsequence
(Asyy ..y Agy) of (A1, .., Ai—1) then ijl(f(A,'j) — [(Ai))? > €. It follows that, if A; is e-dependent on
K disjoint subsequences of (Ax, .., A;_1) then [|f — f||3 5, > K¢*. By the triangle inequality, we have

”? _iHlEt = HF a ftLSHz,Et + Hi B ftLSHQ,Et = 2\/E < 2\/6_71'

and it follows that K < 4537 /.

Next, we show that in any action sequence (a1, .., a- ), there is some element a; that is e-dependent on at least
7/d — 1 disjoint subsequences of (a1, ..,a;—1), where d := dimg(F,€). To show this, for an integer K
satisfying Kd+1 < 7 < Kd+d, we will construct K disjoint subsequences B, ..., Bx. Firstlet B; = (a;)
fori =1,.., K. If ag+1 is e-dependent on each subsequence B1, .., Bk, our claim is established. Otherwise,
select a subsequence B; such that ax 41 is e-independent and append ax 41 to B;. Repeat this process for
elements with indices j > K + 1 until a; is e-dependent on each subsequence or j = 7. In the latter scenario
3" |Bsi| > Kd, and since each element of a subsequence B; is e-independent of its predecessors, |B;| = d. In
this case, a- must be e-dependent on each subsequence, by the definition of dim g (F, €).

Now consider taking (ai,..,ar) to be the subsequence (A, , ..., As, ) of (A1,..., Ar) consisting of ele-
ments A; for which wg, (At) > €. As we have established, cach Af is e- dependent on fewer than 4837 /€
disjoint subsequences of (Ar, .., As;—1). It follows that each a; is - dependent on fewer than 4837 /¢* dlS_]Oll‘lt
subsequences of (a1, ..,a;—1). Comblnlng this with the fact we have established that there is some a; that is
e-dependent on at least 7/d — 1 disjoint subsequences of (az, .., a; 1), we have 7/d — 1 < 487 /€. It follows
that 7 < (4f7/€® 4 1)d, which is our desired result.

Lemma 2. If (3; > 0|t € N) is a nondecreasing sequence and Fi := {f € F : ||f — fF5||a.5, < V/Bi} then
with probability 1,

T
1
> wr (A0) < 7+ min {dimE (]—', a;) ,T} C + 4\/dimp (F,0f) 6T (13)
t=1
JorallT € N.
Proof. To reduce notation, write d = dimg (]—' ;) and w; = w¢(A:). Reorder the sequence
(wi, .., wr) = (Wiy, ..., i) Where wy; > Wiy > ... > Wi, We have

T T T T T
1
wat(At) = Zwit = Zwitl {wit < aqfﬂ}—i-z wi, 1 {'w,-t > aq}:} < T"_Zw"tl {wit > ozq]:} .
t=1 t=1 t=1 t=1 t=1
The final step in the above inequality uses that either o7 = T2 and 3./, a7 = T* or o] is set below the

smallest possible width and hence 1 {wit <ok } never occurs.

Now, we know w;, < C. In addition, w;, > € <= Zf 1 (wr, (Ax) > €) > t. By Proposition 3,
this can only occur if ¢ < (wT + 1) dimg(F,e€). For e > a7, dimg(F,¢) < dimg(F,aZ) = d, since

dimpg (F,€) is nonincreasing in €. Therefore, when w;, > € > a%, t < <4B + 1) d which implies

€ < /L2 This shows that if w;, > o7, then w;, < min {C, \/ 4757%1}. Therefore,

sz, {wi >af} <dc+ Z ~/4d5T <dC+2\/dBT/—dt dC + 4/dB+T.

t=d+1
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To complete the proof, we combine this with the fact that the sum of widths is always bounded by C'T". This
implies:

T
wat(At) < min {TC, T +dimg (]—' aT) C, +4\/d1mE (F, aT)ﬁTT}
=1

< % + min {dimE (]—", a?) C, TC} + 4\/dimE (F,aF) BrT

D Bounds on Eluder Dimension for Common Function Classes

Definition 4, which defines the eluder dimension of a class of functions, can be equivalently written as follows.

The e-eluder dimension of a class of functions F is the length of the longest sequence a1, .., a- such that for
’

some € > €

k—1
wi == sup { (fp1 — foo) (ar) E(fm _fpz)Q(ai)S€/ p1,p2 €0 p > ¢ (14)
=1
foreach k < 7.
D.1 Finite Action Spaces

Any action is ¢'~dependent on itself since sup {(f,,1 — o) (@) i A/ (For — fou)? (@) <€ p1,p2 € 9} <
€’. Therefore, for all € > 0, the e-eluder dimension of A is bounded by |.A|.
D.2 Linear Case

Proposition 6. Suppose © C R? and fo(a) = 07 ¢(a). Assume there exist constants y, and S, such that for
alla € Aandp € O, |p|l, < S, and ||6(a)||, < 7. Then dimp(F,€) < 3 {3 +3 (%)2} +1.

To simplify the notation, define wy, as in (14), ¢, = ¢ (ax), p = p1 — p2, and P, = k 1 ;¢F . In this case,

Zf;ll (for = fo2)? (a;) = p” @y p, and by the triangle inequality ||p||, < 2S. The proof follows by bounding
the number of times wy, > €’ can occur.

)
Step 1: If wy, > €’ then ¢5Vk_1¢k > % where Vj, := &, + A\l and A = (;—b) .

Proof. We find W max{p Or: pT®pp < (), pTIp < (25’)2} <

max {pT¢>k 2 0" Viepr < 2(e } \/2(6 )? ||¢)k||v_1 The second inequality follows because any p

that is feasible for the first maximization problem must satlsfy p"Vip < (€)? 4+ A(25)% = 2(¢'). By this
result, wx > €' implies ||¢>k||f,71 >1/2. O
k

d
Step 2: If w; > ¢ for cach i < k then det Vie > A (3)" " and det Vi < (=2 4 1),
Proof. Since Vi = Vi,_1 + ¢r 7, using the Matrix Determinant Lemma,

k—1 k—1
det Vi = det Vi_4 (1 + ¢}€Vk—1¢k) > det Vi1 (;) > ... > det [\] (g) =\ (g) .

Recall that det V4 is the product of the eigenvalues of Vj,, whereas trace [V} ] is the sum. As noted in [1], det V4
d d
is maximized when all eigenvalues are equal. This implies: det Vi, < (t'“elgv‘"']) < (72(;1) + )\) . O

Step 3: Complete Proof
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k—1
Proof. Manipulating the result of Step 2 shows k& must satisfy the inequality: ( ) T < [kgl] + 1 where

Qo = (W_;) — (2SW) Let B(z,a) = max{B. (1 +:1:) <aB+ 1}. The number of times wy, > €' can

occur is bounded by dB(1/2, ag) + 1.

We now derive an explicit bound on B(z, ) for any < 1. Note that any B > 1 must satisfy the inequality:
In{l1+2}B <In{l+a}+InB. Since In{1+ 2z} > z/(1 + ), using the transformation of variables
y = Blz/(1+ z)] gives:

y<In{l-+ a}—l—ln

—|—lny <In{l+ a}—|—ln

_|_ = y<— (ln{l—l—a}—l—ln -;x)

14x
z

This implies B(z,a) <
x=1/2.

< (In{1+ a} +In+£2). The claim follows by plugging in & = ao and

O

D.3 Generalized Linear Models

Proposition 7. Suppose © C R and fy (a) = g(0T ¢(a)) where g(-) is a differentiable and strictly increasing
function. Assume there exist constants h, h, v, and S, such that for all a € Aand p € ©, 0 < h <

g (pT6(a)) < llpll, < S, and |¢(a)|l, < 7. Then dimp( {37" 432 (2Sh) }+ 1.

The proof follows three steps which closely mirror those used to prove Proposition 6.
o \2
= (1) -

Proof. By definition w, < max {g (p" on) : Zz 1 g( (az))2 < ()2, pTIp < (25’)2}. By
the uniform bound on ¢'(-) th1s is less than max {hp” ¢r : B?p" ®rp < ()2, p"Ip < (25)°} <
max {hp” ¢x : B*p" Vip < 2(¢')*} = \/2(¢')2/r? ||¢>k||v_1 O

Step 1: If wy > € then ¢}V, oy, >

s e d
Step 2: If w; > ¢’ for each i < k then det Vj, > A\? (ﬁ)k ! and det Vj, < (ﬁ%l + )\) .

Step 3: Complete Proof

k—1
Proof. The above inequalities imply k must satisfy: (14 535) 7 < ao [252] where ap = v /A. Therefore,
as in the linear case, the number of times wy, > € can occur is bounded by dB(j ,a0) + 1. Plugging these
constants into the earlier bound B(z,a) < £ <= (In{1 + a} +1In 1+“‘) and using 1 + z < 3/2 yields the
result. O
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