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Abstract

Distributions over matrices with exchangeable rows and infinitely many columns
are useful in constructing nonparametric latent variable models. However, the dis-
tribution implied by such models over the number of features exhibited by each
data point may be poorly-suited for many modeling tasks. In this paper, we pro-
pose a class of exchangeable nonparametric priors obtained by restricting the do-
main of existing models. Such models allow us to specify the distribution over the
number of features per data point, and can achieve better performance on data sets
where the number of features is not well-modeled by the original distribution.

1 Introduction

The Indian buffet process [IBP, 11] is one of several distributions over matrices with exchangeable
rows and infinitely many columns, only a finite (but random) number of which contain any non-zero
entries. Such distributions have proved useful for constructing flexible latent feature models that do
not require us to specify the number of latent features a priori. In such models, each column of the
random matrix corresponds to a latent feature, and each row to a data point. The non-zero elements
of a row select the subset of features that contribute to the corresponding data point.

However, distributions such as the IBP make certain assumptions about the structure of the data that
may be inappropriate. Specifically, such priors impose distributions on the number of data points that
exhibit a given feature, and on the number of features exhibited by a given data point. For example,
in the IBP, the number of features exhibited by a data point is marginally Poisson-distributed, and
the probability of a data point exhibiting a previously-observed feature is proportional to the number
of times that feature has been seen so far.

These distributional assumptions may not be appropriate for many modeling tasks. For example,
the IBP has been used to model both text [17] and network [13] data. It is well known that word
frequencies in text corpora and degree distributions of networks often exhibit power-law behavior;
it seems reasonable to suppose that this behavior would be better captured by models that assume
a heavy-tailed distribution over the number of latent features, rather than the Poisson distribution
assumed by the IBP and related random matrices.

In certain cases we may instead wish to add constraints on the number of latent features exhibited
per data point, particularly in cases where we expect, or desire, the latent features to correspond
to interpretable features, or causes, of the data [20]. For example, we might believe that each data
point exhibits exactly S features – corresponding perhaps to speakers in a dialog, members of a
team, or alleles in a genotype – but be agnostic about the total number of features in our data set. A
model that explicitly encodes this prior expectation about the number of features per data point will
tend to lead to more interpretable and parsimonious results. Alternatively, we may wish to specify
a minimum number of latent features. For example, the IBP has been used to select possible next
states in a hidden Markov model [10]. In such a model, we do not expect to see a state that allows
no transitions (including self-transitions). Nonetheless, because a data point in the IBP can have
zero features with non-zero probability, this situation can occur, resulting in an invalid transition
distribution.
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In this paper, we propose a method for modifying the distribution over the number of non-zero ele-
ments per row in arbitrary exchangeable matrices, allowing us to control the number of features per
data point in a corresponding latent feature model. We show that our construction yields exchange-
able distributions, and present Monte Carlo methods for posterior inference. Our experimental eval-
uation shows that this approach allows us to incorporate prior beliefs about the number of features
per data point into our model, yielding superior modeling performance.

2 Exchangeability

We say a finite sequence (X1, . . . , XN ) is exchangeable [see, for example, 1] if its distribution
is unchanged under any permutation σ of {1, . . . , N}. Further, we say that an infinite sequence
X1, X2, . . . is infinitely exchangeable if all of its finite subsequences are exchangeable. Such distri-
butions are appropriate when we do not believe the order in which we see our data is important. In
such cases, a model whose posterior distribution depends on the order in which we see our data is
not justified. In addition, exchangeable models often yield efficient Gibbs samplers.

De Finetti’s law tells us that a sequence is exchangeable iff the observations are i.i.d. given some
latent distribution. This means that we can write the probability of any exchangeable sequence as

P (X1 = x1, X2 = x2, . . . ) =

∫
Θ

∏
i

µθ(Xi = xi)ν(dθ) (1)

for some probability distribution ν over parameter space Θ, and some parametrized family {µθ}θ∈Θ

of conditional probability distributions.

Throughout this paper, we will use the notation p(x1, x2, . . . ) = P (X1 = x1, X2 = x2, . . . ) to
represent the joint distribution over an exchangeable sequence x1, x2, . . . ; p(xn+1|x1, . . . , xn) to
represent the associated predictive distribution; and p(x1, . . . , xn, θ) :=

∏n
i=1 µθ(Xi = xi)ν(θ) to

represent the joint distribution over the observations and the parameter θ.

2.1 Distributions over exchangeable matrices

The Indian buffet process [IBP, 11] is a distribution over binary matrices with exchangeable rows and
infinitely many columns. In the de Finetti representation, the mixing distribution ν is a beta process,
the parameter θ is a countably infinite measure with atom sizes πk ∈ (0, 1], and the conditional
distribution µθ is a Bernoulli process [17]. The beta process and the Bernoulli process are both
completely random measures [CRM, 12] – distributions over random measures on some space Ω that
assign independent masses to disjoint subsets of Ω, that can be written in the form Γ =

∑∞
k=1 πkδφk .

We can think of each atom of θ as determining the latent probability for a column of a matrix with
infinitely many columns, and the Bernoulli process as sampling binary values for the entries of that
column of the matrix. The resulting matrix has a finite number of non-zero entries, with the number
of non-zero entries in each row distributed as Poisson(α) and the total number of non-zero columns
in N rows distributed as Poisson(αHN ), where HN is the N th harmonic number. The number of
rows with a non-zero entry for a given column exhibits a “rich gets richer” property – a new row has
a one in a given column with probability proportional to the number of times a one has appeared in
that column in the preceding rows.

Different patterns of behavior can be obtained with different choices of CRM. A three-parameter
extension to the IBP [15] replaces the beta process with a completely random measure called the
stable-beta process, which includes the beta process as a special case. The resulting random matrix
exhibits power law behavior: the total number of features exhibited in a data set of size N grows
as O(Ns) for some s > 0, and the number of data points exhibiting each feature also follows
a power law. The number of features per data point, however, remains Poisson-distributed. The
infinite gamma-Poisson process [iGaP, 18] replaces the beta process with a gamma process, and
the Bernoulli process with a Poisson process, to give a distribution over non-negative integer-valued
matrices with infinitely many columns and exchangeable rows. In this model, the sum of each row is
distributed according to a negative binomial distribution, and the number of non-zero entries in each
row is Poisson-distributed. The beta-negative binomial process [21] replaces the Bernoulli process
with a negative binomial process to get an alternative distribution over non-negative integer-valued
matrices.
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3 Removing the Poisson assumption

While different choices of CRMs in the de Finetti construction can alter the distribution over the
number of data points that exhibit a feature and (in the case of non-binary matrices) the row sums,
they retain a marginally Poisson distribution over the number of distinct features exhibited by a
given data point. The construction of Caron [4] extends the IBP to allow the number of features in
each row to follow a mixture of Poissons, by assigning data point-specific parameters that have an
effect equivalent to a monotonic transformation on the atom sizes in the underlying beta process;
however conditioned on these parameters, the sum of each row is still Poisson-distributed.

This repeatedly occurring Poisson distribution is a direct result of the construction of a binary matrix
from a combination of CRMs. To elaborate on this, note that, marginally, the distribution over the
value of each element zik of a row zi of the IBP (or a three-parameter IBP) is given by a Bernoulli
distribution. Therefore, by the law of rare events, the sum

∑
k zik is distributed according to a

Poisson distribution.

A similar argument applies to integer-valued matrices such as the infinite gamma-Poisson process.
Marginally, the distribution over whether an element zik is greater than zero is given by a Bernoulli
distribution, hence the number of non-zero elements,

∑
k zik ∧ 1, is Poisson-distributed. The distri-

bution over the row sum,
∑
k zik, will depend on the choice of CRMs.

It follows that, if we wish to circumvent the requirement of a Poisson (or mixture of Poisson) number
of features per data point in an IBP-like model, we must remove the completely random assumption
on either the de Finetti mixing distribution or the family of conditional distributions. The remainder
of this section discusses how we can obtain arbitrary marginal distributions over the number of
features per row by using conditional distributions that are not completely random.

3.1 Restricting the family of conditional distributions in the de Finetti representation

Recall from Section 2 that any exchangeable sequence can be represented as a mixture over some
family of conditional distributions. The support of this family determines the support of the ex-
changeable sequence. For example, in the IBP the family of conditional distributions is the Bernoulli
process, which has support in {0, 1}∞. A sample from the IBP therefore has support in {{0, 1}∞}N .

We are familiar with the idea of restricting the support of a distribution to a measurable subset. For
example, a truncated Gaussian is a Gaussian distribution restricted to a contiguous section of the real
line. In general, we can restrict an arbitrary probability distribution µwith support Ω to a measurable
subset A ⊂ Ω by defining µ|A(·) := µ(·)I(· ∈ A)/µ(A).
Theorem 1 (Restricted exchangeable distributions). We can restrict the support of an exchangeable
distribution by restricting the family of conditional distributions {µθ}θ∈Θ introduced in Equation 1,
to obtain an exchangeable distribution on the restricted space.

Proof. Consider an unrestricted exchangeable model with de Finetti representation
p(x1, . . . , xN , θ) =

∏N
i=1 µθ(Xi = xi)ν(θ). Let p|A be the restriction of p such that

Xi ∈ A, i = 1, 2, . . . , obtained by restricting the family of conditional distributions {µθ} to
{µ|Aθ } as described above. Then

p|A(x1, . . . , xN , θ) =
∏N
i=1 µ

|A
θ (Xi = xi)ν(θ) =

∏N
i=1

µθ(Xi=xi)I(xi∈A)
µθ(Xi∈A) ν(θ) ,

and
p|A(xN+1|x1, . . . , xN ) ∝ I(xN+1 ∈ A)

∫
Θ

∏N+1
i=1 µθ(Xi=xi)∏N+1
i=1 µθ(Xi∈A)

ν(dθ) (2)

is an exchangeable sequence by construction, according to de Finetti’s law.

We give three examples of exchangeable matrices where the number of non-zero entries per row is
restricted to follow a given distribution. While our focus is on exchangeability of the rows, we note
that the following distributions (like their unrestricted counterparts) are invariant under reordering
of the columns, and that the resulting matrices are separately exchangeable [2].
Example 1 (Restriction of the IBP to a fixed number of non-zero entries per row). The family of
conditional distributions in the IBP is given by the Bernoulli process. We can restrict the support
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of the Bernoulli process to an arbitrary measurable subset A ⊂ {0, 1}∞ – for example, the set of
all vectors z ∈ {0, 1}∞ such that

∑
k zk = S for some integer S. The conditional distribution of a

matrix Z = {z1, . . . , zN} under such a distribution is given by:

µ
|S
B (Z = Z) =

∏N
i=1 µB(Zi = zi)I(

∑
k zik = S)

(µB(
∑
k Zik = S))N

=

∏∞
k=1 π

mk
k (1− πk)N−mk

PoiBin(S|{πk}∞k=1)N

N∏
i=1

I
( ∞∑
k=1

zik = S

)
,

(3)

wheremk =
∑
i zik and PoiBin(·|{πk}∞k=1) is the infinite limit of the Poisson-binomial distribution

[6], which describes the distribution over the number of successes in a sequence of independent
but non-identical Bernoulli trials. The probability of Z given in Equation 3 is the infinite limit of
the conditional Bernoulli distribution [6], which describes the distribution of the locations of the
successes in such a trial, conditioned on their sum.
Example 2 (Restriction of the iGaP to a fixed number of non-zero entries per row). The fam-
ily of conditional distributions in the iGaP is given by the Poisson process, which has support in
N∞. Following Example 1, we can restrict this support to the set of all vectors z ∈ N∞ such that∑
k zk ∧ 1 = S for some integer S – i.e. the set of all non-negative integer-valued infinite vectors

with S non-zero entries. The conditional distribution of a matrix Z = {z1, . . . , zN} under such a
distribution is given by:

µ
|S
G (Z = Z) =

∏N
i=1 µG(Zi = zi)I(

∑∞
k=1 zik ∧ 1 = S)

(µG(
∑∞
k=1 Zik ∧ 1 = S))N

=

∏∞
k=1

λ
mk
k e−λk∏N
i=1 zik!

PoiBin(S|{e−λk}∞k=1)N

N∏
i=1

I
( ∞∑
k=1

zik ∧ 1 = S

)
.

(4)

Example 3 (Restriction of the IBP to a random number of non-zero entries per row). Rather than
specify the number of non-zero entries in each row a priori, we can allow it to be random, with
some arbitrary distribution f(·) over the non-negative integers. A Bernoulli process restricted to
have f -marginals can be described as

µ
|f
B (Z) =

N∏
i=1

µ
|Si
B (Zi = zi)f(Si) =

N∏
i=1

f(Si)I(
∑∞
k=1 zik = Si)

PoiBin(Si|{πk}∞k=1)

∞∏
k=1

πmkk (1− πk)N−mk , (5)

where Sn =
∑∞
k=1 znk. If we marginalize over B =

∑∞
k=1 πkδφk , the resulting distribution is

exchangeable, because mixtures of i.i.d. distributions are i.i.d.

We note that, even if we choose f to be Poisson(α), we will not recover the IBP. The IBP has
Poisson(α) marginals over the number non-zero elements per row, but the conditional distribution
is described by a Poisson-binomial distribution. The Poisson-restricted IBP, however, will have
Poisson marginal and conditional distributions.

Figure 1 shows some examples of samples from the single-parameter IBP, with parameter α = 5,
with various restrictions applied.

IBP 1 per row 5 per row 10 per row Uniform{1,...,20} Power−law (s=2)

Figure 1: Samples from restricted IBPs.

3.2 Direct restriction of the predictive distributions

The construction in Section 3.1 is explicitly conditioned on a draw B from the de Finetti mix-
ing distribution ν. Since it might be cumbersome to explicitly represent the infinite dimensional
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object B, it is tempting to consider constructions that directly restrict the predictive distribution
p(XN+1|X1, . . . , XN ), where B has been marginalized out.

Unfortunately, the distribution over matrices obtained by this approach does not (in general – see the
appendix for a counter-example) correspond to the distribution over matrices obtained by restricting
the family of conditional distributions. Moreover, the resulting distribution will not in general be
exchangeable. This means it is not appropriate for data sets where we have no explicit ordering of
the data, and also means we cannot directly use the predictive distribution to define a Gibbs sampler
(as is possible in exchangeable models).
Theorem 2 (Sequences obtained by directly restricting the predictive distribution of an exchangeable
sequence are not, in general, exchangeable). Let p be the distribution of the unrestricted exchange-
able model introduced in the proof of Theorem 1. Let p∗|A be the distribution obtained by directly
restricting this unrestricted exchangeable model such that Xi ∈ A, i.e.

p∗|A(xN+1|x1, . . . , xN ) ∝ I(xN+1 ∈ A)

∫
Θ

∏N+1
i=1 µθ(X = xi)ν(dθ)∫

Θ

∏N+1
i=1 µθ(X ∈ A)ν(dθ)

. (6)

In general, this will not be equal to Equation 2, and cannot be expressed as a mixture of i.i.d.
distributions.

Proof. To demonstrate that this is true, consider the counterexample given in Example 4.

Example 4 (A three-urn buffet). Consider a simple form of the Indian buffet process, with a base
measure consisting of three unit-mass atoms. We can represent the predictive distribution of such
a model using three indexed urns, each containing one red ball (representing a one in the resulting
matrix) and one blue ball (representing a zero in the resulting matrix). We generate a sequence of
ball sequences by repeatedly picking a ball from each urn, noting the ordered sequence of colors,
and returning the balls to their urns, plus one ball of each sampled color.
Proposition 1. The three-urn buffet is exchangeable.

Proof. By using the fact that a sequence is exchangeable iff the predictive distribution given the first
N elements of the sequence of the N + 1st and N + 2nd entries is exchangeable [9], it is trivial to
show that this model is exchangeable and that, for example,

p(XN+1 = (r, b, r), XN+2 = (r, r, b)|X1:N )

=
m1m2(N + 1−m3)

(N + 1)3
· (m+ 1 + 1)(N + 1−m2)m3

(N + 2)3

=p(XN+1 = (r, r, b), XN+2 = (r, b, r)|X1:N ) ,

(7)

wheremi is the number of times in the firstN samples that the ith ball in a sample has been red.

Proposition 2. The directly restricted three-urn scheme (and, by extension, the directly restricted
IBP) is not exchangeable.

Proof. Consider the same scheme, but where the outcome is restricted such that there is one, and
only one, red ball per sample. The probability of a sequence in this restricted model is given by

p∗(XN+1 = x|X1:N ) =

∑3
k=1

mk
N+1−mk I(xi = r)∑3
k=1

mk
N+1−mk

and, for example,
p∗(XN+1 = (r, b, b), XN+2 = (b, r, b)|X1:N )

=
m1

N+1−m1∑
k

mk
N+1−mk

·
m2

N+2−m3

m2

N+1−m2
− m2

N+2−m2
+
∑
k

mk
N+1−mk

6=p∗(XN+1 = (b, r, b), XN+2 = (r, b, b)|X1:N ) ,

(8)

therefore the restricted model is not exchangeable. By introducing a normalizing constant – cor-
responding to restricting over a subset of {0, 1}3 – that depends on the previous samples, we have
broken the exchangeability of the sequence.

By extension, a model obtained by directly restricting the predictive distribution of the IBP is not
exchangeable.
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We note that there may well be situations where a non-exchangeable model, such as that described
in Proposition 2, is appropriate for our data – for example where there is an explicit ordering on the
data. It is not, however, an appropriate model if we believe our data to be exchangeable, or if we
are interested in finding a single, stationary latent distribution describing our data. This exchange-
able setting is the focus of this paper, so we defer exploration of distribution of non-exchangeable
matrices obtained by restriction of the predictive distribution to future work.

4 Inference

We focus on models obtained by restricting the IBP to have f -marginals over the number of non-
zero elements per row, as described in Example 3. Note that when f = δS , this yields the setting
described in Example 1. Extension to other cases, such as the restricted iGaP model of Example 2,
are straightforward. We work with a truncated model, where we approximate the countably infinite
sequence {πk}∞k=1 with a large, but finite, vector π := (π1, . . . , πK), where each atom πk is dis-
tributed according to Beta(α/K, 1). An alternative approach would be to develop a slice sampler
that uses a random truncation, avoiding the error introduced by the fixed truncation [14, 16]. We
assume a likelihood function g(X|Z) =

∏
i g(xi|zi).

4.1 Sampling the binary matrix Z

For marginal functions f that assign probability mass to a contiguous, non-singleton subset of N,
we can Gibbs sample each entry of Z according to

p(zik = 1|xi,π,Z¬ik,
∑
j 6=k zij = a) ∝ πk f(a+1)

p(
∑
k zk=a+1|π)g(xi|zik = 1,Z¬ik)

p(zik = 0|xi,π,Z¬ik,
∑
j 6=k zij = a) ∝ (1− πk) f(a)

p(
∑
k zk=a|π)g(xi|zik = 0,Z¬ik).

(9)

Where f = δS , this approach will fail, since any move that changes zik must change
∑
k zik. In this

setting, instead, we sample the locations of the non-zero entries z(j)
i , j = 1, . . . , S of zi:

p(z
(j)
i = k|xi,π, z(¬j)

i ) ∝ πk(1− πk)−1g(xi|z(j)
i = k, z

(¬j)
i ) . (10)

To improve mixing, we also include Metropolis-Hastings moves that propose an entire row of Z.
We include details in the supplementary material.

4.2 Sampling the beta process atoms π

Conditioned on Z, the the distribution of π is

ν({πk}∞k=1|Z) ∝ µ|f{πk}(Z = Z)ν({πk}∞k=1) ∝
∏K
k=1 π

(mk+ α
K−1)

k (1− πk)N−mk∏N
i=1 PoiBin(Si|π)

. (11)

The Poisson-binomial term can be calculated exactly in O(K
∑
k zik) using either a recursive algo-

rithm [3, 5] or an algorithm based on the characteristic function that uses the Discrete Fourier Trans-
form [8]. It can also be approximated using a skewed-normal approximation to the Poisson-binomial
distribution [19]. We can therefore sample from the posterior of π using Metropolis Hastings steps.
Since we believe our posterior will be close to the posterior for the unrestricted model, we use the
proposal distribution q(πk|Z) = Beta(α/K +mk, N + 1−mk) to propose new values of πk.

4.3 Evaluating the predictive distribution

In certain cases, we may wish to directly evaluate the predictive distribution p|f (zN+1|z1, . . . , zN ).
Unfortunately, in the case of the IBP, we are unable to perform the integral in Equation 2 analyti-
cally. We can, however, estimate the predictive distribution using importance sampling. We sample
T measures π(t) ∼ ν(π|Z), where ν(π|Z) is the posterior distribution over π in the finite approxi-
mation to the IBP, and then weight them to obtain the restricted predictive distribution

p|f (zN+1|z1, . . . , zN ) ≈ 1

T

∑T
t=1 wtµ

|f
π(t)(zN+1)∑
t wt

, (12)
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Figure 2: Top row: True features. Bottom row: Sample data points for S = 2.

S = 2 S = 5 S = 8 S = 11 S = 14
IBP 7297.4± 2822.8 8982.2± 1981.7 7442.8± 3602.0 8862.1± 3920.2 20244± 6809.7
rIBP 57.2± 66.4 3469.7± 133.7 5963.8± 871.4 11413± 1992.9 12199± 2593.8

Table 1: Structure error on synthetic data with 100 data points and S features per data point.

where wt = µ
|f
π(t)(z1, . . . , zN )/µπ(t)(z1, . . . , zN ), and

µ|fπ (Z) ∝
N∏
i=1

f(Si)I(
∑K
k=1 zik = Si)

PoiBin(Si|π)

K∏
k=1

πmkk (1− πk)N−mk .

5 Experimental evaluation

In this paper, we have described how distributions over exchangeable matrices, such as the IBP,
can be modified to allow more flexible control over the distributions over the number of latent
features. In this section, we perform experiments on both real and synthetic data. The synthetic data
experiments are designed to show that appropriate restriction can yield more interpretable features.
The experiments on real data are designed to show that careful choice of the distribution over the
number of latent features in our models can lead to improved predictive performance.

5.1 Synthetic data

The IBP has been used to discover latent features that correspond to interpretable phenomena, such
as latent causes behind patient symptoms [20]. If we have prior knowledge about the number of la-
tent features per data point – for example, the number of players in a team, or the number of speakers
in a conversation – we may expect both better predictive performance, and more interpretable latent
features. In this experiment, we evaluate this hypothesis on synthetic data, where the true latent
features are known. We generated images by randomly selecting S of 16 binary features, shown in
Figure 2, superimposing them, and adding isotropic Gaussian noise (σ2 = 0.25). We modeled the
resulting data using an uncollapsed linear Gaussian model, as described in [7], using both the IBP,
and the IBP restricted to have S features per row. To compare the generating matrix Z0 and our pos-
terior estimate Z, we looked at the structure error [20]. This is the sum absolute difference between
the upper triangular portions of Z0Z

T
0 and E[ZZT ], and is a general measure of graph dissimilarity.

Table 1 shows the structure error obtained using both a standard IBP model (IBP) and an IBP re-
stricted to have the correct number of latent features (rIBP), for varying numbers of features S. In
each case, the number of data points is 100, the IBP parameter α is fixed to S, and the model is
truncated to 50 features. Each experiment was repeated 10 times on independently generated data
sets; we present the mean and standard deviation. All samplers were run for 5000 samples; the first
2500 were discarded as burn-in.

Where the number of features per data point is small relative to the total number of features, the
restricted model does a much better job at recovering the “correct” latent structure. While the IBP
may be able to explain the training data set as well as the restricted model, it will not in general
recover the desired latent structure – which is important if we wish to interpret the latent structure.

Once the number of features per data point increases beyond half the total number of features, the
model is ill-specified – it is more parsimonious to represent features via the absence of a bar. As
a result, both models perform poorly at recovering the generating structure. The restricted model
– and indeed the IBP – should only be expected to recover easily interpretable features where the
number of such features per data point is small relative to the total number of features.
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1 2 3 4 5 6 7 8 9 10
IBP 0.591 0.726 0.796 0.848 0.878 0.905 0.923 0.936 0.952 0.958
rIBP 0.622 0.749 0.819 0.864 0.899 0.918 0.935 0.948 0.959 0.966

11 12 13 14 15 16 17 18 19 20
IBP 0.961 0.969 0.974 0.978 0.982 0.989 0.991 0.996 0.997 1.000
rIBP 0.971 0.978 0.981 0.983 0.988 0.992 0.998 1.000 1.000 1.000

Table 2: Proportion correct at n on classifying documents from the 20newsgroup data set.

5.2 Classification of text data

The IBP and its extensions have been used to directly model text data [17, 15]. In such settings,
the IBP is used to directly model the presence or absence of words, and so the matrix Z is observed
rather than latent, and the total number of features is given by the vocabulary size. We hypothesize
that the Poisson assumption made by the IBP is not appropriate for text data, as the statistics of word
use in natural language tends to follow a heavier tailed distribution [22]. To test this hypothesis, we
modeled a collection of corpora using both an IBP, and an IBP restricted to have a negative Binomial
distribution over the number of words. Our corpora were 20 collections of newsgroup postings on
various topics (for example, comp.graphics, rec.autos, rec.sport.hockey)1. No pre-processing of the
documents was performed. Since the vocabulary (and hence the feature space) is finite, we truncated
both models to the vocabulary size. Due to the very large state space, we restricted our samples such
that, in a single sample, atoms with the same posterior distribution were assigned the same value.
For each model, α was set to the mean number of words per document in the corresponding group,
and the maximum likelihood parameters were used for the negative Binomial distribution.

To evaluate the quality of the models, we classified held out documents based on their likelihood
under each of the 20 newsgroups. This experiment is designed to replicate an experiment performed
by [15] to compare the original and three-parameter IBP models. For both models, we estimated the
predictive distribution by generating 1000 samples from the posterior of the beta process in the IBP
model. For the IBP, we used these samples directly to estimate the predictive distribution; for the
restricted model, we used the importance-weighted samples obtained using Equation 12. For each
model, we trained on 1000 randomly selected documents, and tested on a further 1000 documents.

Table 2 shows the fraction of documents correctly classified in the first n labels – i.e. the fraction
of documents for which the correct labels is one of the n most likely. The restricted IBP (rIBP)
performs uniformly better than the unrestricted model.

6 Discussion and future work

The framework explored in this paper allows us to relax the distributional assumptions made by
existing exchangeable nonparametric processes. As future work, we intend to explore which appli-
cations and models can most benefit from this greater flexibility.

We note that the model, as posed, suffers from an identifiability issue. Let B̃ =
∑∞
k=1 π̃kδφk be the

measure obtained by transforming B =
∑∞
k=1 πkδφk such that π̃k = πk/(1 − πk). Then, scaling

B̃ by a positive scalar does not affect the likelihood of a given matrix Z. We intend to explore the
consequences of this in future work.
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