
A Proofs

Proof of Lemma 1.One could directly compute and see thatℓ̃ is unbiased. But to give a little more
insight into what motivates the definition ofℓ̃, consider the conditions that unbiasedness imposes on
it. We should have, for everyt,

E
ỹ

ρ∼y

[
ℓ̃(t, ỹ)

]
= ℓ(t, y) .

Considering the casesy = +1 andy = −1 separately, gives the equations

(1− ρ+1)ℓ̃(t,+1) + ρ+1ℓ̃(t,−1) = ℓ(t,+1) ,

(1− ρ−1)ℓ̃(t,−1) + ρ−1ℓ̃(t,+1) = ℓ(t,−1) .

Solving these two equations forℓ̃(t,+1) andℓ̃(t,−1) gives

ℓ̃(t,+1) =
(1 − ρ−1)ℓ(t,+1)− ρ+1ℓ(t,−1)

1− ρ+1 − ρ−1
,

ℓ̃(t,−1) = (1 − ρ+1)ℓ(t,−1)− ρ−1ℓ(t,+1)

1− ρ+1 − ρ−1
.

Proof of Lemma 2.By the basic Rademacher bound on the maximal deviation between risks and
empirical risks overf ∈ F , we get

max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| ≤ 2 ·R(ℓ̃ ◦ F) +

√
log(1/δ)

2n

where

R(ℓ̃ ◦ F) := EXi,Ỹi,ǫi

[
sup
f∈F

1

n

n∑

i=1

ǫiℓ̃(f(Xi), Ỹi)

]

If ℓ is L-Lipschitz thenℓ̃ is Lρ Lipschitz for Lρ = (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) ≤
2L/(1− ρ+1− ρ−1) and hence by the Lipschitz composition property of Rademacher averages, we
have

R(ℓ̃ ◦ F) ≤ Lρ ·R(F) .

Proof of Theorem 3.Let f⋆ be the minimizer ofRℓ,D(·) overF . We have

Rℓ,D(f̂)−Rℓ,D(f⋆)

= Rℓ̃,Dρ
(f̂)−Rℓ̃,Dρ

(f⋆)

= R̂ℓ̃(f̂)− R̂ℓ̃(f
⋆) + (Rℓ̃,Dρ

(f̂)− R̂ℓ̃(f̂))

+ (R̂ℓ̃(f
⋆)−Rℓ̃,Dρ

(f⋆))

≤ 0 + 2max
f∈F

|R̂ℓ̃(f)−Rℓ̃,Dρ
(f)| .

We can now apply Lemma 2 to control the last quantity above, and thus obtain the first statement of
the theorem. Now, ifℓ is classification-calibrated, then from Theorem 1 of [Bartlett et al., 2006], we
know there exists a convex, invertible, nondecreasing transformationψℓ with ψℓ(0) = 0 such that,

ψℓ(RD(f)−R∗) ≤ Rℓ,D(f)− inf
f
Rℓ,D(f)

Subtractingminf Rℓ,D(f) off either sides of the first inequality in the theorem statement, and real-
izing thatψ−1

ℓ is nondecreasing as well, withψ−1
ℓ (0) = 0, we conclude:

RD(f̂)−R∗ ≤ ψ−1
ℓ

(
min
f∈F

Rℓ,D(f)−min
f
Rℓ,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.
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Proof of Lemma 4.Let us computẽℓ′′(t, y) (recall that differentiation is w.r.t.t) and show that it is
non-negative under the symmetry conditionℓ′′(t, y) = ℓ′′(t,−y). We have

ℓ̃′′(t, y) =
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t,−y)
1− ρ+1 − ρ−1

=
(1− ρ−y)ℓ

′′(t, y)− ρyℓ′′(t, y)
1− ρ+1 − ρ−1

=
(1− ρ−y − ρy)ℓ′′(t, y)

1− ρ+1 − ρ−1

= ℓ′′(t, y) ≥ 0 ,

sinceℓ is convex int.

Proof of Lemma 5.SinceF ≥ G − ε andF ⋆⋆ is the largest convex function that minorizesF , we
must haveF ⋆⋆ ≥ G− ε. This means thatF ⋆⋆ + 2ε ≥ G+ ε ≥ F . Thus,F is sandwiched between
F ⋆⋆ + 2ε andF ⋆⋆. The lemma follows directly from this.

Proof of Theorem 6.The first part of the theorem follows by combining Lemma 2 and Lemma 5,
using the fact that if‖w‖2 ≤ W2 for anyw and‖Xi‖2 ≤ X2 then,R(W) ≤ W2X2/

√
n. The

second part follows by noting that Theorem 3 is true also for2ε-minimizers of the empirical risk̂Rℓ̃
provided we add2ε to the right hand side.

Proof of Lemma 7.The first equality is true because the optimal bayes classifier underDρ thresholds
η̃(X) = P (Ỹ = 1|X) at 1/2. Now,

η̃(X) = P (Ỹ = 1, Y = 1|X) + P (Ỹ = 1, Y = −1|X)

= P (Ỹ = 1|Y = 1)P (Y = 1|X) + P (Ỹ = 1|Y = −1)P (Y = −1|X)

= (1 − ρ+1)η(X) + ρ−1(1− η(X))

= (1 − ρ+1 − ρ−1)η(X) + ρ−1.

Therefore,

sign(η̃(x) − 1/2) = sign((1− ρ+1 − ρ−1)η(x) + ρ−1 − 1/2)

= sign

(
η(x) − 1/2− ρ−1

1− ρ+1 − ρ−1

)
.

Proof of Theorem 9.Let us think off as{±1}-valued since bothCD andCα,Dρ
depend only on

sign(f). We have,
CD(f) = EY

[
1{f(X) 6=Y }

]

and
Cα,Dρ

(f) = EỸ

[
(1 − α)1{Ỹ=1}1{f(X) 6=1} + α1{Ỹ =−1}1{f(X) 6=−1}

]
.

Note thatRD(f) = EX [CD(f)], andRα,Dρ
(f) = EX

[
Cα,Dρ

(f)
]
. Also note thatCD(f) = η(X)

if f(X) = −1, andCD(f) = 1− η(X) otherwise.
Similarly,Cα,Dρ

(f) = (1 − α)η̃(X) if f(X) = −1 andCα,Dρ
(f) = α(1 − η̃(X)) otherwise. We

want to findA andB such that the following equations hold simultaneously:

(1− α)η̃(X) = Aη(X) +B

α(1 − η̃(X)) = A(1− η(X)) +B

Using the relation betweenη(X) andη̃(X) in Lemma 7 and solving forA we get,

A =
(1− ρ+1 − ρ−1)η(X) + ρ−1 − α

2η(X)− 1
.
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Choosingα = α∗ = 1−ρ+1+ρ−1

2 , and simplifying, we get a constantA that depends only on the
noise rates:

A = Aρ =
1− ρ+1 − ρ−1

2
.

Consequently,

B = ρ−1(1− α∗)− α∗

2
(1 − ρ+1 − ρ−1)η(X).

Taking expectation with respect toX , we conclude:

Rα∗,Dη
(f) = AρRD(f) + BX ,

whereBX = EX [B].

Proof of Corollary 10.The proof is immediate from Theorem 9 observing thatBX is independent
of f .

Proof of Theorem 11.From Corollary 4.1 in [Scott, 2012], we can infer thatℓα is α-CC for given
α ∈ (0, 1), asℓ is convex, classification-calibrated andℓ

′

(0) < 0. Then, from Theorem 3.1 in [Scott,
2012], there exists aninvertible, non-decreasingconvex transformationψℓα with ψℓα(0) = 0 such
that, for anyf and any distributionD,

ψℓα(Rα,D(f)−min
f
Rα,D(f)) ≤ Rℓα,D(f)−min

f
Rℓα,D(f).

Fix distribution to beDρ, and letf = f̂α. The RHS of the above inequality can then be controlled
similarly as in the proof of Theorem 3. It is easy to see that the Lipschitz constant ofℓα is same as
that ofℓ, denotedL. With probability at least1− δ:

Rℓα,Dρ
(f̂α)−min

f∈F
Rℓα,Dρ

(f) ≤ 4LR(F) + 2

√
log(1/δ)

2n
.

Now considerRα,Dρ
(f)−minf Rα,Dρ

(f). Using the linear relationship betweenRα,Dρ
andRD at

α∗ (Theorem 9), we getRα∗,Dρ
(f)−minf Rα∗,Dρ

(f) = Aρ(RD(f)−R∗). BX vanishes because
it is constant for the distributionDρ. Note thatψ−1

ℓα∗
is nondecreasing as well andψ−1

ℓα∗
(0) = 0.

Subtractingminf Rα∗,Dρ
(f) from both sides of the second inequality above, the statement of the

theorem follows: With probability at least1− δ,

RD(f̂α∗)−R∗ ≤ A−1
ρ ψ−1

ℓα⋆

(
min
f∈F

Rα∗,Dρ
(f)−min

f
Rα∗,Dρ

(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

B Online learning

Consider the setting where an adversary chooses a sequence(x1, y1), . . . , (xn, yn) of examples. At
time i, the learner has to make a prediction based on(x1, ỹ1), . . . , (xi−1, ỹi−1) andxi whereỹi
are the noisy labels. But the learner’s cumulative loss as well as that of the best fixed predictor in
hindsight are both computed using the true labelsyi. Note that ifℓ(t, y) is convex int (for everyy),
and we chooseλ1 ∈ ∂ℓ(t, y) andλ2 ∈ ∂ℓ(t,−y), (where∂ℓ is the subdifferential w.r.t.t) we have

Eỹ [g(t, ỹ)] ∈ ∂ℓ(t, y) (2)

where

g(t, y) =
(1 − ρ−y)λ1 − ρy λ2

1− ρ+1 − ρ−1
(3)

We show that Algorithm 1 indeed satisfies low regret (in expectation) on the original sequence
chosen by the adversary even though it only receives noisy versions of the labels. We fix the function
class to be the setW of bounded-norm hyperplanes.
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Algorithm 1 Online learning using unbiased gradients
Choose learning rateγ > 0
W = {w : ‖w‖2 ≤W2}
ΠW (·) = Euclidean projection ontoW
Initializew0 ← 0

for i = 1 to n do
Receivexi ∈ R

d

Predict〈wi−1,xi〉
Receive noisy label̃yi
Updatewi ← ΠW (wi−1 − γg(〈wi−1,xi〉 , ỹi)xi) whereg(·, ·) is defined in (3)

end for

Theorem 12. Let ℓ(t, y) be convex andL-Lipschitz int (for everyy). Fix an arbitrary sequence
(x1, y1), . . . , (xn, yn). If Algorithm 1 is run on noisy data set(x1, ỹ1), . . . , (xn, ỹn) with learning
rateγ =W2/(X2Lρ

√
n) whereỹi is noisy version ofyi with noise ratesρ+1, ρ−1, then we have

Eỹ1:n

[
max

‖w‖2≤W2

n∑

i=1

(ℓ(〈wi−1,xi〉 , yi)− ℓ(〈w,xi〉 , yi))
]
≤ LρX2W2

√
n ,

whereLρ := (1+ |ρ+1−ρ−1|)L/(1−ρ+1−ρ−1) and it is assumed that‖xi‖ ≤ X2 for all i ∈ [n].

Proof. Let us use the abbreviationgi for g(〈wi−1,xi〉 , ỹi)xi so that the update in Algorithm 1
becomeswi ← ΠW (wi−1 − γgi). It is well known [Zinkevich, 2003] that, for anyw,

n∑

i=1

〈gi,wi−1 −w〉 ≤ γ

2

n∑

i=1

‖gi‖2 +
‖w‖2
2γ

. (4)

Sinceℓ is L-Lipschitz, theλ1, λ2 appearing in the definition (3) ofg(·, ·) satisfy |λ1|, |λ2| ≤ L.
This implies|g(t, y)| ≤ (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) = Lρ and hence‖gi‖ ≤ LρX2.

Thus, we have, for anyw with ‖w‖ ≤ W2,
∑n

i=1 〈gi,wi−1 −w〉 ≤ γL2
ρX

2
2n

2 +
W 2

2

2γ . Choosing

γ = (W2/LρX2)
1√
n

, we get
∑n

i=1 〈gi,wi−1 −w〉 ≤ LρX2W2
√
n. Note thatwi−1 only depends

on ỹ1:i−1. Hence

Eỹi
[〈gi,wi−1 −w〉 | ỹ1:i−1] = 〈Eỹi

[gi | ỹ1:i−1] ,wi−1 −w〉 ≥ ℓ(〈wi−1,xi〉 , yi)−ℓ(〈w,xi〉 , yi)
becauseEỹi

[gi | ỹ1:i−1] ∈ ∂w=wi−1
ℓ(〈w,xi〉 , yi) by (2) and the chain rule for differentiation, and

ℓ(〈w,xi〉 , yi) is convex inw. Thus, for anyw with ‖w‖2 ≤W2,

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
−

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Since the above inequality is true for anyw with ‖w‖2 ≤ 1, we have

Eỹ1:n

[
n∑

i=1

ℓ(〈wi−1,xi〉 , yi)
]
− min

‖w‖2≤W2

n∑

i=1

ℓ(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Observing that the minimum overw is not random allows us to move it inside the expectation giving
us the theorem.

C Experiments

C.1 Knowledge of noise rates

The proposed algorithms require the knowledge of noise rates ρ+1 andρ−1. However, in practice,
we do not know the true value of noise rates, and therefore we resort to cross-validating the values
in our experiments. We emphasize here that in case the true noise rates are known, our methods
can benefit from that knowledge as observed from our experiments (results not shown), whereas the
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(b) Hinge online
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(c) Huber online
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(d) Logistic online

Figure 3: Study of sensitivity of batch (ℓ̃log) and online (Hinge, Huber and Logistic) methods (Al-
gorithm 1) to specification of noise ratesρ+1 and ρ−1. True noise ratesρ+1 = ρ−1 = ρ are
misspecified as(ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}. The ratio between the average accu-
racy for a givenǫ and the accuracy atǫ = 0, i.e. when true noise rates are specified, is plotted for
different values of noise ratesρ. The ratio is computed for each of the 6 UCI data sets in Table 1
and the mean and the standard deviation of the ratios are shown. Ratio being equal to 1 for a given
ǫ means that the performance of the algorithm, on average, is unaltered by misspecification of noise
rates up toǫ. As expected, the ratio decreases, i.e. the algorithms perform worse asǫ increases.
Most of the ratios being close to 1 suggests that the proposedmethods are fairly robust with respect
to ǫ-misspecification of noise rates.

competitive methodscannotas they do not involve noise rates. In some cases (and domains), we
may be able to approximately specify noise rates. This motivates our study presented in Figure 3.
True noise ratesρ+1 = ρ−1 = ρ are misspecified as(ρ+1 ± ǫ, ρ−1 ± ǫ) for ǫ ∈ {0.1, 0.2, 0.3, 0.4}.
The ratio between the average accuracy for a givenǫ and the accuracy atǫ = 0, i.e. when true
noise rates are specified, is a measure of sensitivity of the algorithms toǫ-misspecification of noise
rates. We would want the ratio to be close to 1 for a givenǫ, which would suggest that the method
is fairly robust with respect to theǫ-misspecification. The results in Figure 3 show that the proposed
methods are robust toǫ-misspecification of noise rates, which in turn suggests that our methods can
find better use in applications where labels can be noisyandnoise rates are approximately known,
without resorting to ad-hoc cross-validation procedures on the noisy data.
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