A Proofs

Proof of Lemma 1One could directly compute and see thag unbiased. But to give a little more
insight into what motivates the definition 4fconsider the conditions that unbiasedness imposes on
it. We should have, for every

E,e, [06.5)] = 0(t.y).
Considering the cases= +1 andy = —1 separately, gives the equations
(1 — py1)l(t,+1) + pyrb(t, —1) = £(t, +1)
(1= p_1)l(t, —1) + p_1£(t,+1) = £(t, —1) .
Solving these two equations féft, +1) and/(t, —1) gives
. (1= p_ )0t +1) = pial(t, ~1)

ot +1) = |
( ) 1- P+1 — P—-1

it —1) = L= )bt =1) = pa bt 1)
1- P+1 — P-1

O

Proof of Lemma 2By the basic Rademacher bound on the maximal deviation leetwieks and
empirical risks overf € F, we get

R ; log(1/0
Ifnea}( |Rl(f)_RZ,Dp(f)|SQ-D%(éo]-")_;_ %

where

n

R(lo F) := Ex, e, lsup lZeié(f(Xi),Yi)

feFr ni—]

2L/(1— p41 — p—1) and hence by the Lipschitz composition property of Rademaberages, we
have

If ¢ is L-Lipschitz then is L, Lipschitz for L, = (1 + |ps1 — p—1[)L/(1 — p11 — p—1) <

R(loF) <L, R(F). O

Proof of Theorem 3Let f* be the minimizer ofR, p(-) overF. We have

Ry.p(f) — Re,p(f7)
= Rip, (/) = Rip, ()
= Ry(f) = Ref*) + Ry (F) — Ry())
+ (R(f*) = Ry p, (f*)
<0+ 2max |Ri(f) = Ry (F)] -
We can now apply Lemma 2 to control the last quantity above thns obtain the first statement of

the theorem. Now, if is classification-calibrategthen from Theorem 1 of [Bartlett et al., 2006], we
know there exists a convex, invertible, nondecreasingtamationy, with ¢,(0) = 0 such that,

Ye(Rp(f) — R*) < Rep(f) — i?fRé,D(f)

Subtractingnin R, p(f) off either sides of the first inequality in the theorem stegetand real-
izing thaty, ! is nondecreasing as well, with, ' (0) = 0, we conclude:
log(1/6)

Rp(f) - R* < 1&[1(%123&13(][) —m}nR&D(f)-i-‘le%(]:)—i—? T) :



Proof of Lemma 4 Let us computé”(t, y) (recall that differentiation is w.r.t:) and show that it is
non-negative under the symmetry conditit, y) = ¢’ (¢, —y). We have

g//(t’ y) _ (1 — p—y)éu(tvy) — pyé”(tv _y)

L—=pr1—pa
(L—p-y)l"(t,y) — pyt"(t,y)

1—=py1—pa
(L= p_y —py)l"(t,y)
1—py1—pa
={"(t,y) >0,

since/ is convex int. O

Proof of Lemma 5SinceF > G — ¢ and F** is the largest convex function that minorizEswe
must haveF™* > G — e. This means thak™* + 2¢ > G +¢ > F. Thus,F' is sandwiched between
F** 4+ 2¢ and F**. The lemma follows directly from this. O

Proof of Theorem 6The first part of the theorem follows by combining Lemma 2 amtnima 5,
using the fact that ifjw||s < W3 for anyw and| X;|l. < X, then, R(W) < W Xs/\/n. The

second part follows by noting that Theorem 3 is true als@feminimizers of the empirical risk;
provided we ad@e to the right hand side. O

Proof of Lerpma 7 The first equality is true because the optimal bayes clasaifigerD , thresholds
7(X) = P(Y =1|X) at 1/2. Now,
A(X)=PY =1,Y=1X)+P(Y =1,Y = -1|X)
=PY =1Y =1)PY =1X)+PY =1]Y = -1)P(Y = —1|X)
=1 =pr)n(X) + p1(1 —n(X))

=1 =pp1—p-1)n(X)+p-1.

Therefore,
sign(ii(z) — 1/2) = Sign((1 — ps1 — p—1)(a) + p_1 — 1/2)
= sign(n(:c) - %).
o

Proof of Theorem 9Let us think of f as{+1}-valued since botl®’p andC,, p, depend only on
sign(f). We have,

Cp(f) = Ey [1{rx0#vy]
and
Co.p,(f) =Ey |(1 — o)1y _y 121y + al{?:_l}l{fw#—l}} -

Note thatRp (f) = Ex [Cp(f)], andRa. b, (f) = Ex [Ca,p,(f)]. Also note thaCp(f) = n(X)
if /(X)=—-1,andCp(f) =1— n(X) otherwise.
Similarly, Co.p,(f) = (1 = a)n(X) if f(X) = —1andCy,p,(f) = a(l —7(X)) otherwise. We
want to findA and B such that the following equations hold simultaneously:

(1—a)j(X) = An(X) + B

a(l—7(X)) = Al —n(X)) + B

Using the relation betweey( X') and7(X) in Lemma 7 and solving foA we get,

g A=pri—pi)nX)+p1-a
2n(X) -1 '

2



Choosinga = o* = 1”’“%, and simplifying, we get a constarit that depends only on the
noise rates:
1—pi1—p_
A=A, = — L PL
2
Consequently,
a*

5 (1= ps1 = p-1)n(X).
Taking expectation with respect £, we conclude:
Ro-p,(f) = AyRp(f) + Bx,
whereBx = Ex [B]. O

B=p_i(l-a")

Proof of Corollary 10. The proof is immediate from Theorem 9 observing tBat is independent
of f. O

Proof of Theorem 11From Corollary 4.1 in [Scott, 2012], we can infer tiatis o-CC for given
a € (0,1), ast is convex, classification-calibrated ahd0) < 0. Then, from Theorem 3.1 in [Scott,
2012], there exists aimvertible, non-decreasingonvex transformatioi,,, with _(0) = 0 such
that, for anyf and any distributiorD,

Ve, (Ra,n(f) = min Ra.p(f)) < Re, .p(f) — min Ry, p(f)

Fix distribution to beD,, and letf = f.. The RHS of the above inequality can then be controlled
similarly as in the proof of Theorem 3. It is easy to see thatltipschitz constant of,, is same as
that of¢, denotedL. With probability at least — ¢:

Ry,.p,(fa) = l}nei}_lRéa,Dp(f) <ALR(F) +2 W-
Now considetR, p,(f) —miny R, p,(f). Using the linear relationship betwe&n, p, andRp at
o* (Theorem 9), we geR~ p,(f) —miny Ro- p,(f) = A,(Rp(f) — R*). Bx vanishes because
it is constant for the distributio®,. Note thaty, ' is nondecreasing as well ang ' (0) = 0.
Subtractingminy R~ p,(f) from both sides of the second inequality above, the statenfehe
theorem follows: With probability at least— 4,

f log(1/6
Rp(far) = R* < A,y <¥£}3 Rar p,(f) = min Rap, () + ALR(F) + 2 Ogén/ )>'

O

B Onlinelearning

Consider the setting where an adversary chooses a sequange), . . ., (x., y») of examples. At
time 4, the learner has to make a prediction basedxong1), ..., (xi—1,%—1) andx; whereg;
are the noisy labels. But the learner's cumulative loss dsasethat of the best fixed predictor in
hindsight are both computed using the true lalpelsNote that if¢(¢, y) is convex int (for everyy),
and we choosg; € 94(t,y) andXs € 9L(t, —y), (Whered/ is the subdifferential w.r.t;) we have

Eg[g(t,9)] € 0L(t,y) 2)

where

1—p_y)A1 —py A
glt,y) = LN Pude ©
—P+1 T P-1

We show that Algorithm 1 indeed satisfies low regret (in exgion) on the original sequence
chosen by the adversary even though it only receives noisyores of the labels. We fix the function
class to be the sé¥ of bounded-norm hyperplanes.




Algorithm 1 Online learning using unbiased gradients

Choose learning rate > 0
W=A{w : [|w[y < Wy}
ITyy (-) = Euclidean projection ontyV
Initialize wg < 0
fori=1tondo
Receivex; € R¢
PrediCt<WZ‘,1, Xi>
Receive noisy labg};
Updatew; < Iy (w;—1 — v9({W;—1,%;) , 9:)x;) whereg(-, -) is defined in (3)
end for

Theorem 12. Let {(t,y) be convex and.-Lipschitz int (for everyy). Fix an arbitrary sequence
(X1,91), - -, (Xn,Yn)- If Algorithm 1 is run on noisy data sék;,71),. .., (xn, Jn) With learning
ratey = W>/(X2L,\/n) whereg; is noisy version ofj; with noise rateg_ 1, p_1, then we have

n

) — ; ; <
Hw||2<W2 Zl Wz laxl yz) €(<W7Xz> ayz)) > LpXZWQ\/ﬁ )

whereL, := (1+|p41—p-1])L/(1—p11 — p—1) and itis assumed thditx;|| < X, forall i € [n].

Proof. Let us use the abbreviatiap for g({w;_1,x;),%;)x; so that the update in Algorithm 1
becomeswv; < Iy (w;—1 — vg:). Itis well known [Zinkevich, 2003] that, for anw,

n n 9
¥ w
Z (giwi—1 —w) < 5 Z lgill* + % - (4)
=1

i=1

Since/ is L-Lipschitz, the\;, A\ appearing in the definition (3) aof(-, ) satisfy |\1], |A2] < L.
This implies|g(t,y)| < (1 + |p+1 — p—1)L/(1 = py1 — p-1) = L, an2d Denceﬂgiﬂ < Ly Xo.

n 2 .
Thus, we have, for anyw with [|[w| < W, >" | (g;, wi—1 — w) < % + VQV—j Choosing
v = (WQ/LPXQ)W, we getd " | (gi, wi—1 — > < L,X>Ws+/n. Note thatw,_; only depends

onyi.;—1. Hence

Eg. [(gis Wi—1 = W) [J1i-1] = (Eg, [9i | G1:-1] , Wio1 — W) > (W1, %), yi) —0((W, Xi) , yi)

becaus&y, [g; | 71:i—1] € Ow=w, . L({W,%;),y;) by (2) and the chain rule for differentiation, and
({w,x;),y;) is convex inw. Thus, for anyw with || w|s < W,

Egi...

Z€(<Wz—71,xi> %)] - Z€(<W7Xz‘> i) < LpXoWa/n.

Since the above inequality is true for amywith |w|2 < 1, we have

Eﬂl n

ZE((Wi_l,xi) ,yi)] — ‘ min Z£(<W,Xl> 73/1’) S LPXQWQ\/E.
i=1

Iwl2<W2 —
Observing that the minimum over is not random allows us to move it inside the expectatiomgjvi
us the theorem. O

C Experiments

C.1 Knowledge of noiserates

The proposed algorithms require the knowledge of noises yate andp_;. However, in practice,

we do not know the true value of noise rates, and thereforeeg@rtto cross-validating the values
in our experiments. We emphasize here that in case the tise retes are known, our methods
can benefit from that knowledge as observed from our expetsr{gesults not shown), whereas the
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Figure 3: Study of sensitivity of batct{g) and online (Hinge, Huber and Logistic) methods (Al-
gorithm 1) to specification of noise rates; andp_;. True noise ratep,; = p_1 = p are
misspecified agp1 +¢,p_1 +¢€) fore € {0.1,0.2,0.3,0.4}. The ratio between the average accu-
racy for a givere and the accuracy at= 0, i.e. when true noise rates are specified, is plotted for
different values of noise ratgs The ratio is computed for each of the 6 UCI data sets in Table 1
and the mean and the standard deviation of the ratios arenst®atio being equal to 1 for a given

e means that the performance of the algorithm, on averagealbared by misspecification of noise
rates up tae. As expected, the ratio decreases, i.e. the algorithmsmenvorse as increases.
Most of the ratios being close to 1 suggests that the propostidods are fairly robust with respect
to e-misspecification of noise rates.

competitive methodsannotas they do not involve noise rates. In some cases (and domai@s
may be able to approximately specify noise rates. This ratg#/our study presented in Figure 3.
True noise ratep;1 = p_1 = p are misspecified a1 t€,p_1 +€) fore € {0.1,0.2,0.3,0.4}.
The ratio between the average accuracy for a givand the accuracy at = 0, i.e. when true
noise rates are specified, is a measure of sensitivity oflfugithms toe-misspecification of noise
rates. We would want the ratio to be close to 1 for a gimemhich would suggest that the method
is fairly robust with respect to themisspecification. The results in Figure 3 show that the psepl
methods are robust temisspecification of noise rates, which in turn suggestsdhamethods can
find better use in applications where labels can be namsinoise rates are approximately known,
without resorting to ad-hoc cross-validation procedurethe noisy data.



