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Abstract

Phase retrieval problems involve solving linear equations, but with missing sign
(or phase, for complex numbers). Over the last two decades, a popular generic em-
pirical approach to the many variants of this problem has been one of alternating
minimization; i.e. alternating between estimating the missing phase information,
and the candidate solution. In this paper, we show that a simple alternating min-
imization algorithm geometrically converges to the solution of one such problem
– finding a vector x from y,A, where y = |ATx| and |z| denotes a vector of
element-wise magnitudes of z – under the assumption that A is Gaussian.

Empirically, our algorithm performs similar to recently proposed convex tech-
niques for this variant (which are based on “lifting” to a convex matrix problem)
in sample complexity and robustness to noise. However, our algorithm is much
more efficient and can scale to large problems. Analytically, we show geometric
convergence to the solution, and sample complexity that is off by log factors from
obvious lower bounds. We also establish close to optimal scaling for the case
when the unknown vector is sparse. Our work represents the only known the-
oretical guarantee for alternating minimization for any variant of phase retrieval
problems in the non-convex setting.

1 Introduction

In this paper we are interested in recovering a complex1 vector x∗ ∈ C
n from magnitudes of its

linear measurements. That is, for ai ∈ C
n, if

yi = |〈ai,x∗〉|, for i = 1, . . . ,m (1)

then the task is to recover x∗ using y and the measurement matrix A = [a1 a2 . . . am].

The above problem arises in many settings where it is harder / infeasible to record the phase of mea-
surements, while recording the magnitudes is significantly easier. This problem, known as phase
retrieval, is encountered in several applications in crystallography, optics, spectroscopy and tomog-
raphy [14]. Moreover, the problem is broadly studied in the following two settings:

(i) The measurements in (1) correspond to the Fourier transform (the number of measurements
here is equal to n) and there is some apriori information about the signal.

1Our results also cover the real case, i.e. where all quantities are real.
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(ii) The set of measurements y are overcomplete (i.e., m > n), while some apriori information
about the signal may or may not be available.

In the first case, various types of apriori information about the underlying signal such as positivity,
magnitude information on the signal [11], sparsity [25] and so on have been studied. In the second
case, algorithms for various measurement schemes such as Fourier oversampling [21], multiple
random illuminations [4, 28] and wavelet transform [28] have been suggested.

By and large, the most well known methods for solving this problem are the error reduction algo-
rithms due to Gerchberg and Saxton [13] and Fienup [11], and variants thereof. These algorithms
are alternating projection algorithms that iterate between the unknown phases of the measurements
and the unknown underlying vector. Though the empirical performance of these algorithms has been
well studied [11, 19], and they are used in many applications [20], there are not many theoretical
guarantees regarding their performance.

More recently, a line of work [7, 6, 28] has approached this problem from a different angle, based

on the realization that recovering x∗ is equivalent to recovering the rank-one matrix x∗x∗T , i.e., its
outer product. Inspired by the recent literature on trace norm relaxation of the rank constraint, they
design SDPs to solve this problem. Refer Section 1.1 for more details.

In this paper we go back to the empirically more popular ideology of alternating minimization;
we develop a new alternating minimization algorithm, for which we show that (a) empirically, it
noticeably outperforms convex methods, and (b) analytically, a natural resampled version of this

algorithm requires O(n log3 n) i.i.d. random Gaussian measurements to geometrically converge to
the true vector.
Our contribution:

• The iterative part of our algorithm is implicit in previous work [13, 11, 28, 4]; the novelty
in our algorithmic contribution is the initialization step which makes it more likely for the
iterative procedure to succeed - see Figures 1 and 2.

• Our analytical contribution is the first theoretical guarantee regarding the convergence of
alternating minimization for the phase retrieval problem in a non-convex setting.

• When the underlying vector is sparse, we design another algorithm that achieves a sample

complexity of O
(
(x∗

min)
−4 (

log n+ log3 k
))

where k is the sparsity and x∗
min is the mini-

mum non-zero entry of x∗. This algorithm also runs over Cn and scales much better than
SDP based methods.

Besides being an empirically better algorithm for this problem, our work is also interesting in a
broader sense: there are many problems in machine learning where the natural formulation of a
problem is non-convex; examples include rank constrained problems, applications of EM algorithms
etc., and alternating minimization has good empirical performance. However, the methods with the
best (or only) analytical guarantees involve convex relaxations (e.g., by relaxing the rank constraint
and penalizing the trace norm). In most of these settings, correctness of alternating minimization is
an open question. We believe that our results in this paper are of interest, and may have implications,
in this larger context.

The rest of the paper is organized as follows: In section 1.1, we briefly review related work. We
clarify our notation in Section 2. We present our algorithm in Section 3 and the main results in
Section 4. We present our results for the sparse case in Section 5. Finally, we present experimental
results in Section 6.

1.1 Related Work

Phase Retrieval via Non-Convex Procedures: Inspite of the huge amount of work it has attracted,
phase retrieval has been a long standing open problem. Early work in this area focused on using
holography to capture the phase information along with magnitude measurements [12]. However,
computational methods for reconstruction of the signal using only magnitude measurements re-
ceived a lot of attention due to their applicability in resolving spurious noise, fringes, optical system
aberrations and so on and difficulties in the implementation of interferometer setups [9]. Though
such methods have been developed to solve this problem in various practical settings [8, 20], our

2



theoretical understanding of this problem is still far from complete. Many papers have focused on
determining conditions under which (1) has a unique solution - see [24] and references therein.
However, the uniqueness results of these papers do not resolve the algorithmic question of how to
find the solution to (1).

Since the seminal work of Gerchberg and Saxton [13] and Fienup [11], many iterated projection
algorithms have been developed targeted towards various applications [1, 10, 2]. [21] first suggested
the use of multiple magnitude measurements to resolve the phase problem. This approach has been
successfully used in many practical applications - see [9] and references there in. Following the
empirical success of these algorithms, researchers were able to explain its success in some of the
instances [29] using Bregman’s theory of iterated projections onto convex sets [3]. However, many
instances, such as the one we consider in this paper, are out of reach of this theory since they involve
magnitude constraints which are non-convex. To the best of our knowledge, there are no theoretical
results on the convergence of these approaches in a non-convex setting.

Phase Retrieval via Convex Relaxation: An interesting recent approach for solving this problem
formulates it as one of finding the rank-one solution to a system of linear matrix equations. The
papers [7, 6] then take the approach of relaxing the rank constraint by a trace norm penalty, making
the overall algorithm a convex program (called PhaseLift) over n× n matrices. Another recent line
of work [28] takes a similar but different approach : it uses an SDP relaxation (called PhaseCut) that
is inspired by the classical SDP relaxation for the max-cut problem. To date, these convex methods
are the only ones with analytical guarantees on statistical performance [5, 28] (i.e. the number m of
measurements required to recover x∗) – under an i.i.d. random Gaussian model on the measurement
vectors ai. However, by “lifting” a vector problem to a matrix one, these methods lead to a much
larger representation of the state space, and higher computational cost as a result.

Sparse Phase Retrieval: A special case of the phase retrieval problem which has received a lot
of attention recently is when the underlying signal x∗ is known to be sparse. Though this problem
is closely related to the compressed sensing problem, lack of phase information makes this harder.
However, the ℓ1 regularization approach of compressed sensing has been successfully used in this

setting as well. In particular, if x∗ is sparse, then the corresponding lifted matrix x∗x∗T is also
sparse. [22, 18] use this observation to design ℓ1 regularized SDP algorithms for phase retrieval
of sparse vectors. For random Gaussian measurements, [18] shows that ℓ1 regularized PhaseLift
recovers x∗ correctly if the number of measurements is Ω(k2 log n). By the results of [23], this
result is tight up to logarithmic factors for ℓ1 and trace norm regularized SDP relaxations.

Alternating Minimization (a.k.a. ALS): Alternating minimization has been successfully applied
to many applications in the low-rank matrix setting. For example, clustering, sparse PCA, non-
negative matrix factorization, signed network prediction etc. - see [15] and references there in.
However, despite empirical success, for most of the problems, there are no theoretical guarantees
regarding its convergence except to a local minimum. The only exceptions are the results in [16, 15]
which give provable guarantees for alternating minimization for the problems of matrix sensing and
matrix completion.

2 Notation

We use bold capital letters (A,B etc.) for matrices, bold small case letters (x,y etc.) for vectors
and non-bold letters (α,U etc.) for scalars. For every complex vector w ∈ C

n, |w| ∈ R
n denotes

its element-wise magnitude vector. wT and AT denote the Hermitian transpose of the vector w
and the matrix A respectively. e1, e2, etc. denote the canonical basis vectors in C

n. z denotes the
complex conjugate of the complex number z. In this paper we use the standard Gaussian (or normal)
distribution over Cn. a is said to be distributed according to this distribution if a = a1+ ia2, where

a1 and a2 are independent and are distributed according to N (0, I). We also define Ph (z)
def
= z

|z|

for every z ∈ C, and dist (w1,w2)
def
=

√
1−

∣∣∣ 〈w1,w2〉
‖w1‖2

‖w2‖2

∣∣∣
2

for every w1,w2 ∈ C
n. Finally, we

use the shorthand wlog for without loss of generality and whp for with high probability.

3 Algorithm

In this section, we present our alternating minimization based algorithm for solving the phase re-
trieval problem. Let A ∈ C

n×m be the measurement matrix, with ai as its ith column; similarly let
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Algorithm 1 AltMinPhase

input A,y, t0
1: Initialize x0 ← top singular vector of

∑
i y

2
i aiai

T

2: for t = 0, · · · , t0 − 1 do
3: Ct+1 ← Diag

(
Ph

(
ATxt

))

4: xt+1 ← argminx∈Rn

∥∥ATx−Ct+1y
∥∥
2

5: end for
output xt0

y be the vector of recorded magnitudes. Then,

y = |ATx∗ |.
Recall that, given y and A, the goal is to recover x∗. If we had access to the true phase c∗ of ATx∗

(i.e., c∗i = Ph (〈ai,x∗〉)) and m ≥ n, then our problem reduces to one of solving a system of linear
equations:

C∗y = ATx∗,

where C∗ def
= Diag(c∗) is the diagonal matrix of phases. Of course we do not know C∗, hence one

approach to recovering x∗ is to solve:

argmin
C,x

‖ATx−Cy‖2, (2)

where x ∈ C
n and C ∈ C

m×m is a diagonal matrix with each diagonal entry of magnitude 1. Note
that the above problem is not convex since C is restricted to be a diagonal phase matrix and hence,
one cannot use standard convex optimization methods to solve it.

Instead, our algorithm uses the well-known alternating minimization: alternatingly update x and C
so as to minimize (2). Note that given C, the vector x can be obtained by solving the following least
squares problem: minx ‖ATx − Cy‖2. Since the number of measurements m is larger than the
dimensionality n and since each entry of A is sampled from independent Gaussians, A is invertible
with probability 1. Hence, the above least squares problem has a unique solution. On the other hand,
given x, the optimal C is given by C = Diag

(
Ph

(
ATx

))
.

While the above algorithm is simple and intuitive, it is known that with bad initial points, the solu-
tion might not converge to x∗. In fact, this algorithm with a uniformly random initial point has been
empirically evaluated for example in [28], where it performs worse than SDP based methods. More-
over, since the underlying problem is non-convex, standard analysis techniques fail to guarantee
convergence to the global optimum, x∗. Hence, the key challenges here are: a) a good initialization
step for this method, b) establishing this method’s convergence to x∗.

We address the first key challenge in our AltMinPhase algorithm (Algorithm 1) by initializing x as
the largest singular vector of the matrix S = 1

m

∑
i y

2
i aiai

T . Theorem 4.1 shows that when A is
sampled from standard complex normal distribution, this initialization is accurate. In particular, if

m ≥ C1n log3 n for large enough C1 > 0, then whp we have ‖x0 − x∗‖2 ≤ 1/100 (or any other
constant).

Theorem 4.2 addresses the second key challenge and shows that a variant of AltMinPhase (see
Algorithm 2) actually converges to the global optimum x∗ at linear rate. See section 4 for a detailed
analysis of our algorithm.

We would like to stress that not only does a natural variant of our proposed algorithm have rigorous
theoretical guarantees, it also is effective practically as each of its iterations is fast, has a closed form
solution and does not require SVD computation. AltMinPhase has similar statistical complexity to
that of PhaseLift and PhaseCut while being much more efficient computationally. In particular, for
accuracy ǫ, we only need to solve each least squares problem only up to accuracy O (ǫ). Now, since
the measurement matrix A is sampled from Gaussian with m > Cn, it is well conditioned. Hence,
using conjugate gradient method, each such step takes O

(
mn log 1

ǫ

)
time. When m = O (n) and

we have geometric convergence, the total time taken by the algorithm is O
(
n2 log2 1

ǫ

)
. SDP based

methods on the other hand require Ω(n3/
√
ǫ) time. Moreover, our initialization step increases the

likelihood of successful recovery as opposed to a random initialization (which has been considered
so far in prior work). Refer Figure 1 for an empirical validation of these claims.
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(a) (b)

Figure 1: Sample and Time complexity of various methods for Gaussian measurement matrices A.
Figure 1(a) compares the number of measurements required for successful recovery by various meth-
ods. We note that our initialization improves sample complexity over that of random initialization
(AltMin (random init)) by a factor of 2. AltMinPhase requires similar number of measurements as
PhaseLift and PhaseCut. Figure 1(b) compares the running time of various algorithms on log-scale.
Note that AltMinPhase is almost two orders of magnitude faster than PhaseLift and PhaseCut.

4 Main Results: Analysis

In this section we describe the main contribution of this paper: provable statistical guarantees for the
success of alternating minimization in solving the phase recovery problem. To this end, we consider
the setting where each measurement vector ai is iid and is sampled from the standard complex
normal distribution. We would like to stress that all the existing guarantees for phase recovery also
use exactly the same setting [6, 5, 28]. Table 1 presents a comparison of the theoretical guarantees
of Algorithm 2 as compared to PhaseLift and PhaseCut.

Sample complexity Comp. complexity

Algorithm 2 O
(
n
(
log3 n+ log 1

ǫ log log
1
ǫ

))
O

(
n2

(
log3 n+ log2 1

ǫ log log
1
ǫ

))

PhaseLift [5] O (n) O
(
n3/ǫ2

)

PhaseCut [28] O (n) O
(
n3/
√
ǫ
)

Table 1: Comparison of Algorithm 2 with PhaseLift and PhaseCut: Though the sample complexity
of Algorithm 2 is off by log factors from that of PhaseLift and PhaseCut, it is O (n) better than them
in computational complexity. Note that, we can solve the least squares problem in each iteration
approximately by using conjugate gradient method which requires only O (mn) time.

Our proof for convergence of alternating minimization can be broken into two key results. We first

show that if m ≥ Cn log3 n, then whp the initialization step used by AltMinPhase returns x0 which
is at most a constant distance away from x∗. Furthermore, that constant can be controlled by using
more samples (see Theorem 4.1).

We then show that if xt is a fixed vector such that dist
(
xt,x∗) < c (small enough) and A is sampled

independently of xt with m > Cn (C large enough) then whp xt+1 satisfies: dist
(
xt+1,x∗) <

3
4dist

(
xt,x∗) (see Theorem 4.2). Note that our analysis critically requires xt to be “fixed” and

be independent of the sample matrix A. Hence, we cannot re-use the same A in each iteration;
instead, we need to resample A in every iteration. Using these results, we prove the correctness of
Algorithm 2, which is a natural resampled version of AltMinPhase.

We now present the two results mentioned above. For our proofs, wlog, we assume that ‖x∗‖2 = 1.

Our first result guarantees a good initial vector.

Theorem 4.1. There exists a constant C1 such that if m > C1

c2 n log3 n, then in Algorithm 2, with

probability greater than 1− 4/m2 we have:

‖x0 − x∗‖2 < c.
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Algorithm 2 AltMinPhase with Resampling

input A,y, ǫ
1: t0 ← c log 1

ǫ
2: Partition y and (the corresponding columns of) A into t0 + 1 equal disjoint sets:

(y0,A0), (y1,A1), · · · , (yt0 ,At0)

3: x0 ← top singular vector of
∑

l

(
y0l

)2
a0ℓ

(
a0ℓ

)T
4: for t = 0, · · · , t0 − 1 do

5: Ct+1 ← Diag
(
Ph

((
At+1

)T
xt

))

6: xt+1 ← argminx∈Rn

∥∥∥
(
At+1

)T
x−Ct+1yt+1

∥∥∥
2

7: end for
output xt0

The second result proves geometric decay of error assuming a good initialization.

Theorem 4.2. There exist constants c, ĉ and c̃ such that in iteration t of Algorithm 2, if
dist

(
xt,x∗) < c and the number of columns of At is greater than ĉn log 1

η then, with probability

more than 1− η, we have:

dist
(
xt+1,x∗) < 3

4
dist

(
xt,x∗) , and ‖xt+1 − x∗‖2 < c̃ dist

(
xt,x∗) .

Proof. For simplicity of notation in the proof of the theorem, we will use A for At+1, C for Ct+1,
x for xt, x+ for xt+1, and y for yt+1. Now consider the update in the (t+ 1)th iteration:

x+ = argmin
x̃∈Rn

∥∥AT x̃−Cy
∥∥
2
=

(
AAT

)−1
ACy =

(
AAT

)−1
ADATx∗, (3)

where D is a diagonal matrix with Dll
def
= Ph

(
aℓ

Tx · aℓTx∗
)

. Now (3) can be rewritten as:

x+ =
(
AAT

)−1
ADATx∗ = x∗ +

(
AAT

)−1
A (D− I)ATx∗, (4)

that is, x+ can be viewed as a perturbation of x∗ and the goal is to bound the error term (the second
term above). We break the proof into two main steps:

1. ∃ a constant c1 such that |〈x∗,x+〉| ≥ 1− c1dist (x,x
∗) (see Lemma A.2), and

2. |〈z,x+〉| ≤ 5
9dist (x,x

∗), for all z s.t. zTx∗ = 0. (see Lemma A.4)

Assuming the above two bounds and choosing c < 1
100c1

, we can prove the theorem:

dist
(
x+,x∗)2 <

(25/81) · dist (x,x∗)2

(1− c1dist (x,x∗))2
≤ 9

16
dist (x,x∗)2 ,

proving the first part of the theorem. The second part follows easily from (3) and Lemma A.2.

Intuition and key challenge: If we look at step 6 of Algorithm 2, we see that, for the measurements,
we use magnitudes calculated from x∗ and phases calculated from x. Intuitively, this means that we
are trying to push x+ towards x∗ (since we use its magnitudes) and x (since we use its phases) at
the same time. The key intuition behind the success of this procedure is that the push towards x∗ is
stronger than the push towards x, when x is close to x∗. The key lemma that captures this effect is
stated below:

Lemma 4.3. Let w1 and w2 be two independent standard complex Gaussian random variables2.

Let U = |w1|w2

(
Ph

(
1 +

√
1−α2w2

α|w1|

)
− 1

)
. Fix δ > 0. Then, there exists a constant γ > 0 such

that if
√
1− α2 < γ, then: E [U ] ≤ (1 + δ)

√
1− α2.

2
z is standard complex Gaussian if z = z1 + iz2 where z1 and z2 are independent standard normal random

variables.
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Algorithm 3 SparseAltMinPhase

input A,y, k
1: S ← top-k argmaxj∈[n]

∑m
i=1 |aijyi| {Pick indices of k largest absolute value inner product}

2: Apply Algorithm 2 on AS ,yS and output the resulting vector with elements in Sc set to zero.

Sample complexity Comp. complexity

Algorithm 3 O
(
k
(
k log n+ log 1

ǫ log log
1
ǫ

))
O

(
k2

(
kn log n+ log2 1

ǫ log log
1
ǫ

))

ℓ1-PhaseLift [18] O
(
k2 log n

)
O

(
n3/ǫ2

)

Table 2: Comparison of Algorithm 3 with ℓ1-PhaseLift when x∗
min = Ω

(
1/
√
k
)

. Note that the

complexity of Algorithm 3 is dominated by the support finding step. If k = O (1), Algorithm 3 runs
in quasi-linear time.

See Appendix A for a proof of the above lemma and how we use it to prove Theorem 4.2.

Combining Theorems 4.1 and 4.2, and a simple observation that ‖xT − x∗‖2 < c̃ dist
(
xT,x∗) for

a constant c̃, we can establish the correctness of Algorithm 2.

Theorem 4.4. Suppose the measurement vectors in (1) are independent standard complex normal

vectors. For every η > 0, there exists a constant c such that if m > cn
(
log3 n+ log 1

ǫ log log
1
ǫ

)

then, with probability greater than 1− η, Algorithm 2 outputs xt0 such that ‖xt0 − x∗‖2 < ǫ.

5 Sparse Phase Retrieval

In this section, we consider the case where x∗ is known to be sparse, with sparsity k. A natural
and practical question to ask here is: can the sample and computational complexity of the recovery
algorithm be improved when k ≪ n.

Recently, [18] studied this problem for Gaussian A and showed that for ℓ1 regularized PhaseLift,
m = O(k2 log n) samples suffice for exact recovery of x∗. However, the computational complexity
of this algorithm is still O(n3/ǫ2).

In this section, we provide a simple extension of our AltMinPhase algorithm that we call SparseAlt-
MinPhase, for the case of sparse x∗. The main idea behind our algorithm is to first recover the
support of x∗. Then, the problem reduces to phase retrieval of a k-dimensional signal. We then
solve the reduced problem using Algorithm 2. The pseudocode for SparseAltMinPhase is presented
in Algorithm 3. Table 2 provides a comparison of Algorithm 3 with ℓ1-regularized PhaseLift in
terms of sample complexity as well as computational complexity.

The following lemma shows that if the number of measurements is large enough, step 1 of SparseAlt-
MinPhase recovers the support of x∗ correctly.

Lemma 5.1. Suppose x∗ is k-sparse with support S and ‖x∗‖2 = 1. If ai are standard complex
Gaussian random vectors and m > c

(x∗

min)
4 log

n
δ , then Algorithm 3 recovers S with probability

greater than 1− δ, where x∗
min is the minimum non-zero entry of x∗.

The key step of our proof is to show that if j ∈ supp(x∗), then random variable Zij =
∑

i |aijyi|
has significantly higher mean than for the case when j /∈ supp(x∗). Now, by applying appropriate
concentration bounds, we can ensure that minj∈supp(x∗) |Zij | > maxj /∈supp(x∗) |Zij | and hence our

algorithm never picks up an element outside the true support set supp(x∗). See Appendix B for a
detailed proof of the above lemma.

The correctness of Algorithm 3 now is a direct consequence of Lemma 5.1 and Theorem 4.4. For the
special case where each non-zero value in x∗ is from {− 1√

k
, 1√

k
}, we have the following corollary:

Corollary 5.2. Suppose x∗ is k-sparse with non-zero elements± 1√
k

. If the number of measurements

m > c
(
k2 log n

δ + k log2 k + k log 1
ǫ

)
, then Algorithm 3 will recover x∗ up to accuracy ǫ with

probability greater than 1− δ.
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(a) (b) (c)

Figure 2: (a) & (b): Sample and time complexity for successful recovery using random Gaussian
illumination filters. Similar to Figure 1, we observe that AltMinPhase has similar number of filters
(J) as PhaseLift and PhaseCut, but is computationally much more efficient. We also see that Alt-
MinPhase performs better than AltMin (randominit). (c): Recovery error ‖x − x∗‖2 incurred by
various methods with increasing amount of noise (σ). AltMinPhase and PhaseCut perform compa-
rably while PhaseLift incurs significantly larger error.

6 Experiments

In this section, we present experimental evaluation of AltMinPhase (Algorithm 1) and compare its
performance with the SDP based methods PhaseLift [6] and PhaseCut [28]. We also empirically
demonstrate the advantage of our initialization procedure over random initialization (denoted by
AltMin (random init)), which has thus far been considered in the literature [13, 11, 28, 4]. AltMin
(random init) is the same as AltMinPhase except that step 1 of Algorithm 1 is replaced with:x0 ←
Uniformly random vector from the unit sphere.

We first choose x∗ uniformly at random from the unit sphere. In the noiseless setting, a trial is said
to succeed if the output x satisfies ‖x− x∗‖2 < 10−2. For a given dimension, we do a linear search
for smallest m (number of samples) such that empirical success ratio over 20 runs is at least 0.8. We
implemented our methods in Matlab, while we obtained the code for PhaseLift and PhaseCut from
the authors of [22] and [28] respectively.

We now present results from our experiments in three different settings.

Independent Random Gaussian Measurements: Each measurement vector ai is generated from
the standard complex Gaussian distribution. This measurement scheme was first suggested by [6]
and till date, this is the only scheme with theoretical guarantees.

Multiple Random Illumination Filters: We now present our results for the setting where the mea-
surements are obtained using multiple illumination filters; this setting was suggested by [4]. In

particular, choose J vectors z(1), · · · , z(J) and compute the following discrete Fourier transforms:

x̂(u) = DFT
(
x∗ · ∗ z(u)

)
,

where ·∗ denotes component-wise multiplication. Our measurements will then be the magnitudes of

components of the vectors x̂(1), · · · , x̂(J). The above measurement scheme can be implemented by
modulating the light beam or by the use of masks; see [4] for more details.

We again perform the same experiments as in the previous setting. Figures 2 (a) and (b) present the
results. We again see that the measurement complexity of AltMinPhase is similar to that of PhaseCut
and PhaseLift, but AltMinPhase is orders of magnitude faster than PhaseLift and PhaseCut.

Noisy Phase Retrieval: Finally, we study our method in the following noisy measurement scheme:

yi = |〈ai,x∗ + wi〉| for i = 1, . . . ,m, (5)

where wi is the noise in the i-th measurement and is sampled from N (0, σ2). We fix n = 64
and m = 6n. We then vary the amount of noise added σ and measure the ℓ2 error in recovery,
i.e., ‖x − x∗‖2, where x is the recovered vector. Figure 2(c) compares the performance of various
methods with varying amount of noise. We observe that our method outperforms PhaseLift and has
similar recovery error as PhaseCut.
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