
A Proof of Corollary 3

Corollary 3 is considerably simpler to prove than Theorem 2, so we prove the former in its entirety
before proceeding to the latter. To simplify the presentation, a number of technical lemmas regarding
incoherence and concentration of measure are deferred to sections E and F, respectively.

The proof begins by ensuring that for every column cj , if cj /2 ˜U then ||(I � P
˜U⌦
)cj⌦||2 > 0 with

high probability. This property is established in the following lemma:
Lemma 7. Suppose that ˜U ⇢ U and a column cj 2 U but cj /2 ˜U . If m � 36r3/2µ

0

log(2r/�)
then with probability � 1 � 4�, ||(I � P

˜U⌦
)cj⌦||2 > 0. If cj 2 ˜U then with probability 1, ||(I �

P
˜U⌦
)cj⌦||2 = 0.

Proof of Lemma 7. Decompose cj = x + v where x 2 ˜U and v 2 ˜U?. We can immediately apply
Theorem 4 and are left to verify that the left hand side of Equation 5 is strictly positive. Since cj /2 ˜U
we know that ||v||2

2

> 0. Then:

↵ =

r

2µ(v)

m
log(1/�) +

2µ(v)

3m
log(1/�) 

r

2rµ
0

m
log(1/�) +

2rµ
0

3m
log(1/�) < 1/2

When m � 32rµ
0

log(1/�). Here we used that µ(v)  rµ(U) since v 2 span(U). For �:

� =

s

8dµ( ˜U)

3m
log

✓

2d

�

◆



s

8rµ
0

3m
log

✓

2r

�

◆

 1

3

Whenever m � 24rµ
0

log(2r/�). Finally, with the bounds on ↵ and �, the expression in Equation 5
is strictly positive when 3rµ

0

�  m since dµ( ˜U)  rµ
0

. Plugging in the definition of � we require:

6 log(r/�) +
4

3

r2µ
0

m
log

2

(r/�)  m

3rµ
0

Which certainly holds when m � 36r3/2µ
0

log(r/�), concluding the proof.

It is easy to see that if ci 2 ˜U then ||(I � P
˜U⌦
)ci⌦||2 = 0 deterministically and our algorithm

does not further sample these columns. We must verify that these columns can be recovered exactly,
and this amounts to checking that ˜UT

⌦

˜U
⌦

is invertible. Fortunately, this was established as a lemma
in [2], and in fact, the failure probability is subsumed by the probability in Theorem 4. Now we
argue for correctness: there can be at most r columns for which ||(I � P

˜U⌦
)c

⌦i||2 > 0 since
rank(M)  r. For each of these columns, from Lemma 7, we know that with probability 1 � 4�
||(I � P

˜U⌦
)c

⌦i||2 > 0. By a union bound, with probability � 1 � 4r� all of these tests succeed,
so the subspace ˜U at the end of the algorithm is exactly the column space of M , namely U . All of
these columns are recovered exactly, since we completely sample them.

The probability that the matrices ˜UT
⌦

˜U
⌦

are invertible is subsumed by the success probability of
Theorem 4, except for the last matrix. In other words, the success of the projection test depends
on the invertibility of these matrices, so the fact that we recovered the column space U implies that
these matrices were invertible. The last matrix is invertible except with probability � by Lemma 18.

If these matrices are invertible, then since ci 2 ˜U , we can write ci = ˜U↵i and we have:
ĉi = ˜U(

˜UT
⌦

˜U
⌦

)

�1

˜UT
⌦

˜U
⌦

↵i =
˜U↵i = ci

So these columns are all recovered exactly. This step only adds a factor of � to the failure probability,
leading to the final term in the failure probability of the theorem.

For the running time, per column, the dominating computational costs involve the projection P
˜U⌦

and the reconstruction procedure. The projection involves several matrix multiplications and the
inversion of a r ⇥ r matrix, which need not be recomputed on every iteration. Ignoring the matrix
inversion, this procedure takes at most O(n

1

r) per column for a total running time of O(n
1

n
2

r).
At most r times, we must recompute (UT

⌦

U
⌦

)

�1, which takes O(r2m), contributing a factor of
O(r3m) to the total running time. Finally, we run the Gram-Schmidt process once over the course
of the algorithm, which takes O(n

1

r2) time. This last factor is dominated by n
1

n
2

r.
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B Proof of Theorem 2

We first focus on the recovery of the tensor in total, expressing this in terms of failure probabilities
in the recursion. Then we inductively bound the failure probability of the entire algorithm. Finally,
we compute the total number of observations. For now, define ⌧T to be the failure probability of
recovering a T -order tensor.

By Lemma 13, the subspace spanned by the mode-T tensors has incoherence at most rT�2µT�1

0

and rank at most r and each slice has incoherence at most rT�1µT�1

0

. By the same argument as
Lemma 7, we see that with m � 36rT�1/2µT�1

0

log(2r/�) the projection test succeeds in iden-
tifying informative subtensors (those not in our current basis) with probability � 1 � 4�. With a
union bound over these r subtensors, the failure probability becomes  4r� + �, not counting the
probability that we fail in recovering these subtensors, which is r⌧T�1

.

For each order T �1 tensor that we have to recover, the subspace of interest has incoherence at most
rT�3µT�2 and with probability � 1� 4r� we correctly identify each informative subtensor as long
as m � 36rT�3/2µT�2

log(2r/�). Again the failure probability is  4r� + � + r⌧T�2

.

To compute the total failure probability we proceed inductively. ⌧
1

= 0 since we completely observe
any one-mode tensor (vector). The recurrence relation is:

⌧t = 4r� + � + r⌧t�1

(8)

which solves to:

⌧T = � + 4rT�1� +
T�2

X

t=1

5rt�  5�TrT (9)

We also compute the sample complexity inductively. Let mT denote the number of samples needed
to complete a T -order tensor. Then m

1

= n
1

and:

mt = rmt�1

+ 36ntr
t�1/2µt�1

0

log(2r/�) (10)

So that mT is upper bounded as:

mT = rT�1n
1

+

T
X

t=2

rT�t
36ntr

t�1/2µt�1

0

log(2r/�)  36(

T
X

t=1

nt)r
T�1/2µT�1

0

log(2r/�)

The running time is computed in a similar way to the matrix case. Assume that the running time to
complete an order t tensor is:

O(r(
t
Y

i=1

ni) +

t
X

i=2

mir
3+t�i

)

Note that this is exactly the running time of our Algorithm in the matrix case.

Per order T � 1 subtensor, the projection and reconstructions take O(r
QT�1

t=1

nt), which in total
contributes a factor of O(r

QT
t=1

nt). At most r times, we must complete an order T � 1 subtensor,
and invert the matrix UT

⌦

U
⌦

. These two together take in total:

O

 

r

"

r(
T�1

Y

t=1

nt) +

T�1

X

t=2

mtr
3+T�1�t

#

+ r3mT

!

Finally the cost of the Gram-schmidt process is r2
QT�1

t=1

nt which is dominated by the other costs.
In total the running time is:

O

 

r

 

T
Y

t=1

nt

!

+ r2
T�1

Y

t=1

nt +

T
X

t=2

mtr
3+T�t

!

= O

 

r

 

T
Y

t=1

nt

!

+

T
X

t=2

mtr
3+T�t

!

since r  nT . Now plugging in that mi =

˜O(r2(i�1)

), the terms in the second sum are each
˜O(rT+t+1

) meaning that the sum is ˜O(r2T+1

). This gives the computational result.
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C Proof of Theorem 6

We will first prove a more general result and obtain Theorem 6 as a simple consequence.
Theorem 8. Let M = A + R where A = U⌃V T and Rij ⇠ N (0,�2

). Let Mr denote the best
rank r approximation to M . Assume that A is rank r and µ(U)  µ

0

. For every �, ✏ 2 (0, 1) sample
a set of size s =

5Lr
2�✏ at each of the L rounds of the algorithm and compute ˆM as prescribed. Then

with probability � 1� 9�:

||M � ˆM ||2F  5/4

✓

1

(1� ✏)
||M �Mr||2F + ✏L||M ||2F

◆

and the algorithm has expected sample complexity:

⌦

✓

L2r

�✏

✓

n
1

+ µ
0

n
2

p
r log2

✓

n
1

n
2

Lr

�✏

◆◆◆

The proof of this result involves some modifications to the analysis in [10]. We will follow their
proof, allowing for some error in the sampling probabilities, and arrive at a recovery guarantee. Then
we will show how these sampling probabilities can be well-approximated from limited observations.

The first Lemma analyzes a single round of the algorithm, while the second gives an induction
argument to chain the first across all of the rounds. These are extensions of Theorems 2.1 and
Theorems 1.2, respectively, from [10].

Lemma 9. Let M = U⌃V T 2 Rn1⇥n2 and let ˜U be a subspace of Rn1 . Let E = M � P
˜UM and

let S be a random sample of s columns of M , sampled according to the distribution p̂i with:

1� ↵
1

1 + ↵
2

||Ei||2

||E||2F
 p̂i 

1 + ↵
2

1� ↵
1

||Ei||2

||E||2F
Then with probability � 1� � we have:

||M � P
˜U[span(S),rM ||2F  r

s�

1 + ↵
2

1� ↵
1

||E||2F + ||M �Mr||2F

Where PH,r denotes a projection on to the best r-dimensional subspace of H and Mr is the best
rank r approximation to M .

Proof. The proof closely mirrors that of Theorem 2.1 in [10]. The main difference is that we are
using an estimate of the correct distribution, and this will result in some additional error.

For completeness we provide the proof here. We number the left (respectively right) singular
vectors of M as u(j) (v(j)) and use subscripts to denote columns. We will construct r vectors
w(1), . . . , w(r) 2 ˜U [ span(S) and use them to upper bound the projection. In particular we have:

||M � P
˜U[span(S),rM ||2F  ||M � PWM ||2F

so we can exclusively work with W .

For each i = 1, . . . , n
2

and for each l = 1, . . . s define:

X(j)
l =

1

p̂i
Eiv

(j)
i with probability p̂i

That is the ith column of the residual E, scaled by the ith entry of the jth right singular vector, and
the sampling probability. Defining X(j)

=

1

s

Ps
l=1

X(j)
l , we see that:

E[X(j)
] = E[X(j)

l ] =

n2
X

i=1

p̂i
p̂i
Eiv

(j)
i = Ev(j)

Defining w(j)
= P

˜U (M)v(j)+X(j) and using the definition of E, it is easy to verify that E[w(j)
] =

�ju(j). It is also easy to see that w(j) � �ju(j)
= X(j) � Ev(j).
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We will now proceed to bound the second central moment of w(j).

E[||w(j) � �ju
(j)||2] = E[||X(j)||2]� ||Ev(j)||2

The first term can be expanded as:

E[||X(j)||2] = 1

s2

s
X

l=1

E[||X(j)
l ||2] + s� 1

s
||Ev(j)||2

So that the second central moment is:

E[||w(j) � �ju
(j)||2] = 1

s2

s
X

l=1

E[||X(j)
l ||2]� 1

s
||Ev(j)||2

Now we use the probabilities p̂i to evaluate each term in the summation:

E[||X(j)
l ||2] =

n2
X

i=1

p̂i
||E(i)v(j)i ||2

p̂2i


n2
X

i=1

(1 + ↵
2

)v(j)2i ||E||2F
1� ↵

1

=

1 + ↵
2

1� ↵
1

||E||2F

This gives us an upper bound on the second central moment:

E[||w(j) � �ju
(j)||2]  1

s

1 + ↵
2

1� ↵
1

||E||2F

To complete the proof, let y(j) = w(j)/�j and define the matrix F = (

Pk
j=1

y(j)u(j)T
)M . Since

y(j) 2 W , the column space of F is contained in W so ||M � PW (M)||2F  ||M � F ||2F .

||M � F ||2F =

r
X

i=1

||(M � F )v(i)||2 =

r
X

i=k+1

�2

i +

k
X

i=1

||�iu
(i) � w(i)||2

We now use Markov’s inequality on the second term. Specifically, with probability � 1�� we have:

||M � F ||2F  ||M �Mk||2F +

1

�
E[

k
X

i=1

||�iu
(i) � w(i)||2]  ||M �Mr||2F +

r

�s

1 + ↵
2

1� ↵
1

||E||2F

Lemma 10. Suppose that (1 + ↵
2

)/(1 � ↵
1

)  c for some constant c and for each of L rounds of
sampling. Let S

1

, . . . , SL denote the sets of columns selected at each round and set s =

Lcr
�✏ . Then

with probability � 1� � we have:

||M � PSL
i=1 Si,r

M ||2F  1

1� ✏
||M �Mr||2F + ✏L||M ||2F

Proof. The proof is by induction on the number of rounds L. We will have each round of the
algorithm fail with probability �/L so that the total failure probability will be at most �. The base
case follows from Lemma 9. At the lth round, the same lemma tells us:

||M � PSl
i=1 Si,r

M ||2F  ||M �Mr||2F +

lcr

s�
||E||2F

Plugging in our choice of s and the definition of E:

||M � PSl
i=1 Si,r

M ||2F  ||M �Mr||2F + ✏||M � PSl�1
i=1 Si,r

M ||2F

and applying the induction hypothesis we have:

||M � PSL
i=1 Si,r

M ||2F  ||M �Mr||2F + ✏(
1

1� ✏
||M �Mr||2F + ✏L�1||M ||2F )

which gives us the desired result.
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To complete the proof, we just need to compute how many observations are necessary to ensure
that (1 + ↵

2

)/(1 � ↵
1

)  c. We can do this by manipulating Theorem 4 and upper bounding the
incoherences of the subspaces throughout the execution of the algorithm.
Lemma 11. We have:

2

5

||Ei||2
2

||E||2F
 p̂i 

5

2

||Ei||2
2

||E||2F
with probability � 1 � 6� as long as the expected number of samples observed per column m
satisfies:

m = ⌦

✓

L2r3/2µ(U)

�✏
log

2

(n
1

n
2

Lr/�✏)

◆

Proof. To establish the result, we will use the concentration results from Section F and the inco-
herence results form Section E. The goal will be to apply Theorem 4 with a union bound across all
rounds and all columns, but we first need to bound the incoherences.

With a union bound, Lemma 14 shows that each column (once projected onto the orthogonal com-
plement of one of the subspaces) has incoherence O(rµ(U) log(n

1

n
2

L/�)) with probability � 1��.
At the same time, Lemma 15 reveals that with probability � 1 � � all of the subspaces in the algo-
rithm have incoherence at most O(µ(U) log(n

1

L/�)).

We can now apply Theorem 4. We will, as usual, take a union bound across all columns and
all rounds, so each � term in that lemma will be replaced with a �/(n

1

L). Denote by ˜Ul the
subspace projected onto during the lth round of the algorithm. With m as in the lemma, the
condition that m � 8/3dim(

˜Ul)µ( ˜Ul) log
�

2rn1L
�

�

is clearly satisfied, since dim(

˜Ul)  L2r
�✏ and

µ( ˜Ul)  cµ(U) log(n
1

L/�). We also have that:

↵ =

r

2µ(v)

m
log(

n
1

L

�
) +

2

3

µ(v)

m
log(n

1

L/�)

 c
1

s

rµ(U) log

2

(n
1

n
2

L/�)

m
+ c

2

rµ(U) log

2

(n
1

n
2

L/�)

m
 O(1)

By boosting the size of m by a constant, we can make ↵  1/4. For � we have:

� =

s

8dim(

˜Ul)µ( ˜Ul)

3m
log(2dim(

˜Ul)/�)  c

r

L2k

�✏

µ(U)

m
log

2

(

n
1

rL3

�2✏
)  1/3

if we choose the constants correctly. Finally we have:

� = 6 log(n
1

L dim(

˜Ul)/�) +
4

3

dim(

˜Ul)µ(v)

m
log

2

(n
1

L dim(

˜Ul)/�)

 log(

n
1

rL3

�2✏
) +

L2r2µ(U)

m�✏
log

3

(

n
1

n
2

rL3

�2✏
)

which gives:

dim(

˜Ul)µ( ˜Ul)

m

�

(1� �)
 L2rµ(U)

m�✏
log

2

(

n
1

rL3

�2✏
) +

L4r3µ(U)

2

m2�2✏2
log

4

(

n
1

n
2

rL3

�2✏
)  O(1)

again using our definition of m. In particular, if we make this bound  1/4 we then have that:
m

n
1

(1� 1/2)||v � PSv||2
2

� ||v
⌦

� PS⌦v⌦||22 � m

n
1

(1 + 1/4)||v � PSv||2
2

in which case:

p̂i =
||vi⌦ � PS⌦vi⌦||22
P

i ||vi⌦ � PS⌦vi⌦||2
2

 5

2

pi

along with the other direction.
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We are essentially done proving the theorem. The total number of samples used is:

n
2

m = ⌦

✓

n
2

L2r3/2µ(U)

�✏
log

3

✓

n
1

n
2

Lr

�✏

◆◆

We also completely observe ⌦(L2r/�✏) columns. In total this gives us the sample complexity bound
in Theorem 8. The failure probability is  7� (6� from Lemma 11 and � from Lemma 10).

So far we have recovered a subspace that can be used to approximate M . Unfortunately, we
cannot actually compute PULM given limited samples. Instead, for each column c, we compute
ĉ = UL(UT

L⌦

UL⌦

)

�1U
⌦Lc⌦ and use ĉ as our estimate of the column. This is similar to another

projection operation, and the error will only be a constant factor worse than before.

Lemma 12. Let ci denote a column of the matrix M and let ˆU denote the subspace at the end of the
adaptive algorithm. Write ĉ = ˆU(

ˆUT
⌦

ˆU
⌦

)

�1

ˆU
⌦

c Then with probability � 1� 2�:

||c� ĉ||2 
 

1 +

rµ( ˆU)�

m(1� �)2

!

||P
ˆU?c||2

With � and � defined as in Theorem 4.

Proof. Decompose c = x + y where x 2 ˆU and y 2 ˆU?. It’s easy to see that x =

ˆU(

ˆUT
⌦

ˆU
⌦

)

�1

ˆU
⌦

x
⌦

so we are left with:

||y � ˆU(

ˆUT
⌦

ˆU
⌦

)

�1

ˆU
⌦

y||2 = ||y||2 + || ˆU(

ˆUT
⌦

ˆU
⌦

)

�1

ˆU
⌦

y||2

Because y 2 U? so the cross term is zero. The second term here is equivalant to:

||( ˆUT
⌦

ˆU
⌦

)

�1

ˆU
⌦

y||2  ||( ˆUT
⌦

ˆU
⌦

)

�1||2
2

|| ˆU
⌦

y||2
2

By Lemma 3 in [2] the first term is upper bounded by n2
1

(1��)2m2 while Lemma 17 reveals that the
second term is upper bounded by � m

n2
1
rµ( ˆU)||y||2. Combining these two yields the result.

We already showed that with our choice of m, the expression in the above Lemma is smaller than
5/4. Moreover the probability of failure simply adds 2� to the total failure probability. Thus:

||M � ˆM ||2F =

X

i

||ci � ĉi||2
2

 5/4||M � PUTM ||2F

and the last expression we bounded previously.

C.1 Proving the Theorem

To prove the main theorem, it is best to view M as equal to A on all of the unobserved entries. In
other words, if ⌦ is the set of all observations over the course of the algorithm, the random matrix
R is zero on ⌦

C . Since we never observed M on ⌦

C , we have no way of knowing whether M was
equal to A on those coordinates. It is therefore fair to write M = A+R

⌦

where R is zero on ⌦

C .

We expand the norm and then apply the main theorem:

||A� ˆM ||2F  3||M � ˆM ||2F + 3||R
⌦

||2F  5

4

✓

3

1� ✏
||M �Mr||2F + 3✏L||M ||2F

◆

+ 3||R
⌦

||2F

Now since Mr is the best rank r approximation to M (in Frobenius norm) and since A is rank r, we
know that ||M �Mr||F  ||M �A||F . With this substitution and setting ✏ = 1/2, L = log

2

(n
1

n
2

)

we will arrive at the result (below constants are denoted by c and they change from line to line):

||A� ˆM ||2F  c
1

||M �A||2F +

c
2

n
1

n
2

||M ||2F + c
3

||R
⌦

||2F  c
1

n
1

n
2

||A||2F + c
2

||R
⌦

||2F

which holds as long as n
1

n
2

is sufficiently large.
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D Proof of Theorem 5

We start by giving a proof in the matrix case, which is a slight variation of the proof by Candes and
Tao [7]. Then we turn to the tensor case, where only small adjustments are needed to establish the
result. We work in the Bernoulli model, noting that Candes’ and Tao’s arguments demonstrate how
to adapt these results to the uniform-at-random sampling model.

D.1 Matrix Case

In the matrix case, suppose that l
1

=

n1
r and l

2

=

n2
µ0r

are both integers. Define the following blocks
R

1

, . . . Rr ⇢ [n
1

] and C
1

, . . . Cr ⇢ [n
2

] as:

Ri = {l
1

(i� 1) + 1, l
1

(i� 1) + 2, . . . l
1

i}
Ci = {l

2

(i� 1) + 1, l
2

(i� 1) + 2, . . . l
2

i}

Now consider the n
1

⇥ n
2

family of matrices defined by:

M = {
r
X

k=1

ukv
T
k |uk = [1,

p
µ
0

]

n ⌦ 1Rk , vk = 1Ck} (11)

M is a family of block-diagonal matrices where the blocks have size l
1

⇥l
2

. Each block has constant
rows whose entries may take arbitrary values in [1,

p
µ
0

]. For any M 2 M, the incoherence of the
column space can be computed as:

µ(U) =

n
1

r
max

j2[n1]

||PUej ||2
2

=

n
1

r
max

k2[r]
max

j2[n1]

(uT
k ej)

2

(uT
k uk)

2

 n
1

r
max

k2[r]

µ
0

(n
1

/r)
= µ

0

A similar calculation reveals that the row space is also incoherent with parameter µ
0

.

Unique identification of M is not possible unless we observe at least one entry from each row of each
diagonal block. If we did not, then we could vary that corresponding coordinate in the appropriate
uk and find infinitely many matrices M 0 2 M that agree with our observations, have rank and
incoherence at most r and µ

0

respectively. Thus, the probability of successful recovery is no larger
than the probability of observing one entry of each row of each diagonal block.

The probability that any row of any block is unsampled is ⇡
1

= (1� p)l2 and the probability that all
rows are sampled is (1� ⇡

1

)

n1 . This must upper bound the success probability 1� �. Thus:

�n
1

⇡
1

� n
1

log(1� ⇡
1

) � log(1� �) � �2�

or ⇡
1

 2�/n
1

as long as � < 1/2. Substituting ⇡
1

= (1� p)l2 we obtain:

log(1� p)  1

l
2

log

✓

2�

n
1

◆

=

µ
0

r

n
2

log

✓

2�

n
1

◆

as a necessary condition for unique identification of M .

Exponentiating both sides, writing p =

m
n1n2

and the fact that 1� e�x > x� x2/2 gives us:

m � n
1

µ
0

r log
⇣n

1

2�

⌘

(1� ✏/2)

when µ
0

r/n
2

log(

n1
2� )  ✏ < 1.

D.2 Tensor Case

Fix T , the order of the tensor and suppose that l
1

=

n1
r is an integer. Moreover, suppose that

lt =
nt
µ0r

is an integer for 1 < t  T . Define a set of blocks, one for each mode and the family

B(t)
i = {lt(i� 1) + 1, lt(i� 1) + 2, . . . , lti}8i 2 [r], t 2 [p]

M =

8

<

:

r
X

i=1

⌦T
t=1

a(t)i

�

�

�

�

�

�

a(1)i = [1,
p
µ
0

]

n ⌦ 1
B

(t)
i

a(t)i = 1
B

(t)
i
, 1 < t  T

9

=

;
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This is a family of block-diagonal tensors and just as before, straightforward calculations reveal that
each subspace is incoherent with parameter µ

0

. Again, unique identification is not possible unless
we observe at least one entry from each row of each diagonal block. The difference is that in the
tensor case, there are

Q

i 6=1

li entries per row of each diagonal block so the probability that any
single row is unsampled is ⇡

1

= (1 � p)
Q

i 6=1 li . Again there are n
1

rows and any algorithm that
succeeds with probability 1� � must satisfy:

�n
1

⇡
1

� n
1

log(1� ⇡
1

) � log(1� �) � �2�

Which implies ⇡
1

 2�/n
1

(assuming � < 1/2). Substituting in the definition of ⇡
1

we have:

log(1� p)  1

Q

i 6=j li
log

✓

2�

n
1

◆

=

µT�1

0

rT�1

Q

i 6=j ni
log

✓

2�

n
1

◆

The same approximations as before yield the bound (as long as µT�1
0 rT�1
Q

i 6=j ni
log(

n1
2� )  ✏ < 1):

m � n
1

µT�1

0

rT�1

log

⇣n
1

2�

⌘

(1� ✏/2)

E Properties about Incoherence

A significant portion of our proofs revolve around controlling incoherences of various subspaces
used throughout the execution of the algorithms The following technical lemmas will enable us to
work with these quantities.
Lemma 13. Let U

1

⇢ Rn1 , U
2

⇢ Rn2 , . . . UT ⇢ RnT be subspaces of dimension at most d, let
W

1

⇢ U
1

have dimension d0. Define S = span({⌦T
t=1

u(t)
i }di=1

). Then:

(a) µ(W
1

)  dim(U1)

d0 µ(U
1

).

(b) µ(S)  dT�1

QT
i=1

µ(Ui).

Proof. For the first property, since W
1

is a subspace of U
1

, PW1ej = PW1PU1ej so ||PW1ej ||22 
||PU1ej ||22. The result now follows from the definition of incoherence.

For the second property, we instead compute the incoherence of:

S0 = span
✓

n

⌦T
t=1

u(t)
o

u(t)2Ut8t

◆

which clearly contains S. Note that if {u(t)
i } is an orthonormal basis for Ut (for each t), then the

outer product of all combinations of these vectors is a basis for S0. We now compute:

µ(S0) =
QT

i=1

ni
QT

t=1

dim(Ut)
max

k12[n1],...,kT2[nT ]

||PS0(⌦T
t=1

ekt)||2

=

QT
i=1

ni
QT

t=1

dim(Ut)
max

k1,...,kT

X

i1,...,iT

h⌦T
t=1

u(t)
it
,⌦T

t=1

ekti2

=

QT
i=1

ni
QT

t=1

dim(Ut)
max

k1,...,kT

X

i1,...,iT

T
Y

t=1

(u(t)T
it

ekt)
2

=

QT
i=1

ni
QT

t=1

dim(Ut)

T
Y

j=1

max

kj

r
X

i=1

(u(t)T
i ekj )

2 
T
Y

t=1

µ(Ut)

Now, property (a) establishes that µ(S)  rT

r µ(S0) which is the desired result.
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Lemma 14. Let U be the column space of M and let V be some other subspace of dimension at
most n

1

/2� k. Let vi = PV ?ci for each column ci. Then with probability � 1� �:

max

i
µ(vi)  3kµ(U) + 24 log(2n

1

n
2

/�) = O(kµ(U) log(n
1

n
2

/�))

Proof. Decompose vi = xi + ri where xi 2 U \ V ? and ri 2 U? \ V ?. Since each column is
composed of a deterministic component living in U and a random component, it must be the case
that ri is a random gaussian vector living in U? \ V ?, which is a subspace of dimension at least
n
1

� d � n
1

� dim(U)� dim(V ). We can now proceed with the bound:

µ(vi) = n
1

||vi||21
||vi||2

2

 3n
1

||xi||21 + ||ri||21
||xi||2

2

+ ||ri||2
2

 3n
1

||xi||21
||xi||2

2

+ 3n
1

||ri||21
||ri||2

2

 3kµ(U) +

6�2n
1

log(2n
1

n
2

/�)

�2

(n
1

� d)� 2�2

p

(n
1

� d) log(n
2

/�)

For the second line, we used that
P

i aiP
i bi


P

i
ai
bi

whenever ai, bi � 0 which is the case here. Finally
we use Lemma 19 on the denominator, 20 on the numerator, and a union bound over all n

2

columns.
For (n

1

� d) sufficiently large (as long as
p

(n
1

� d) log n
2

/�  (n
1

� d)/4) and if d  n
1

/2 we
can bound as:

3kµ(U) +

12n
1

log(2n
1

n
2

/�)

n
1

� d
 3kµ(U) + 24 log(2n

1

n
2

/�)

Lemma 15. Let Il =
Sl

i=1

Si and let Ul = span({ci}i2Il) as in the execution of the noisy algo-
rithm. If |Il|  n

1

/2 then with probability � 1� �, for all l 2 [L], we have:

µ(Ul) = O(µ(U) log(n
1

L/�))

Proof. It is clear that Ul ⇢ span({ci}i2Il)
S

span({ri}i2Il) which will make things much easier
to analyze. Note that span({ci}i2Il) ⇢ U the original incoherent subspace and let RIl denote the
random matrix of columns corresponding to Il. We then have:

||PUlei||22  ||PUei||2
2

+ ||PU?PRIl
ei||2

2

 ||PUei||2
2

+ ||PRIl
ei||2

2

 rµ(U)

n
1

+ ||RIl ||22||(RT
Il
RIl)

�1||2
2

||RT
Il
ei||2

2

 rµ(U)

n
1

+

(

p
n
1

+

p

|Il|+ ✏)2

(

p
n
1

�
p

|Il|� ✏)4
(|Il|+ 2

p

|Il| log(1/�) + 2 log(1/�))

Now if |Il|  n
1

/2 and � is not exponentially small, the contribution from the random matrix is:

(

p
n
1

+

p

|Il|+
p

2 log(2/�))2

(

p
n
1

�
p

|Il|�
p

2 log(2/�))4
(|Il|+ 2

p

|Il| log(1/�) + 2 log(1/�)) = O(|Il| log(1/�)/n1

)

So the total incoherence will be (note that dim(Ul) = |Il| with probability 1 since |Il|  n
1

/2):

µ(Ul) =
n
1

|Il|
max

i
||PUlei|22  n

|Il|

✓

rµ(U)

n
+O(|Il|/n)

◆

= O(

r

|Il|
µ(U)+1) = O(µ(U) log(1/�))

The failure probability here is �n
1

L if there are L rounds so the incoherence is:

µ(Ul) = O(µ(U) log(n
1

L))

18



F A Collection of Concentration Results

We enumerate several concentration of measure lemmas that we use throughout our proofs. Many
of these are well known results and we provide the references to their proofs.

F.1 Proof of Theorem 4

We improve on the result of Balzano et al. [2] to establish Theorem 4. The proof parallels theirs but
with improvements to two key Lemmas. The improvement stems from using Bernstein’s inequality
in lieu of standard Chernoff bounds in the concentration arguments and carries over into our sample
complexity guarantees. Here we state and prove the two lemmas and then sketch the overal proof.
Lemma 16. With the same notations as Theorem 4, with probability � 1� 2�.

(1� ↵)
m

n
||v||2

2

 ||v
⌦

||2
2

 (1 + ↵)
m

n
||v||2

2

(12)

Proof. The difference between Lemma 16 and Lemma 1 from [2] is in the definition of ↵. Here
we have reduced the relationship between µ(v) and m from µ(v)2/m to µ(v)/m. The proof is an
application of Bernstein’s inequality.

Let Xi = v2
⌦(i) so that

Pm
i=1

Xi = ||v
⌦

||2
2

. We can compute the variance and bound for Xi as:

�2

= E[X2

i ] =
1

n

n
X

i=1

v4i  1

n
||v||21||v||2

2

, M = max |Xi|  ||v||21

Now we apply Berstein’s inequality:

P
 

�

�

�

�

�

m
X

i=1

Xi � E[
m
X

i=1

Xi]

�

�

�

�

�

> t

!

 2 exp

✓

1

2

�t2

m�2

+

1

3

Mt

◆

Noting that E[
Pm

i=1

Xi] =
m
n ||v||2

2

and setting t = ↵m
n ||v||2

2

the bound becomes:

P
 

�

�

�

�

�

m
X

i=1

Xi �
m

n
||v||2

2

�

�

�

�

�

> ↵
m

n
||v||2

2

!

 2 exp

✓

�↵2m||v||2
2

2n||v||21(1 + ↵/3)

◆

 2 exp

✓

�↵2m

2µ(v)(1 + ↵/3)

◆

Finally plugging in the definition of ↵ from the theorem shows that the right hand side is  2�.

In similar spirit to Lemma 16 we can also improve Lemma 2 from [2] using Bernstein’s inequality:
Lemma 17. With the same notations as Theorem 4, with probability at least 1� �:

||UT
⌦

v
⌦

||2
2

 �
m

n

dµ(U)

n
||v||2

2

(13)

Proof. Again the improvement in our Lemma is in the expression � where we have an improved
dependence between m and µ(y). The proof is an application of Bernstein’s inequality. Note that:

||UT
⌦

v
⌦

||2
2

=

d
X

j=1

 

X

i2⌦

ujivi

!

2

=

d
X

j=1

 

X

i2⌦

Xji

!

2

Where we have defined Xji =
Pn

k=1

ujkvj1
⌦(i)=k. We have:

E[Xji] = 0, E[X2

ji] =
1

n

n
X

k=1

(ujkvk)
2 , �2

j , |Xji|  ||uj ||1||v||1 , M
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We apply Bernstein’s inequality and take a union bound, so that with probability � 1� �:

8j = 1, . . . , d
m
X

i=1

Xji 
q

2m�2

j log(d/�) +
2

3

M log(d/�)

d
X

j=1

 

m
X

i=1

Xji

!

2

 3

0

@

2m

0

@

d
X

j=1

�2

j

1

A

log(d/�) +
4

9

dM2

log

2

(d/�)

1

A

Notice that:
d
X

j=1

�2

j =

1

n

d
X

j=1

n
X

i=1

ujivi 
1

n

n
X

i=1

v2i

d
X

j=1

u2

ji 
1

n
||v||2

2

dµ(U)/n

Notice also that ||uj ||21  dµ(U)/n. Plugging in these bounds, with probability � 1� �:

||UT
⌦

v
⌦

||2
2

 3

✓

2

m

n

dµ(U)

n
||v||2

2

log(d/�) +
4

9

dµ(U)

n
d||v||21 log

2

(d/�)

◆

 m

n

dµ(U)

n
||v||2

2

✓

6 log(d/�) +
4

3

dµ(v)

m
log

2

(d/�)

◆

Where we used that ||v||21  ||v||2
2

µ(v)/n via the definition of incoherence.

It will also be essential for these projections matrices to be invertible even with missing observations,
as this will allow us to reconstruct columns of the matrix.
Lemma 18 ( [2]). Let � > 0 and m � 8

3

rµ
0

log(2r/�), Then:

||(UT
⌦

U
⌦

)

�1||
2

 n

(1� �)m
(14)

with probability � 1� �, provided that � < 1. In particular UT
⌦

U
⌦

is invertible.

Proof of Theorem 4. Let WT
⌦

W
⌦

= (UT
⌦

U
⌦

)

�1. If Lemma 18 holds, UT
⌦

U
⌦

is invertible so
vT
⌦

U
⌦

(UT
⌦

U
⌦

)

�1UT
⌦

v
⌦

= ||W
⌦

UT
⌦

v
⌦

||2
2

 ||W
⌦

||2
2

||UT
⌦

v
⌦

||2
2

 ||(UT
⌦

U
⌦

)

�1||||UT
⌦

v
⌦

||2
2

And therefore:

||v
⌦

� PU⌦v⌦||22 = ||v
⌦

||2
2

� vT
⌦

U
⌦

(UT
⌦

U
⌦

)

�1UT
⌦

v
⌦

� (1� ↵)
m

n
||v||2

2

� dµ(U)

n

�

1� �
||v||2

2

yields the lower bound. The upper bound follows from the same decomposition and Lemma 16.

F.2 Concentration for Gaussian Vectors and Matrices

We will also need several concentration results pertaining to gaussian random vectors and gaussian
random matrices. The first of these will help us bound the `

2

norm of a gaussian vector:
Lemma 19. [19] Let X ⇠ �2

d. Then with probability � 1� 2�:

�2

p

d log(1/�)  X � d  2

p

d log(1/�) + log(1/�)

A gaussian random vector r has incoherence that depends on ||r||21 so it is crucial that we can
control the maximum of gaussian random variables.
Lemma 20. Let X

1

, . . . , Xn ⇠ N (0,�2

). Then with probability � 1� �:

max

i
|Xi|  �

p

2 log(2n/�)

Finally, we will be projecting on to perturbed subspaces so we will need to control the coherence of
these subspaces. The spectrum of the perturbation, will play a role in the coherence calculations.
Lemma 21. [24] Let R be a n⇥t whose entries are independent standard normal random variables.
Then for every ✏ � 0, with probability 1� 2 exp{�✏2/2}, one has:

p
n�

p
t� ✏  �

min

(R)  �
max

(R) 
p
n+

p
t+ ✏
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