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A Full model of neural connectivity

Here we give an extended treatment of the model introduced in Section 2, describing our specific
data generation process and parameters used. This serves both to explain how we generated the data
used in our experiments as well as give an example of how certain choices could be made regarding
the model, e.g., the probability of neurotransmitter release given the stimuli and distributions of
delays in the postsynaptic events.

A.1 Synthetic data model

As a reminder, we model a neural microcircuit in the context of an experiment where subsets of
putative presynaptic neurons are stimulated while subthreshold events are recorded from a single
neuron. In our notation, we observe a postsynaptic trace yn ∈ RT resulting from the release of
neurotransmitter from a subset of K putative presynaptic neurons as xn ∈ {0, 1}K where xn may
not be observed. Each neuron influences the postsynaptic neuron with connectivity weights denoted
w ∈ RK where w is a sparse vector representing the fact that most neurons are not synaptically
connected. We also allow that each synaptic event — of which there could be multiple at each trial
— has some delay dnk, and that this delay can have a distribution which may be iid or may be
somehow dependent on the stimuli, cells’ identities, etc. For simplicity, we choose the temporal
delays to be iid exponential distributed with mean d0,

p(dnk) = Expo(d0). (1)

Given these variables, we can define the likelihood

p(Y|w,X,D) =

N∏
n=1

T∏
t=1

N
(
ynt

∣∣∣∣∑
k

wkxnkfk(t− dnk), ν2
)

(2)

where fk(·) is a template function which characterizes the subthreshold responses for each neuron.
Again, each neurons function could be based on its identity and relationship to the postsynaptic
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cell. Here we use an alpha-function, a common choice to characterize postsynaptic currents and
potentials, which is defined as

fk(t, τk) =
t

τk
exp

(
− t− τk

τk

)
, t ≥ 0. (3)

The constant τk controls the horizontal scale of the event and we draw them for each neuron from
the truncated, positive normal distribution N+(τk|µτ , σ2

τ ).

As mentioned in the main text, we use a generalized spike-and-slab prior on the weights to promote
sparsity in w. Specifically, we use lognormal distributions for the slabs [6].

p(wk|γk = 1, vk) = ln N (vkwk|η̃k, σ̃k) (4)
p(wk|γk = 0) = δ0(wk) (5)

p(γk|ak) = Bernoulli(ak) (6)

The probability of each particular neuron k having a nonzero weight, ak, can be set in an informative
manner based on a cell’s identity and the distance from its position, pk, to the postsynaptic neuron
at position p0. Nearby inhibitory neurons synapse onto excitatory neurons with a relatively high
probability which falls off rather quickly as compared to excitatory-excitatory connections which
occur with a lower probability at small distances and falls off more gradually as distance increases
[5, 3]. Here we denote vk = 1 for excitatory neurons and vk = −1 for inhibitory neurons. Based
on the results in [5], we use a Gaussian function to model the distribution of inhibitory to excitatory
connections based on distance and an exponential for excitatory to excitatory. Note that we assume
we are recording from an excitatory neuron, and also in terms of notation we use the plus and minus
subscripts to identify to parameters which refer to excitatory and inhibitory neurons, respectively.
This gives the prior probability of connection for a particular neuron as

ak =

m+ exp(−λ+‖pk − p0‖2), if vk = 1

m− exp(− 1

2σ2
−
‖pk − p0‖22), if vk = −1

(7)

A key source of uncertainty lies in the experimental inability to stimulate a particular presynaptic
neuron without failing to get neurotransmitter release from that neuron or potentially stimulating
nearby neurons as well. We thus treat the matrix X as a latent variable; we can only observe Z, the
neurons the experimenter actually indented to stimulate. The influence of stimulus znr is modeled
as a Gaussian function of the distance from the stimulus locations to a presynaptic neuron, such that
the probability a neuron at the exact stimulus location fires is at some maximum, smax, and falls off
with distance [4]. The strength of the rth stimulus on neuron k, on the nth trial, is given by

πn,k,r = smax exp

{
− 1

2
(pzn,r

− pk)>A−1(pzn,r
− pk)

}
(8)

whereA is a diagonal matrix that defines the spread of the stimulus through the tissue and the vectors
pzn,r

denote the locations of the stimuli. We then model the probability of a neuron firing on a given
trial as

p(xnk = 1|πn,k,1...R) = min
(
bmax,

R∑
r=1

πn,k,r
)

(9)

in which the effect of the R stimuli are additive up to a threshold. Here bmax ∈ [0, 1] can be used to
model the rate of synaptic transmission.

A.2 Choosing hyperparameters

One benefit of our model is that nearly all of the hyperparameters can be chosen intelligently given
available information about the hardware and previous mapping research in similar brain regions.
For example, in [4] empirical distributions for firing probability given stimulus location are provided.
But in general an experimenter could estimate this conditional distribution for a given setup before
running the mapping procedure. Similarly, the response noise can be easily determined from the
data because events are sparse. Parameters for the spike and slab prior can also be estimated by

2



an experimenter before hand by spending time performing initial paired patches or by consulting
published results that are relevant to that particular preparation. Here we look to several papers
to set the various parameters for our model [2, 3, 4, 5, 6]. In general, we assume we are recording
current traces from a pyramidal neuron in somatosensory cortex of a mouse and that we use 2-photon
stimulation to excite the presynaptic population.

Below is a list of hyperparameters we used for data generation:

η̃vk=−1 = 1.5 µτ = 1.5 λ+ = .005

η̃vk=1 = 1 στ = .5 σ2
− = 5000

σ̃− = 1 d0 = 5 smax = 1

σ̃+ = 1 m+ = .22 bmax = 1

A = diag(100, 100, 150) m− = .5

When performing inference it is important to remember we are inferring c, the charge transfer, not
the amplitude of the responses w. Thus the parameters are based on taking the integral of a mean
version of the template function. In our case, that is done by using an alpha function with amplitude
1 and with a time constant µτ . For Gibbs sampling we use truncated Gaussians centered at zero with
variances σ̂2

+ and σ̂2
−. For variational inference we shift the Gaussians so they have means η̂+ and

η̂− where

η̂+ = 58.9 η̂− = −78.6 σ̂2
+ = σ̂2

− = 31.4.

B Details of optimal stimulus selection procedure

Here we present the details of the variational approximation and the optimal stimulus selection
procedure. We allow sparsity, mean, and variance hyperparameters ak, ηk, σ2

k of the spike-and-slab
prior to be set individually for each of the K neurons, if desired,

p(y|c,X) =

N∏
n=1

N (yn|x>n c, σ2) (10)

p(ck|γk) = γkN (ck|ηk, σ2
k) + (1− γk)δ0(ck) (11)

p(γk = 1) = ak. (12)

For fixed X, the variational approximation
∏
k q(ck, γk) to the posterior distribution is obtained via

coordinate ascent on the parameters {αk, µk, sk} using the update equations

s2k =
σ2

(XTX)kk + σ2/σ2
k

(13)

µk =
s2kηk
σ2
k

+
s2k
σ2

(XTy)k −
∑
j 6=k

(XTX)jkαjµj

 (14)

αk
1− αk

=
ak

1− ak
× sk
σk
× exp

{
µ2
k

2s2k
− η2k

2σ2
k

}
(15)

which closely resemble those of [1, 7], but with additional terms to account for the fact that the slabs
are not centered at zero.

In this discussion we assume that X is known; inference when X is unknown is similar, and is
performed by averaging over samples from p(X|Z).

B.1 Objective function

We use this variational posterior to select the optimal next stimulus x?n, satisfying

x?n = arg min
xn

H[c,γ|D] ≈ arg min
xn

∑
k

H[ck, γk|D]. (16)
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We define the function J̃ ≡ H[ck, γk|D] to be the marginal contribution of an individual neuron to
the total entropy, as a function of the variational parameters

J̃(αk,n, sk,n) =
αk,n

2
(1 + log(2πs2k,n))− αk,n logαk,n − (1− αk,n) log(1− αk,n). (17)

To perform the optimization we must take the expectation of J̃ with respect to p(yn|xn). We ap-
proximate this by generating ` = 1, . . . , L samples y(`)n for a given xn. This is done by sampling
wk, γk from the distribution defined by the variational posterior at trial n− 1,

p(γ
(`)
k |D) = Bernoulli(αk,n−1) (18)

p(c
(`)
k |γ

(`)
k ,D) = N (c

(`)
k |µk,n−1, s

2
k,n−1) (19)

p(y(`)n |xn,D) = N (y(`)n |x>n c(`)n , σ2). (20)

We can then use each sample y(`)n to estimate the variational parameters α(`)
k,n and s(`)k,n, yielding the

finite-sample approximation

x?n = arg min
xn

K∑
k=1

E
[
H[ck, γk|D]

]
≈ arg min

xn

1

L

L∑
`=1

K∑
k=1

J̃
(
α
(`)
k,n, s

(`)
k,n

)
. (21)

B.2 Stimulus selection

In our greedy selection process, we are considering those xkn in which only the kth entry is nonzero.
In this case the updates can be further simplified, resulting in computations in which no coordinate
ascent is necessary:

s2k,n ≈
σ2s2k,n−1
σ2 + s2k,n−1

(22)

µk,n ≈
σ2µk,n−1
σ2 + s2k,n−1

+
s2k,nyn

σ2
(23)

αk,n
1− αk,n

≈ πk
1− πk

× sk,n
sk,n−1

× exp

{
µ2
k,n

2s2k,n
−

µ2
k,n−1

2s2k,n−1

}
. (24)

The full stimulus selection procedure is outlined in Algorithm 1 and an analysis of the runtime is
presented in Figure 2.

Algorithm 1 Sequential Stimuli Selection

Initialize αk,0 ← a, µk,0 ← 0, sk,0 ← σs
for n = 1→ N do

for k = 1→ K do
j(n−1)(k)← J̃(αk,n−1, sk,n−1) (eq. 17)
for ` = 1→ L do

Draw sample y(`)n (eq. 18–20)
Compute α(`)

k,n, µ
(`)
k,n, s

(`)
k,n (eqn’s. 22–24)

end for
j(n)(k)← 1

L

∑
J̃(α

(`)
k,n, s

(`)
k,n)

∆j(k)← j(n)(k)− j(n−1)(k)
end for
Sort ∆j descending
Choose next z?n to stimulate neurons corresponding to R largest values of ∆j
Execute z?n and observe a response yn
Update αk,n, µk,n, sk,n from full data x1:n, y1:n (eqn’s. 13–15)

end for
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Figure 1: A comparison of our greedy stimulus selection with an exhaustive search on a small system
with 20 neurons with 2 locations stimulated at each trial (K = 20, R = 2). This histogram shows
the empirical distribution of the ranks of neurons selected by exhaustive search. The neurons here
are sorted by the expected change in entropy, with entries on the left reducing the entropy most. The
greedy approach would select the leftmost R neurons; we see that the brute-force approach tends to
select these neurons preferentially as well.
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Figure 2: Comparison of per trial runtimes for the combined stimulus selection and inference pro-
cedure across different values for R, the number of stimuli per trial. The stimulus selection phase
of the algorithm runs in O(K) and is constant with respect to R and n, the amount of data up to the
current trial. The dependence onR seen in this plot is a result of the variational inference procedure.
As mentioned previously, this is a coordinate ascent algorithm whose time until convergence is de-
pendent on the correlations in the rows of X. As R increases, this correlation increases and we see
longer runtimes; the algorithm still performs fast enough to be used online under these conditions.
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